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Abstract: Sixteen compounds (TR1–TR16) were synthesized and evaluated for their inhibitory
activities against monoamine oxidase A and B (MAOs). Most of the derivatives showed potent and
highly selective MAO-B inhibition. Compound TR16 was the most potent inhibitor against MAO-B
with an IC50 value of 0.17 µM, followed by TR2 (IC50 = 0.27 µM). TR2 and TR16 selectivity index
(SI) values for MAO-B versus MAO-A were 84.96 and higher than 235.29, respectively. Compared to
the basic structures, the para-chloro substituent in TR2 and TR16 increased the inhibitory activity of
MAO-B. TR2 and TR16 were reversible MAO-B inhibitors that were competitive, with Ki values of
0.230 ± 0.004 and 0.149 ± 0.016 µM, respectively. The PAMPA method indicated that compounds TR2
and TR16 had the tendency to traverse the blood–brain barrier. Docking investigations revealed that
lead compounds were beneficial for MAO-B inhibition via association with key as well as selective
E84 or Y326 residues, but not for MAO-A inhibition via interaction primarily driven by hydrophobic
contacts. In conclusion, TR2 and TR16 are therapeutic prospects for the management of multiple
neurodegenerative diseases.

Keywords: pyridazinones; monoamine oxidase-B; kinetics; reversibility; PAMPA; docking

1. Introduction

Parkinson’s disease (PD) is a neurological illness that affects 6.1 million individuals
throughout the world [1]. Parkinsonism is a syndrome characterized by rigidity, bradykine-
sia, rest tremor, and postural instability [1–3]. PD is defined pathologically by the depletion
of dopamine neurons in nigra pars compacta, which is followed by Lewy bodies, which are
cytoplasmic inclusions within the midbrain comprising insoluble alpha-synuclein clusters.
Nevertheless, PD is distinguished by more common pathology in different areas of the
brain, which encompasses nondopaminergic neurons. [2]. The symptoms of disease can be
treated with drugs that increase the level of dopamine, though they are not so effective.
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Monoamine oxidases (MAO-A and MAO-B) are key enzymes that deaminate biogenic
amines in the tissues of both peripheral and brain regions, controlling neurotransmitter
levels including dopamine, norepinephrine, and epinephrine [4,5]. Selective MAO-A in-
hibitors have been shown to be useful in the management of depression [6]. Selective
MAO-B inhibitors limit dopamine degradation in the central nervous system (CNS), block-
ing dopamine reduction. MAO-B inhibitors not only impede dopamine degradation, but
also diminish the generation of neurotoxic byproducts of the MAO enzymatic reaction,
such as hydrogen peroxide and aldehyde. L-Dopa has always remained the cornerstone
of Parkinson’s therapy and continues to be the most efficacious suggestive therapeutic
medication. L-Dopa is often used with selective MAO-B inhibitors. As a corollary, adopting
MAO-B inhibitors in the initial phases of the disease may postpone the emergence of
significant symptoms and the necessity for L-dopa. [7].

MAO inhibitors have various scaffolds with different structural frameworks such as
anilide, benzothiazinone, chalcone, chromone, coumarin, enamide, hydrazone, indolalky-
lamine, pyrazoline, oxazolidinones, and propargylamine [8–14]. Pyridazinone is a six-
membered cyclic hydrazine non-aromatic heterocyclic ring. The ring features in two con-
terminous nitrogen atoms, with one endocyclic double bond and one carbonyl functional
moiety bearing from the unit. Diverse pharmacologic activity investigations on molecules
with the 3(2H)-pyridazinone framework have been undertaken. Multiple bioactivities
have really been documented for the compounds, including analgesic, anti-inflammatory,
antihypertensive, cardiotonic, antiplatelet, anticholinesterase, anti-bacterial, antifungal,
and antitumoral effects. [15,16]. In particular, pyridazinone derivatives are recognized as
agents with noteworthy effects in the cardiovascular system attributed to their inhibition of
platelet aggregation, antihypertensive activity, and cardiotonic qualities (Table 1).

