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Abstract

A new strategy for the computer-assisted methods development in the reversed-phase liquid chromatographic separations of
unknown sample mixtures has been developed using the latent spectral information in chromatogram raw data files of appro-
priately designed experiments, rather than resorting to elemental information functions (e.g., the number of peaks in chromato-
grams or similar criteria). The strategy developed allows unification of the approach for samples of both known and unknown
composition and, thus, provide a general strategy for computer-aided tools in the chromatography laboratory. The operation
principle of this strategy departs from extracting the spectra of components in the mixture chromatograms by resorting to
multivariate curve resolution-alternating least squares (MCR-ALS). This technique allows the estimation of the true spectra
for the individual components except when they have identical spectra or are fully overlapped. Thus, a convenient experimental
design will try to perform separations of the sample mixture having at least partial resolution of components in some runs. This
will allow estimating the spectra of components and, then, assign these components to the peaks in each run chromatogram. In
this way, a retention model can be built for each component so computerized optimization process can be developed to provide
the chromatographer with the best possible separation programs. Following this approach, strategies for sample mixtures of
known and unknown composition are only different in the need of an initial spectrum discovery process for unknown mixtures
and therefore a real general approach for the computer-assisted LC methods development is now available for the first time.

Keywords Computer simulation - Liquid chromatography - Reversed phase - MCR-ALS - Optimization

Introduction

Computerized method development in high-performance lig-
uid chromatography (HPLC) emerged as soon as the com-
puters entered the analytical laboratory in the past 1970s. By
this time, LC practitioners have clearly realized the power of
the technique and, also the difficulties to develop good elution
programs for real-world samples using the classical trial-and-
error approach, due to the many variables that must be taken
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into account and the slowness of the trials. In general, it was
accepted that the development of new separation procedures
required time, dedication, and expertise of chromatographers,
so the possibility of having a computerized tool taking care of
experimental design, instrument’s control, data analysis, and
decision-making appeared as a highly desirable goal [1]. The
first commercial systems aimed to these objectives were quite
ephemeral [2, 3] and many other proposals remain as pure
academic studies [4, 5]. Only a few dedicated software pack-
ages that work independently of instrument’s manufacturers
have remained in the market after more than 40 years with
periodical updates, being Drylab [6], probably, the best
known and more representative example of this assertion.
The majority of these applications have evolved to provide
an efficient communication with the instruments of the main
LC manufacturers, thus approaching the original goal as men-
tioned above. However, a major limitation has remained from
the outset: the need to have the knowledge about the compo-
nents mixed in the sample.
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Restricting our discussion to reversed-phase LC, which
continues to be the most preferred LC mode, LC computer-
assisted methods development (CAMD) program builds a
model of the retention of the sample components as a function
of the chromatographic column selected, the mobile phase,
and other experimental variables such as the temperature,
pH, or the nature of the modifier. An experimental plan is
designed to run the calibrating elutions needed for the model
while reducing the number of runs as much as possible. The
obtained chromatograms are processed to assign the retention
of each component in each run. The obtained retention times
are processed to build the retention model using any of the
theoretical models available [7]. The so-called linear solvent
strength model (LSSM) [8] is widely used for these purposes.
This model is often expressed by the simple equation:

logk = logko—Sp (1)

where ¢ is the volume fraction of the modifier in the mobile
phase (% B expressed in decimal form), S a constant for a
given compound, and log k the theorical value of the reten-
tion factor corresponding to an isocratic elution using pure
water as mobile phase. Other models [9, 10] perform better
for analytes that deviate from the linear relationship. This
retention model may now be applied in simulation processes
to explore and optimize elution programs in the search for a
convenient separation of the sample components.

As stated before, to build the model, each component in the
sample should be identified accurately in all calibrating chro-
matograms, so we need to know beforehand how many com-
ponents form the mixture and how to identify each one. The
exact composition of the mixture should be accurately known
before starting any CAMD process. Spectral characteristics of
mixture components may be used to locate each component in
the chromatograms and, with some practical limitations, the
peak areas can help when overlapping occurs. Many times not
all mixture components are of interest. However, this does not
mean that we do not need to know about their existence and
their characteristics because all components must be modelled
to optimize the separation of the components of interest.
Otherwise, unmodelled interferents may invalidate the optimi-
zation process (frequently based on the so-called resolution
maps, which measure the critical Rs in chromatograms as a
measure of the separation feasibility). In real-life problems,
this limitation is important because, very often, we do not have
all the needed information about the samples, and thus, the
CAMD tool cannot be applied or must be applied under sub-
optimal conditions.

The first practical approach to deal with separations of
unknown composition mixtures was described by Krull and
coworkers [11] in 2008-2009, coining the terms of “named”
and “unnamed” peaks and proposing the concept of “trend
responses.” Unnamed peak problems are separation problems
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where the number of peaks and/or the nature of some, or all,
components in the mixtures to be separated is not known, and
thus, the peaks cannot be tracked along the model calibration
chromatograms, and thus, no retention model can be built.
Changes in selectivity caused by modifications in the LC op-
erational variables are the key to solving separation problems
but that changes cannot be elucidated if the particular position
of each peak in the chromatograms cannot be tracked. Thus,
Krull and coworkers proposed an essentially different ap-
proach using the information that can be derived directly
and easily from the chromatograms (e.g., the number of peaks
readily visible in each chromatogram, the number of peak
pairs exhibiting good resolution or good shape and symmetry
in chromatograms; the peak having the largest area; the time
needed to elute all apparent components in the sample, or to
elute the first peak). The commercial software Fusion QbD
[12] is the practical tool using these concepts.