In our previous reports, the synthesis of 3(2H)-pyridazinone candidates and the
exploration of their MAO inhibitory properties were described. In the reports, new classes
of pyridazinone core with substitution of benzalhydrazones, piperazine and morpholine
analogues were designed and synthesized [17]. In addition, it was hypothesized that the
addition of substituted benzalhydrazone to the second position of pyridazinone and the
substitution of electron withdrawing groups in the benzalhydrazone ring caused MAO-B
inhibitory activity to increase [18].

In particular, in this study, we aimed to synthesize, characterize, and determine the
MAO-B inhibition activity of pyridazinone derivatives according to the hypothesis as
shown below (Scheme 1).
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Table 1. Some therapeutic drugs with pyridazinone core.

Structure Compound Activity
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2. Results and Discussion
2.1. General Chemistry of Synthetic Scheme

The targeted pyridazinone compounds (TR1-16) were synthesized in accordance with
the literature, as shown in Scheme 2.

The nucleophilic substitution reaction of 3,6-dichloropyridazine with phenylpiper-
azine or morpholine derivatives in ethanol was carried out to produce 3-chloro-6-substituted
pyridazine. The hydrolysis of 3-chloro-6-(4-(3,4-dichlorophenyl)piperazine-1-yl)pyridazine
by heating in glacial acetic acid afforded 6-(4-(3-Methoxy/3-trifluoromethylphenyl)piperazi
ne-1-yl/morpholino)-3(2H)-pyridazinone [19]. Subsequently, the reaction of 6-(4-(3-methoxy
/3-tifluoromethylphenyl)piperazine-1-yl/morpholino)-3(2H)-pyridazinone with ethyl bro-
moacetate in the presence of K2CO3 in acetone replaced the hydrogen atom of tertiary
nitrogen atom in the pyridazinone ring and formed ethyl 6-(4-(3-methoxy/3-trifluorome
thylphenyl)piperazine-1-yl/morpholino)-3(2H)-pyridazinone-2-ylacetate. The introduction
of hydrazine hydrate (99%) can remove the ethyl group from the former intermediate and
generate corresponding acid hydrazides [20]. Finally, nucleophilic addition reaction with
various substituted aromatic aldehydes with acid hydrazides resulted in the formation
of final targeted candidates (TR1-TR16). In this study, all of the title compounds were
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published for the first time. The compounds’ reaction yields vary from around 57% to
92%. The maximum yield (91.67%) was achieved with compound TR8, while the lowest
yield was achieved with compound TR3 (57.10%). All structures were validated using
1H-NMR, 13C-NMR and mass spectral data. Table 2 lists the molecular structures and
physical characterization of TR1-TR16.
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TR2 OCH3 4-Cl 82.49 205 C24H25ClN6O3
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Table 2. Cont.

TR3 OCH3 4-F 57.10 172 C24H25FN6O3

TR4 OCH3 4-OCH3 67.08 154 C25H28N6O4

TR5 OCH3 4-CH3 76.73 201–202 C25H28N6O3

TR6 OCH3 4-Br 82.54 214 C24H25BrN6O3

TR7 CF3 H 76.90 126 C24H23F3N6O2

TR8 CF3 4-Cl 91.67 242 C24H22ClF3N6O2

TR9 CF3 4-F 78.09 224 C24H22F4N6O2

TR10 CF3 4-OCH3 86.36 195 C25H25F3N6O3

TR11 CF3 4-CH3 83.43 142 C25H25F3N6O2

TR12 CF3 4-N(CH3)2 80.21 227 C26H28F3N7O2

TR13 CF3 4-Br 82.64 241 C24H22BrF3N6O2
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Entry R2 Yield (%) M.P. (◦C) Molecular Formula

TR14 H 71.22 206 C17H19N5O3

TR15 4-F 61.17 119 C17H18FN5O3

TR16 4-Cl 80.73 152 C17H18ClN5O3

Piperazine signals in compounds TR1–13 were observed approximately between 3.2
and 3.5 ppm in 1H-NMR. Morpholine signals in compounds TR14–16 were shifted between
3.2 and 3.68 ppm due to the oxygen atom in the ring (-OCH2-). Unlike other compounds
TR7–16, compounds TR1–6 with -OCH3 at the R1 position had a singlet signal at 3.80 ppm
in 1H-NMR and a signal at 55 ppm in 13C-NMR. Compounds TR5 and TR11 with -CH3
at the R2 position were confirmed by the signal at 2.39 ppm in 1H-NMR and the signal at
21 ppm in 13C-NMR. TR12 with 4-N(CH3)2 at the R2 position was confirmed by the signal
at 3.04 ppm (6H, integral) in 1H-NMR.

2.2. Biochemistry
2.2.1. MAO Inhibition Studies

At 10 µM, all compounds evaluated exhibited higher than 50% residual activity for
MAO-A; however, only six compounds showed lower than 50% residual activity for MAO-
B (Table 3). TR16 had the strongest inhibitory action against MAO-B, with an IC50 value
of 0.17 µM, followed by TR2 (IC50 = 0.27 µM) (Table 3). The substituent -Cl atom at
the para position of TR16 showed 235.3- and 2.5-times higher MAO-B inhibitory activity
over the basic structure TR14 (IC50 = >40 µM) and -F atom at the para position of TR15
(IC50 = 0.43 µM), respectively. On the other hand, the -Cl atom at the para position of TR2
increased MAO-B inhibitory potency 148.1-fold (IC50 = 0.27 µM) compared to the basic
structure TR1 (IC50 = >40 µM). When TR2 and TR16 were compared, TR16 had a 1.59-fold
higher IC50 for MAO-B than TR2. Both TR2 and TR16 showed selective inhibition for
MAO-B with selectivity index (SI) values of >235.29 and 84.96, respectively (Table 3). The
-OCH3 substituted derivatives at the R1 position (TR1-6) showed higher MAO-B inhibitory
activity than the -CF3 substituted derivatives at the same position (TR7-13), except for
the derivatives with -F substituent at the para position of R2, i.e., TR3 and TR9. However,
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substitutions of –OCH3 and -CF3 at the R1 position did not show a significant difference in
MAO-A inhibitory activity.

Table 3. Inhibition of MAO-A and MAO-B by the TR series a.

Compounds
Residual Activity at 10 µM (%) IC50 (µM)