Although the proposal was appealing, the practical appli-
cation exhibits critical limitations even for mixtures of low-
medium complexity, especially when desirable changes in
selectivity appear during the screening runs. Some of these
limitations have been demonstrated with real examples [1]
so the CAMD for unnamed peak problems remain still an
unresolved problem except for the simpler situations.

Recently, the application of multivariate curve resolution-
alternating least squares (MCR-ALS) technique [13, 14] to the
resolution of overlapped signals in chromatography [15, 16]
and the assessment of peak purity [17] has received consider-
able attention. MCR-ALS allows evaluating the number of
components overlapped in a chromatographic peak and, if
the chromatograms are conveniently arranged, quantitating
these components.

In an attempt to overcome the essential limitation of the
existing CAMD tools when dealing with mixtures of un-
known composition, an alternative strategy has been devel-
oped that makes use of the qualitative spectral information
latent in the raw data files of the screening chromatographic
runs, which can be extracted by the use of MCR-ALS. That
information is used to evaluate the number of components in
the mixture and to assign their positions in the chromato-
grams. In this way, the retention model can be built and ap-
plied to develop further optimization process by computer
simulation. A far as we are aware, this is the first strategy that
can deal efficiently with unknown composition mixtures of
medium-high complexity. Moreover, the proposed strategy
unifies the way both types of separation problems (named
and unnamed peaks) are processed and therefore breaks the
classical barrier established by the knowledge about the sam-
ple composition. This means that the proposed strategy serves
all the original objectives of CAMD providing a general so-
lution to the chemometrical development of reversed-phase
LC separations.
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Theory

The proposed algorithm to modelling the retention of peaks in
samples of unknown composition takes the following steps:

(1) Select one or several chromatographic columns and mo-
bile phases to screen the mixture.

(2) Obtain a series of chromatogram runs for the mixture
according to a convenient experimental design aimed at
revealing the selectivity differences of the tested columns
and mobile phases to the sample components.

(3) Process the chromatogram files to define peaks or peak
cluster’s locations.

(4) Systematically apply the MCR-ALS algorithm to esti-
mate the number of components in each peak or peak
cluster in each chromatogram and their spectral and elu-
tion profile characteristics.

(5) Complete the processing of each chromatogram to pro-
duce a list of estimated components in the sample mix-
ture as seen in that chromatogram and categorize the
discovered components corresponding to pure or mixed
components in peaks.

(6) Correlate all discovered chromatogram components in
the experiments to generate a set of common compo-
nents in the sample. If needed, the user participates
now to verify the component’s assignation.

(7) Take the retention of each component in each chromato-
gram to produce a retention model using the linear sol-
vent strength model (thus restricting the tool for
reversed-phase separations).

(8) Use the retention model obtained to simulate separations
in different elution conditions using an efficient optimi-
zation engine.

(9) Take the optimized results, if satisfactory, and test exper-
imentally the obtained separation program evaluating the
robustness of the separation.

Because the novelty of the proposed tool consists essential-
ly in the strategical combination of several chemometrical
techniques and some of these steps adopt algorithmic solu-
tions that have been extensively described and tested, the fol-
lowing paragraphs will only consider in detail those that are
applied for the first time in the context of the computer-
assisted methods development in LC.

Steps 1 and 2. Experimental design

The number of columns and/or mobile phases to be consid-
ered in the screening process is clearly dependent on the in-
formation available about the mixture composition. For un-
known mixtures, there is no other option that tests several
columns exhibiting different selectivity and possibly several
organic modifiers in the mobile phase. For partially unknown

mixtures, the number of columns to be tested can be reduced
considerably. The use of available tools that use the chemical
and structural properties of the known mixture components
allows reducing significantly the screening experimental work
and selecting the more promising column and solvent selec-
tivities [7]. On the other side, the objective in the experimental
design is twofold. It should be able to provide the necessary
data to build the retention model, and it should reveal as much
as possible the differences in selectivity for the mixture com-
ponents. The ability of the MCR-ALS algorithm proposed in
step 4 to discover the component’s spectra and profiles may be
hindered if components eluted exactly at the same retention
time or if their spectra are identical and components elute
highly or fully overlapped. Thus, the objective is to achieve,
even if only, a partial separation of unresolved components in
some of the runs. In that case, the spectra of components could
be resolved in such runs, and then, in step 6, these components
will be assigned in runs where they cannot be discovered
initially. A third condition to be imposed to the experimental
design, in order to accommodate it in a practical tool, is
restricting the number of runs to a minimum. In our case,
highly efficient Hoke D6 design matrices [18] have been
adopted for the experimental design. These matrices are high-
ly economic, requiring 2, 6, 8, and 18 runs for 1 to 4 experi-
mental variables, and allow estimating second-order regres-
sion models with excellent accuracy. Experimental factors
such as the proportion of modifier, the gradient steepness,
temperature, and less frequently pH and the nature of modifier
and/or the proportions of binary modifiers can be considered
while keeping the number of screening runs reasonable. To
accommodate the use of such design matrices to the LSS
model, at least two different levels of the gradient time in a
ratio 3:1 or higher should be adopted. Since the discovery
algorithm will be based on spectral profiles for components,
some variables, such as the pH, that frequently alter the UV
spectrum of components are excluded if only such detectors
are used. In most real-life problems, 4-8 runs are sufficient to
develop the strategy. In addition, at least a couple of test points
are recommended to validate the results. Therefore, 610 runs
are needed usually in this strategy.

Step 3. Raw data chromatogram processing

The principle of the proposed strategy considers that, although
we do not have information about the nature or the spectral
characteristics of the mixture components, this information is
latent in the raw data files of the chromatographic runs pro-
vided we have used detectors giving second-order data for-
mats (e.g., DAD-UV or full scan MS). Thus, the objective
should be discovering and extract this spectral information
from such raw data files. One of the most efficient procedures
to do so is MCR-ALS (see step 4) [14]. This technique could
be applied to process the complete chromatogram as shown by
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Monago et al. [19]. However, in general, the procedures
adopted to process chromatographic signals by means of
MCR-ALS assume as objective the quantification of one or
several components in the sample that elute not fully resolved,
and thus, the runs will consider calibration samples having
different amounts of those components but the same elution
program. On the contrary, for LC screening and method de-
velopment, the sample composition is always the same, but
the elution programs are changing as many times as rows are
in the design matrix, so each chromatogram can be considered
unique. Thus, our approach was based on considering small
data sections in chromatograms separated by baseline signals.
These sections, or peak clusters, may contain one or several
components but, in any case, can be easily processed by the
MCR-ALS algorithms described in the literature [20, 21].
Consequently, this second step in the strategy consists in
obtaining the second derivative of the chromatographic signal
and extract sections of the chromatogram delimited by base-
line points. Then, inspect minima in the chromatogram profile
to separate peak clusters into more simple units. To ensure that
all component signals are detected, the maxplot (if a UV de-
tector is used) and/or the TIC (when using MS detectors) are
processed.

Step 4. Multivariate curve resolution-alternating least
squares (MCR-ALS)

The MCR term describes a family of algorithms for the as-
sessment of the underlying contributions of the individual
components in a mixture when this mixture is recorded as a
data set. Any analytical procedure yielding linearly additive
responses (e.g., DAD-UV or full scan MSD) will provide data
sets appropriated to MCR. The scheme in Figure S1 (see
Supplementary Information, ESM), adapted from [13], de-
scribes how MCR extracts the latent information in these data
sets. Values of the X matrix correspond to detector response at
any particular channel (e.g., the absorbance at the jth wave-
length). This response has been produced because each of the
N components in the mixture has a certain ¢y concentration
and a characteristic sensitivity factor (e.g., molar absorptivity
for UV detectors) sj,. Thus, the data set (or sections of the data
set as each peak cluster) can be decomposed into two infor-
mative matrices: C (the component’s concentration in general,
or the component’s concentration profiles in our case) and S
(the component’s spectra matrix), plus a residual’s matrix
representing the error contribution to measurements. This is
a bilinear model that can be represented as in ESM Figure S1.

To obtain both spectra and profiles for the matrix X, we
need a starting point that can be estimated by several ap-
proaches derived from single value decomposition (SVD)
analysis [22], such as resolving factor analysis [23] (RFA).
Alternatively, other procedures such as the alternating least
squares (ALS) give directly estimates of the C and S” matrices
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by implementing the iterative calculation of these matrices
from an initial estimate of either the concentration or the spec-
tra matrix. The initial estimate for the spectral matrix produced
by the simple-to-use self-modelling mixture analysis
(SIMPLISMA) algorithm [24] performs quite efficiently
[25] and was the approach adopted in our case.

MCR is affected by ambiguity although a unique solution
is highly desirable in practice. To deal with MCR inherent
ambiguities, some constraints (non-negativity, unimodality,
selectivity, and closure) may be implemented into the algo-
rithms. The adoption of these practical constraints is based on
the theorems developed by Manne [26] and the characteristics
of the analytical signals in the data set. Recently, some tools
have been developed to help MCR practitioners in handling
and evaluating the effects of these ambiguities [27]. Non-
negativity and unimodality were applied in our case. Both
constraints that restrict rotational ambiguity are easily under-
stood for LC signals although frequently negative signals in
baseline regions can be obtained due to noise or inadequate
auto zeroing, so raw data signals have to be preprocessed to
ensure positive values. Unimodality, meaning that pure com-
ponents would have unimodal profiles, is a common charac-
teristic of chromatographic signals.