SI b

MAO-A MAO-B MAO-A MAO-B

TR1 82.04 ± 1.20 80.54 ± 1.01 17.32 ± 1.20 >40 <0.43

TR2 65.85 ± 0.66 −4.37 ± 4.13 22.94 ± 0.24 0.27 ± 0.02 84.96

TR3 71.66 ± 0.71 20.11 ± 1.15 19.65 ± 0.30 2.11 ± 0.51 9.31

TR4 61.00 ± 3.54 88.64 ± 8.61 16.53 ± 1.66 >40 <0.41

TR5 72.83 ± 1.02 45.56 ± 2.56 18.19 ± 0.09 4.42 ± 0.23 4.12

TR6 51.73 ± 4.55 70.23 ± 3.80 12.33 ± 0.11 15.12 ± 0.18 0.81

TR7 55.40 ± 0.84 90.66 ± 6.64 14.43 ± 3.55 >40 <0.36

TR8 52.87 ± 0.82 69.09 ± 0.95 12.02 ± 1.75 20.00 ± 0.00 0.60

TR9 72.28 ± 0.40 46.51 ± 4.93 17.08 ± 0.21 1.00 ± 0.15 17.08

TR10 56.00 ± 2.26 91.86 ± 7.09 13.28 ± 1.81 >40 <0.33

TR11 55.65 ± 2.28 83.87 ± 0.56 18.54 ± 5.83 32.00 ± 1.21 0.57

TR12 52.55 ± 1.77 85.33 ± 1.59 14.72 ± 2.96 >40 <0.37

TR13 74.24 ± 6.43 100.32 ± 5.43 31.00 ± 4.33 >40 <0.78

TR14 97.47 ± 0.71 106.69 ± 2.01 >40 >40 1.00

TR15 85.59 ± 1.04 12.50 ± 3.54 >40 0.43 ± 0.05 >93.02

TR16 85.00 ± 3.08 13.06 ± 0.64 >40 0.17 ± 0.04 >235.29

Toloxatone 1.08 ± 0.03 -

Lazabemide - 0.11 ± 0.02

Clorgyline 0.007 ± 0.001 -

Pargyline - 0.14 ± 0.01
a The results represent the averages of duplicate or triple studies, including standard errors. b SI values are
presented for MAO-B compared with MAO-A. The IC50 concentration was determined to be 40 µM as the highest
concentration.

2.2.2. Kinetic Study

Five different substrate concentrations were used in the kinetics. TR2 and TR16 met
a point on the y-axis in the Lineweaver–Burk plots (Figure 1A,C), and their secondary
plots exhibited Ki values of 0.230 ± 0.004 and 0.149 ± 0.016 µM, respectively, in the kinetic
investigations for MAO-B. (Figure 1B,D). TR2 and TR16 are competitive inhibitors that
compete with the substrate and bind to the MAO-B active site.

2.2.3. Reversibility Studies

TR2 and TR16 concentrations in the reversibility studies were 0.54 and 0.34 µM, re-
spectively, whereas the respective concentrations for the references, the reversible inhibitor
lazabemide and the irreversible inhibitor pargyline, were 0.22 and 0.28 µM, respectively.
The relative activity of undialyzed (AU) as well as dialyzed (AD) samples were compared
to establish reversibility profiles. TR2 and TR16 inhibitions of MAO-B were restored from
28.0 % (AU) to 75.0 % (AD), and from 31.8% to 73.4%, respectively (Figure 2). When
compared to the reference inhibitor, the compounds recovered to the levels comparable to
lazabemide, the reference reversible inhibitor against MAO-B (varying between 25.0% and
73.4%), but were distinct from pargyline, a reference irreversible inhibitor against MAO-B.
(i.e., varying between 34.5% and 35.2%). These data revealed that TR2 and TR16 were
reversible inhibitors of MAO-B.
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2.3. Parallel Artificial Membrane Permeability Assay (PAMPA)

The blood–brain barrier (BBB) permeation of the lead pyridaziones molecules (TR2
and TR16) was confirmed by PAMPA [21]. The compounds showed good CNS permeabili-
ties, with CNS+ positive standards such as progesterone and verapamil (Table 4).

Table 4. BBB permeation of standard and TR compounds by PAMPA.

Compounds Bibliography
Pe (×10−6 cm/s) a

Experimental
Pe (×10−6 cm/s) Prediction

Dopamine 0.2 0.21 ± 0.01 CNS-
Lomefloxacin 1.1 1.13 ± 0.01 CNS-

Verapamil 16.0 15.35 ± 0.33 CNS+
Progesterone 9.3 9.02 ± 0.17 CNS+

TR2 9.33 ± 0.33 CNS+
TR16 10.62 ± 0.26 CNS+

CNS-: Pe (10−6 cm/s) <2, less BBB permeable; CNS+, Pe (10−6 cm/s) >4, good BBB permeable. a from [21].

2.4. Computational Studies
2.4.1. Docking Studies

Molecular modeling simulations were performed to give a sound indication of molec-
ular interactions responsible for MAO-A and MAO-B inhibitions. Figures 3 and 4 show
the best poses returned from docking simulations. For completeness, the 2D interaction
schemes were enclosed as Supporting Information in Figures S49 and S50.
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Figure 3. Zoomed in view at MAO-A binding site. Best poses of TR2 (A), TR15 (B), and TR16 (C)
were reported as green, cyan, and magenta sticks, respectively. For completeness, docking scores
returned from simulations were equal to −7.99, −8.29, and −8.16 kcal/mol for TR2, TR15, and
TR16, respectively.