The scheme in Fig. 1 represents the way peak clusters are
processed to extract the components from raw data signals
produced by a DAD-UV detector. Two peaks in the maxplot
have been focused to show the process. In the first one (A), the
MCR-ALS algorithm clearly indicates the presence of two
components strongly overlapped. The spectrum recorded at
the peak apex allows recognition of the sum of the signals of
the two components. For peak B, only a pure component is
extracted and the spectrum at the apex fits confirms this result.
See that for peak B, the differences between the extracted and
the actual spectra are mainly attributable to the negative values
appearing in the actual spectrum that has been eliminated
through the non-negativity constraint processing imposed to
the MCR-ALS. Figure S2 (see ESM) shows a simplified flow
chart of the code used to perform these processes, assuming
that both DAD-UV and MS signals have been registered.

Steps 5 and 6

The result of the whole process exemplified in Fig. 1 are two
sets of component’s spectra for each chromatogram. One for
pure components and the other for components that eluted
overlapped in the chromatograms. Now, the component sets
for all screening runs are combined. Some pure components
possibly have been eluted as such in several or even all chro-
matograms. Others possibly have appeared pure only in a few
chromatograms and some others have been eluted always o-
verlapped with one or several components. Thus, a correlation
analysis is done using the extracted component’s spectra to
form two manageable sets of spectra as shown in the flow
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Fig. 1 Extraction of components from a DAD-UV maxplot
chromatogram peaks using MCR-ALS . Peak A represents a situation
with strongly overlapping components. Peak B corresponds to a single

chart in Figure S3 (see ESM). The first component set join up
the components that have been eluted as a pure component at
least in one chromatogram and are uncorrelated to any other
pure component and to any other component in the same run,
so a set of unique spectra forms the first component’s set.
Obviously, the second set is formed by the remaining spectra.
Now, the set of pure components is compared (correlated)
with all extracted components in each chromatogram, so the
corresponding components will be assigned to peaks, irre-
spective of whether they elute pure or overlapping. Then, after
excluding the assigned components in the overall list, the sec-
ond set of component’s spectra is also submitted to a correla-
tion analysis with the spectra of not assigned components in
the list. The flow chart in Figure S3 (see ESM) shows a sche-
matic view of these processes.

The basic hypothesis in this procedure is first to assume
that using an experimental design that efficiently explores the
operational variables any component in the mixture will have
a non-negligible probability of eluting pure, or at least be
partially resolved from other components, in some chromato-
grams, so the probability of having a consistent set of pure
components formed by the majority of the sample compo-
nents becomes high. Secondly, if MCR-ALS provides good

|/ B spectrum

component in the peak. Spectra plotted in black color correspond to actual
spectra of both peaks as taken in the peak apex. Red and green plots
correspond to profiles and spectra of the extracted components

estimates of component spectra both for pure eluting ones and
for those that eluted overlapped, the correlation analysis will
provide an accurate approach to the real composition of the
sample. Of course, the MCR-ALS procedure may suffer from
overfitting as any other regression approach and produce false
positive components, in many cases caused by noisy signals.
This means that for samples of medium-high complexity, it is
often necessary to have a process of revision and cleaning of
these false positives before accepting the retention model.
Evidently, this process requires the participation of the chro-
matographer, and thus, the availability of helping tools is
highly desirable in this process. Several of these helping tools
have been developed and will be shown in the “Results and
discussion” section.

Step 7

Once the sample components have been discovered and false
positives filtered out, a retention model of the sample compo-
nents can be built. Because the developed system is assumed
to be limited to reversed-phase separations, the linear solvent
strength model developed by Snyder and coworkers [8] can be
applied to build this retention model while keeping the
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number of screening experiments to a minimum. A standard
partial least squares (PLS) regression was used to obtain the
retention equation for each component in the sample. The
diagnostics applied to that model, and especially the magni-
tude of prediction errors for validation runs, help in assessing
the reliability of the discovery process developed in steps 5
and 6, because bad assignments of components to peaks will
produce large residuals in the PLS regression model for that
run. Thus, the assessment of the PLS model built for each
peak is developed simultaneously with the false positive fil-
tering process described in the above steps. The “Results and
discussion” section will show examples of these processes.

Steps 8 and 9

Once a satisfactory retention model has been calculated, this
model can be used to simulate any kind of elution program
profiles and assess the possibilities of separating the compo-
nents of the sample. The procedures to develop the computer-
simulated optimization of the separation of sample compo-
nents follow the developments made in the steps model de-
veloped by Cela et al. in the 1980s [5]. In short, this model
assumes that any elution profile can be simulated by a series of
small isocratic steps that follow the overall profile needed.
Retention in these isocratic steps is calculated from the reten-
tion model and the optimization process itself takes as vari-
ables the operational parameters selected by the chromatogra-
pher (e.g., the temperature) and the parameters of the elution
profile. The optimization engine used to find the optimum
separation program is an in-house implemented differential
evolution algorithm [28] that may deal with uni- and multi-
objective [29, 30] optimization processes. This algorithm pro-
vides several advantages as compared to regular genetic algo-
rithms used in previous studies [31] both in convergence
speed, population size, and calculation speed, so it is possible
to produce optimized results in a few minutes even for rather
complex samples. The multi-objective Pareto approach [32] is
the recommended option as will be explained in the “Results
and discussion” section, although more classical approaches
are also available.

Step 10

The last step in the process is the experimental verification of
the optimal solution adopted through the CAMD process and
the assessment of the elution robustness. As usual, this step
may be developed by using a Plackett-Burman design [33]
and evaluating the results. Also, the computerized tool can
be applied to help in assessing the potential robustness of the
chosen solution. In our case, the approach recently published
by Trinanes et al. [34] is recommended without excluding the
need of a final experimental verification of the optimal solu-
tion adopted and its real robustness.
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Experimental
Chemicals

To evaluate the proposed strategy, two mixtures of polyphe-
nolic compounds were prepared. The first one contained ten
compounds and the second one fifteen. The standards used to
build these mixtures (4-hydroxybenzoic, 3,4-
dihydroxybenzoic, 2,5-dihydroxybenzoic, 3,4-
dimethoxybenzoic, 2-hydroxycinnamic, 4-hydroxycinnamic,
3,4-dihydroxycinnamic, 3-caffeoylquinic acid, 4-hydroxy-
3,5-dimethoxybenzaldehyde, 2,4-dimethoxybenzaldehyde,
2,5-dihydroxybenzaldehyde, 3-hydroxybenzaldehyde, 4-
hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde,
3.4,5-trimethoxybenzaldehyde, 4-hydroxy-coumarin, 7-hy-
droxy-coumarin, and 6,7-dihydroxycoumarin) were supplied
by Sigma-Aldrich (Merck Life Science, Madrid, Spain).

Equipment

Chromatographic separations were developed using three dif-
ferent columns: a 75 X 4.6-mm, 5-um particles Xbridge C18
and a 50 x 3.0-mm, 2.7-um particles Cortecs C18, both sup-
plied by Waters Cromatogafia (Cerdanyola del Valles, Spain),
and a 50 x 4.6-mm, 2.6-um particles, Kinetex PhenylHexyl
column, supplied by Phenomenex (Alcobendas, Spain).
Xbridge C18 and Kinetex PhenylHexyl columns were applied
to produce the separations of the first case study whereas the
Cortecs C18 was applied for the second case study. Two dif-
ferent chromatographic systems were used. For case study 1, a
Waters Alliance 2695 system, provided with a 2696 PDA
detector, was used, running under Empower® software. UV
signals were registered in the range 210-400 nm, with a res-
olution of 1.2 nm. For the second case study, a Waters
Acquity H-Class system, provided with an Acquity PDA de-
tector and a Xevo TQD triple quadrupole spectrometer, was
used. UV signals were registered in the range 220400 nm
with a resolution of 1.2 nm, and MS signals were registered in
full scan mode in the range 50—650, using positive polarity by
taking the signal of the first quadrupole of the detector. This
system operates under the Waters Masslynx® software.

Mobile phases were composed in all cases by ultrapure
water and gradient grade acetonitrile acidified to pH 3.0 with
formic acid. For case study 1 runs, a flowrate of 1.0 mL/min
was applied whereas for the second case study, a 0.2 mL/min
flowrate was used.

Raw data processing and calculations

All data treatment and calculations were developed by soft-
ware programs developed by one of the authors using Dephi
10.4.1, programming language (Embarcadero, Austin, TX,
USA). These programs include routines to run MCR-ALS,
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differential evolution, and Pareto optimality in addition to
common chromatographic data treatment and graphical
outputs.

In all cases, raw data files obtained in the experiments were
directly imported and processed to the above-mentioned pro-
grams with no other information or metadata about the sam-
ple’s composition. Signals produced by the Empower soft-
ware were exported as text files and processed directly. Raw
data files produced by the MassLynx software were imported
by means of the facilities provided by the Mnova V.14 suite
(Mestrelab Research, Santiago, Spain). Data sets used in case
studies are publicly available in the repository of the
University of Santiago de Compostela under the
ChromChem research Group materials storage [35].

Results and discussion

The proposed approach will be demonstrated with the help of
two case studies that consider separations using DAD-UV and
MS detectors.

Case study A

The case study A considers a mixture of several phenolic
compounds, some of them having quite similar UV spectrum
to make the sample a challenging case. This sample was eval-
uated using two chromatographic columns: a fully porous
Waters Xbridge C18 and a core-shell Phenomenex Phenyl
hexyl. The organic modifier was acetonitrile and mobile
phases were acidified to pH 3.0 with formic acid. In addition
to gradient time and modifier percentage, the temperature was
considered as a continuous variable. The experimental design
for such experiment requires 8 runs plus one validation exper-
iment and has been reproduced in Table S1 (see ESM).
Maxplot chromatograms corresponding to these 9 runs have
been reproduced into Figure S4 (see ESM). Because no infor-
mation is available about the sample components, the maxplot
representation is used to show the run chromatograms and to
perform the peak picking process in order to avoid false neg-
atives that could take place by an inappropriate selection of the
wavelength channel. This representation mode has however a
certain tendency to produce artifact peaks as can be seen in the
first part of runs (see maxplots for column A in ESM
Figure S4). These signals may appear significant and some-
times higher than analyte peaks but can be easily filtered out
during the component’s discovery process because they ex-
hibit a spectral signal highly correlated (positively or negative-
ly) to the maxplot chromatogram background signal (see ESM
Figure S5). Excluding the false peaks appearing before the
broad signal at the beginning of the chromatograms in column
A, no more than 7-8 peaks are evident in most runs, although
in some of them, some shoulders and unresolved peaks clearly

indicate that the sample would contain more than 8
components.