Compounds TR2, TR15, and TR16 interact within the MAO-A binding site through
hydrophobic contacts. Morpholine ring of TR15 and TR16 faces the aromatic rings of FAD,
Y407, and Y444, a binding room not engaged by the meta-methoxy ring of TR2, due to its
bulky structure.

As shown in Figure 4, compound TR2 reaches the aromatic cage formed by FAD, Y398,
and Y435 through its meta-methoxy ring and establishes a hydrogen bond with the side
chain of E84, a MAO-B selective residue (changed to V93 in MAO-A). Moreover, compounds
TR15 and TR16 engage the same interactions with Y398 through π–π contacts and with
the phenol group of MAO-B selective residue Y326 by forming a hydrogen bond with the
carbonyl groups of the pyridazinone rings. Overall, molecular docking analyses suggested
that compounds were not very effective at engaging the MAO-A binding pocket, due to
the interaction mainly driven by hydrophobic contacts. Finally, the induced-fit docking
protocol was used in order to deepen the study concerning the interactions occurring
between TR16 and MAO-B (Figure 5).
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Figure 4. Zoomed in view at MAO-B binding site. Best poses of TR2 (A), TR15 (B), and TR16
(C) were reported as green, cyan, and magenta sticks, respectively. Red arrows and green lines
indicate hydrogen bonds and π–π contacts, respectively. For completeness, docking scores returned
from simulations were equal to −10.051, −9.452 and −8.558 kcal/mol for TR2, TR15 and TR16,
respectively.
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and red arrows depict π–π contacts and hydrogen bonds, respectively. Black lines show the original
conformation of MAO-B sidechains. For completeness, docking score was equal to −11.544 kcal/mol.

As reported in Figure 5, the binding mode of TR16 was consistent with previous
standard docking simulation. In detail, the interactions with selective residue Y326 and
with Y398 were detected, and an additional aromatic residue, F343, was recruited to engage
a new π–π contact, with a little shift from its initial position.

2.4.2. Bioavailability Prediction

The bioavailability of lead molecules was predicted by SwissADME online platform.
The bioavailability radar panel assesses drug candidates based on physicochemical pa-
rameters such as lipophilicity, flexibility, polarity insolubility, size, and saturation [22].
Interestingly, both TR2 and TR16 molecules had been reported to be in the pink region
(optimal ranges) and to have drug-like properties (Figure 6).
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3. Materials and Methods
3.1. Chemistry

The synthetic procedures of the titled compounds are provided in the supplementary
information.

3.2. Biological Analysis
3.2.1. Enzyme Assays

Recombinant MAO-A and MAO-B were used in MAO inhibitory activity assays using
kynuramine (0.06 mM) and benzylamine (0.3 mM) as substrates, respectively [23]. The
MAO-A and MAO-B reactions were carried out at 25 ◦C and monitored for 30 min at 316 and
250 nm, respectively, in 0.5 mL mixture of 50 mM sodium phosphate (pH 7.2). Clorgyline
and toloxatone were the drug references used for MAO-A, and pargyline and lazabemide
were used for MAO-B as reference compounds. The IC50 values were determined by
measuring the residual activity at different concentrations of the compounds and by using
GraphPad Prism software 5.0. The Km value of benzylamine against MAO-B was measured
to be 0.40 mM [24]. On the other hand, multitarget analysis, ChE (AChE, BChE) inhibitory
activity assays were carried out at 25 ◦C and monitored for 15 min at 412 nm in a 0.5 mL
mixture of 100 mM sodium phosphate (pH 7.5). BACE1 inhibitory activities were tested
by the BACE1 activity detection kit. The assay method was described previously [25].
Recombinant human MAO-A and MAO-B, AChE from Electrophorus electricus, BChE from
equine serum, BACE1, and their substrates and reference inhibitors were purchased from
Sigma-Aldrich (St. Louis, MO, USA).