When these 9 runs were submitted to the component’s
discovery process, the results produced are those shown in
Table S2 (see ESM). In this table, the following information
about each discovered component (a total of 13 initially) is
given: (a) the estimated spectrum of the component as pro-
posed by the MCR-ALS algorithm; (b) the goodness of fit for
the retention model calculated for this component in all runs;
(c) the retention times of each component as assigned in each
chromatogram; and (d) the alerts issued for the component in
each chromatogram. It is important to appreciate that only the
calibration runs (1-8) are used to build the retention models
shown in the third column of Table S2 (see ESM). The vali-
dation run (9) never enters in the model’s calculation and,
thus, serves to assess the predictive ability of the model. In
these model plots, the datum for the currently selected run is
indicated by means of the filled symbol and by the top-right
caption of the graph. The evaluation process of the produced
results requires the use of all this information to be reliable. To
illustrate this assertion, some situations in ESM Table S2
would be discussed in more detail.

1. False positive components

In most computer applications implementing the MCR-
ALS algorithm, the number of extracted components from
the data set is decided by the user by first defining a maximum
number of extracted components and then assessing the ap-
pearance of the component spectra and profiles. In our case, to
provide an automatic operation mode, the following approach
was adopted: (1) limit the number of components extracted in
each peak to a maximum of six and (2) filtering the extracted
components by using an estimation of purity (in UV signals,
using the purity value provided by the Simplisma algorithm
[24, 25]) and noise (MS signals, calculating the number of
signals greater than 0.1% of the base peak in the ESI normal-
ized spectrum) in component’s spectra. This filtering process
logically cannot be very stringent to avoid that any true com-
ponent in the sample should go unnoticed (false negatives).
The obvious consequence is that, depending on the mixture
complexity, false positive components may appear in the final
component’s set that would need to be filtered by inspection at
the end of the process by the user. According to the algorithm
processing described in the “Theory” section, false positives
may result most probably from partially deformed spectra,
resulting from component’s extraction processes, which do
not pass the correlation limits imposed on component’s spec-
trum filtering and assignation stages. For example, in ESM
Table S2, and Fig. 2 which extracts the information corre-
sponding to the peaks involved, we can see that spectra for
components 9 and 12 are very similar so possibly may corre-
spond to the same component. In addition, we see that
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Fig.2 Comparison of spectra for components 9 and 12 (see ESM Table S2 ) in case study A and the corresponding goodness of fit plots with the data for

validation run (9) highlighted

assigned retention times for both components are also very
similar as well as the goodness of fit plots. Thus, the conclu-
sion is that one of these components is redundant and can be
removed from the model. Something similar occurs with com-
ponents 5 and 11 as shown in ESM Figure S6, which exhibit
very similar spectra and identical assigned retention times
with excellent goodness of fit plots, indicating that both ex-
tracted components correspond to the same mixture compo-
nent. In all cases, the point corresponding to validation run in
goodness of fit plot has been highlighted.

2. Unassigned components

Sometimes, the assignment algorithm cannot assign with
sufficient accuracy the position of an extracted component
because the correlation values between the component spec-
trum and those of the extracted components in a given chro-
matogram do not pass the imposed limit (»>0.95 for UV
signals). In such cases, the retention time for that component
in the chromatogram remains unassigned and the correspond-
ing alert flag issued. In most cases, this is the result of strong
and complex overlapping taking place in several runs. In
Table S2 (see ESM), we can see two examples of this situation
for component 6 and, especially, for component 8. With com-
ponent 6, the algorithm failed to assign this component in run
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1. We see, on the other hand, that retention model (for
assigned runs) appears quite good, even for the validation
run, and that component spectrum has no other highly similar
spectra in the component’s set. The process in these cases
consists in locating the component in the already assigned
runs and inspects which other components appear overlapped
with it. Figure 3 shows the location of the lost sixth compo-
nent in run 1 following this process. Here, we see that two
components are eluted strongly overlapped in the peak at
3.37 min. On the left side of this peak, we can find the spec-
trum of component 6 (3.35 min). On the right side, we find the
other component (3.40 min, which in fact corresponds to com-
ponent 13 in ESM Table S2). Moreover, in the maximum of
the peak, we find a spectrum which is identical to component
1 in ESM Table S2 which has been assigned retention times
practically identical to component 13. This clearly suggests
that component 1 in ESM Table S2 is not a real sample com-
ponent but a sum of the totally overlapped components 6 and
13 that was surprisingly assigned with apparent accuracy only
in run 1 where component 6 could not be assigned.

The case of component 8 is more complicated. The com-
ponent could not be assigned in any of the runs corresponding
to column A and, on the contrary, was assigned without any
apparent difficulty when using column B. Exploring the chro-
matograms corresponding to column B (see Fig. 4 which com-
pares two runs, one corresponding to each column), we can
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appreciate that this component eluted as a pure peak in both
column B and column A runs, although actual peak spectrum
in the runs corresponding to column A appears highly
distorted by baseline interference which prevents an accurate
assignment of the component in column A runs.

3. Inconsistent retention data

The above discussion with component number 8 is a typi-
cal situation of inconsistent retention data, where a component
appears easily assignable in one column but not in the other.
The goodness of fit plot indicated that retention data measured
in the second column fits perfectly whereas for the other col-
umn, the lack of satisfactory assignments is evident. Of
course, if we tested only one column, this problem would
not have appeared. The least information about the mixture
composition we have, the more advisable to test several col-
umns although some influence of the column into the UV
spectra could require additional user intervention.

4. Alerts on apparently well-fitted data

Component 1 diagnostics in Table S2 (see ESM), which
we have discussed previously, may represent a good example
of situations where a component appears plenty of alert flags
although the goodness of fit plot indicates an excellent fit of
the retention times measured. These situations are difficult to
detect, and frequently, the false positive character of the com-
ponent is concluded from the study of other assigned compo-
nents in the sample. As mentioned above, alert flags indicating
the potential unrealibility of any assignation are derived from
values in the correlation analysis that, being significant in
value (e.g., > 0.8), results to be below the acceptance limit
(e.g., 0.95 for UV spectra). Thus, it is important to be ready
to explore the results if alerts appear, and use all the helping
tools provided to develop reliable retention models,

The above-mentioned situations are affected by the sam-
pling frequency in the UV detector signal. The chromato-
grams for case A were replicated using 1, 2, 5, 10, and 20
points per second sampling frequency. The results indicated
that using the minimal sampling frequency, the number of
false positives increases, but using sampling frequencies
higher than 5 point per second produced identical results.
Although this conclusion can be dependent on the sample
complexity and the spectrum details of components, it is ad-
visable to use a sampling frequency of at least 5 points per
second to facilitate the work of the discovery and assignment
algorithms. After these final component filtering processes,
we have seen that in fact the sample under study contains 10
components. Components 5 and 9 were discarded by redun-
dancy and component 1 was identified as a false positive.
Once the retention times were assigned to components
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needing revision, the goodness of fit plot for the whole sample
components set is shown in Fig. 5 which represents the good-
ness of fit for the overall retention model for the ten compo-
nents discovered in columns A and B.

Case study B

From the above discussion, it is clear that samples containing
two or more components with identical UV spectrum can be
misassigned sometimes. Although the components may be
accurately extracted from one or several runs, the correlation
filtering in steps 4 and 5 of the overall assignment processes
would filter those spectra highly correlated to define the pure
component’s set. This difficulty may pose a serious limitation
for the general applicability of the proposed optimization strat-
egy but can be solved by fusioning the spectral information
given by the UV signal with that provided by the MS spec-
trum. Many laboratories doing separation method develop-
ment have LC systems with DAD and MS detectors in series.
LC-ESI-MS instruments provide in most cases very simple
mass spectra for components, so the strategy already de-
scribed needs to be supplemented in (1) step 4 with the
MCR-ALS treatment of the total ion chromatogram in the
corresponding regions to peak clusters and (2) steps 5 and 6
by modifying the correlation and assignment procedures to
include (at least) the base peak in the MS spectrum discovered
for each component and preferably the whole MS spectrum
(see ESM Figure S3). In this way, components having identi-
cal UV spectrum, but different MS spectrum, can be differen-
tiated and, thus, retained in the pure component’s set.
Obviously, this condition applies also for components having
remarkably similar MS spectra but not identical UV spectra,
so the applicability of the proposed strategy becomes signifi-
cantly enlarged although not universal, because one can find
components having the same UV and MS spectra (e.g., enan-
tiomer peaks) in the same run. However, separations involv-
ing enantiomers are not the usual objective of the computer-
assisted method development in LC, so the proposed strategy
can be considered of practical use in most applications being
at the same time the first real unified strategy for sample mix-
tures for known and unknown composition.

To show this extended strategy using UV and MS signals, a
really challenging mixture was considered as case study B.
This mixture contains 15 phenolic components, some of then
having an identical UV spectrum (e.g., caffeic and
chlorogenic acids, or 3,4-dihydroxybenzoic and 3,4-
dimethoxybenzoic acids), while some others are positional
isomers and, thus, have exactly the same base peak in the
ESI-MS spectrum (e.g., 2-hydroxycinnamic and 4-
hydroxycinnamic acids with MW = 164.16; 4-hydroxy-3,5-
dimethoxybenzaldehyde and 3,4-dimethoxybenzoic acid with
MW =182.17; 4-hydroxybenzaldehyde and 3-
hydroxybenzaldehyde with MW =122.12; 2,5-
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Fig. 5 Goodness of fit plots for the overall retention models developed for columns A and B after component’s assignment in case study A

dihydroxybenzoic and 3,4-dihydroxybenzoic acids with
MW =154.12). This means that a strategy based only on
UV signals or only in MS signals may have serious difficulties
to resolve this mixture satisfactorily, even if several of these
peaks are resolved by the column, when the identity of the
sample components is not provided to the model and, partic-
ularly if do not have the individual standards to verify the
retention times of each component. To separate this mixture,
a short 50.0 x 3.0-mm Waters Cortecs C18 core-shell column
was used. In this case, only the gradient time was considered
for the separation using the experimental matrix depicted in
Table S3 (see ESM). See the “Experimental” section for elu-
tion and data treatment details.