3.2.2. Inhibition Profile of MAOs and Kinetic Studies

TR1 and TR16 MAO inhibitory actions were evaluated at 10 µM for primary screening.
For the compounds with <80% residual activities, their IC50 values were calculated. TR2
and TR16 kinetics with MAO-B were investigated at five different substrate concentrations
(0.0375–0.6 µM). Lineweaver–Burk plots were used to examine the inhibition patterns, and
secondary plots were used to calculate the Ki values with three inhibitor dosages [26–28].

3.2.3. Inhibition Reversibility of TR2 and TR16

After preincubation with the enzyme for 30 min at ~2 × IC50 (i.e., 0.54 and 0.34 µM,
respectively), the reversibility of TR2 or TR16 against MAO-B inhibition was evaluated
using a dialysis approach and employing a dialysis kit, as previously described [29,30].
Lazabemide (a reversible MAO-B inhibitor) and pargyline (an irreversible MAO-B inhibitor)
were preincubated at 0.22 and 0.28 µM, respectively, as reference compounds. To determine
reversibility patterns, the activities of dialyzed (AD) and undialyzed (AU) specimens
were compared.
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3.3. BBB Study by PAMPA Method

Using the PAMPA method, blood–brain barrier permeation abilities of lead com-
pounds TR2 and TR16 were analyzed [21].

3.4. Docking Studies

X-ray crystallographic structures of MAO-A and MAO-B were taken from the Protein
Data Bank by finding records 2Z5X and 2V5Z, respectively [31,32]. With the assistance
of the protein preparation wizard tool, both protein structures were evaluated for the
ionization states of acid/basic side chains at physiological pH, to remove nonfunctional
water and to carry out energy minimization steps [33,34]. Ligands to be docked were
prepared by using the Ligprep tool to sample allowed tautomers and ionization states for
all the possible conformers. Standard docking protocol (SP) was carried out using GLIDE
by utilizing the OPLS3 force field and setting 50,000 poses per ligand for the first phase
and 4000 poses per ligand for energy minimization [35–37]. Best poses yielded Root Mean
Square Deviation (RMSD) values of 0.39 Å and 0.76 Å for MAO-A and MAO-B cognate
ligands, respectively, which was satisfactory. Eventually, the induced-fit docking protocol
was employed in order to better understand the interactions between compound TR16 and
MAO-B. This protocol allows the conformational changes in residues involved in the ligand
binding to be considered, thus enhancing the reliability and the accuracy of computational
simulations [38]

3.5. Bioavailiability Predicition

The bioavailability prediction of lead molecules TR2 and TR16 was assessed at http:
//www.swisstargetprediction.ch [39] (accessed on 1 March 2022).

4. Conclusions

The current work evaluated the MAO-A and MAO-B inhibitory characteristics of
a series of sixteen pyridazinone derivatives that were synthesized. The majority of the
chemicals inhibited MAO-B more effectively than MAO-A. The lead compounds TR2
and TR16 have been shown to be competitive and reversible MAO-B inhibitors in kinetic
and reversibility experiments. The PAMPA test revealed that the lead candidates have
a high level of CNS permeability. According to docking studies, the strong inhibitory
efficiency of compounds TR2 and TR16 is due to the possibility of interaction with important
and selective residues of E84 or Y326 in MAO-B. These findings are consistent with the
experimental data. The compounds’ pharmacological similarity was also shown by the
favorable bioavailability radar.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27123801/s1, Experimental procedures for the synthesis
of the titled compounds. Figures S1–S48; 1H-NMR, 13C-NMR, and HRMS spectra of the compounds
TR1~16. Figures S49 and S50; 2D-schemes of TR2, TR15, and TR16 interactions to MAO-B.
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