Table S4 (see ESM) shows the result of the component’s
discovery process for that case study. Seventeen components
are guessed as present in the sample, which in principle is a
satisfactory starting point taking into account the sample com-
plexity. In addition, one of the proposed components (peak 3)
appears obviously as a background signal so it can be rejected
from the set. Peak 4 appears also suspicious because (1) the
assigned times are exactly the same as for peak 10; (2) the MS
base peak is exactly the same for peaks 10 and 4, and (3) the
UV spectrum may correspond to a mixture of spectra for
peaks 10 and 8 which are eluted fully overlapped in the third
run which was the one where component 4 was unequivocally
assigned. Peak 8 (in fact, 4-hydroxybenzoic acid) has an in-
tense UV spectral signal but a very tiny MS signal. On the
other hand, it can be seen that several components were not

accurately assigned in run 3, and so the user intervention is
needed to verify these unsure assignations. The reason resides
in the high complexity of run 3 which dumps all peaks in the
sample in less than 5 min, thus exhibiting extensive overlap-
ping between components, so the correlation filtering limits
imposed in the assignment algorithm are frequently not met,
thus triggering the corresponding alerts. In general, test runs
are defined to validate the retention model and not to help the
discovery process. The idea is to have test runs using elution
programs quite different from those used to calibrate the re-
tention model, so at least one slowest and other fastest elutions
are programmed. On the contrary, for the discovery process, it
is evident that the less overlapping between components, the
better. Thus, to reduce the user intervention, it is advisable in
these processes to define test runs having intermediate char-
acteristics between those more convenient for testing the re-
tention model and those more useful for the discovery pro-
cesses. In any case, having the UV and the MS spectral infor-
mation for components as well as the plot for the partial re-
tention model is quite easy to verify the retention time assig-
nations in all runs (see ESM Figure S7 for a view of these
helping tools, which for each run provides visual diagnostics
of the component and actual spectra in UV and MS, a good-
ness of fit plot for the selected component and alert messages,
if exists. Moreover, the program does not allow building the
retention model if any critical alert has not been addressed), to
build dependable retention models. ESM Figure S7 shows
also the process to interactively assign a component that was
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Fig. 6 Experimental verification of the optimal separation proposed in
case study B. (A) Simulated chromatogram for the optimal separation (7—
42% of modifier in 15 min). Peak numbers correspond to the order of

unassigned automatically by the algorithm. In ESM
Figure S7(a), we see the starting situation with component
unassigned (the red crosshair is situated at the beginning of
the chromatogram and the alerts table in the top indicated the
failure in component assignation). In part (b) of this figure, the
peak was assigned using the trace for the base peak of the
component. Now we see that this peak was totally overlapped
with another one and partially with a third one so the actual
UV spectrum appears quite different to the one extracted for
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discovery for components in the mixture. (B) DAD-UV maxplot of the
optimal separation. (C) MS TIC of the optimal separation

the component. However, the goodness of fit plot is now
indicating a good model, thus confirming that the component
has been correctly assigned.

Figure S8 (see ESM) shows the goodness of fit of the
model built after this verification process for unsure retention
times. In this plot, each component is associated with a differ-
ent color and filled symbols correspond to validation runs.
Because the retention model appeared satisfactory, an optimi-
zation process using Pareto optimality [32] was launched to
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establish the optimal elution conditions. Figure 6 compares
the proposed optimal elution, showing the simulated chro-
matogram (A), the UV maxplot (B), and the MS TIC (C).
Apparently, all the 15 components of the sample can be re-
solved but not all of them to baseline confirming the discovery
process results about the number of components and the fea-
sibility of the separation using the selected chromatographic
column.

Conclusions

A new and efficient strategy to allow computer-assisted meth-
od development in reversed-phase liquid chromatography of
unknown mixtures has been developed. For the first time, a
unified strategy can be applied to develop separations of mix-
tures with known and unknown composition. The key ele-
ments in this strategy are the use of MCR-ALS to extract the
spectral information of the components in the mixture from
the raw data files of screening chromatograms registered and,
then, use such information to isolate a set of components in the
mixture using correlations between these component spectra
in the different runs. This allows the accurate evaluation of the
retention of such components and, in this way, the calculation
of a retention model which is the basis of the simulation pro-
cesses allowing the optimization of the separation for the com-
ponents in the mixture. Two case studies of considerable com-
plexity were used to demonstrate the feasibility, efficiency,
and limitations of this new approach. Moreover, the same
approach can be used if the composition of the mixture is
known, because simply the first stages in the component dis-
covery process should be omitted. However, the use of MCR-
ALS extracted components instead of the actual spectra in the
peak of chromatograms allows improving the accuracy in the
detection of components in chromatograms and thus improves
also the accuracy in the retention time evaluation also in cases
of mixtures of known composition. Consequently, because
both procedures, for known and unknown mixtures’ compo-
sition, share all elements and algorithms except those devoted
specifically to the discovery processes, this new strategy pro-
vides the first unified approach in computer-assisted method
development for RP-LC.
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