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Abstract
Plastids and mitochondria derive from prokaryotic symbionts that lost most of
their genes after the establishment of endosymbiosis. In consequence,
relatively few of the thousands of different proteins in these organelles are
actually encoded there. Most are now specified by nuclear genes. The most
direct way to reconstruct the evolutionary history of plastids and mitochondria is
to sequence and analyze their relatively small genomes. However,
understanding the functional diversification of these organelles requires the
identification of their complete protein repertoires – which is the ultimate goal of
organellar proteomics. In the meantime, judicious combination of
proteomics-based data with analyses of nuclear genes that include
interspecies comparisons and/or predictions of subcellular location is the
method of choice. Such genome-wide approaches can now make use of the
entire sequences of plant nuclear genomes that have emerged since 2000.
Here I review the results of these attempts to reconstruct the evolution and
functions of plant DNA-containing organelles, focusing in particular on data
from nuclear genomes. In addition, I discuss proteomic approaches to the
direct identification of organellar proteins and briefly refer to ongoing research
on non-coding nuclear DNAs of organellar origin (specifically, nuclear
mitochondrial DNA and nuclear plastid DNA).
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Introduction
The progenitors of the non-nuclear DNA-containing organelles of 
plants – plastids and mitochondria – were originally acquired as 
cyanobacterial and proteobacterial endosymbionts, respectively 
(reviewed in 1–4). As they co-evolved with their host cells, the 
original endosymbionts lost most of their genetic repertoires, either 
definitively or through transfer to the host’s nuclear genome. In 
parallel, having picked up suitable signal sequences, the products 
of many nuclear genes of endosymbiotic origin were re-routed back 
to their original compartment, together with new nucleus-encoded 
proteins, via intracellular trafficking routes5–10. As a result, complex 
organellar proteomes now consist of several thousand different 
proteins – similar in the total number of different proteins, though 
less so in composition, to the proteomes of their closest prokaryotic 
relatives.

To reconstruct the evolutionary history of plastids and mitochon-
dria, analysis of the coding regions of the relatively small residual 
organellar genomes is the most straightforward approach and has 
helped us to understand such post-endosymbiotic events as gene 
loss, nuclear transfer of organellar genes, and organelle evolution 
in general. Moreover, coding and non-coding organellar DNA can 
be used as a barcode to elucidate relationships between species11. 
However, to approach the diversification of the functions of 
organelles in a comprehensive way, ideally their entire proteomes 
must be identified. Since only partial organellar proteomes can be 
identified by proteomics, a powerful complementation (or alterna-
tive when proteomics is impracticable) is to bioinformatically ana-
lyze the corresponding complement of their nuclear genes. This is a 
formidable challenge and only became feasible when entire nuclear 
genome sequences of plant species became available. In this review, 
I summarize genome-wide approaches to the definition of the 
protein contents of organelles, as well as interspecies comparisons 
of entire organellar and nuclear genomes (phylogenomics) that 
have contributed to our understanding of the evolution of organel-
lar proteomes. In addition, I will discuss selected proteomic analyses 
of organellar proteins and briefly introduce non-coding nuclear DNA 
sequences of organellar origin as “by-products” of organelle evolution.

Phylogenomic approaches employing organellar 
DNA sequences
Traditionally, plant molecular phylogenetics has involved ampli-
fying, sequencing, and analyzing one or a few genes from many 
species. Alternatively, entire genomes can be sequenced and ana-
lyzed (phylogenomics), providing much larger amounts of data per 
taxon but often for a smaller number of species12. Nowadays, ample 
sequence information on DNA-containing organelles is available, 
i.e. the ChloroMitoSSRDB database currently provides access to 
2161 organellar genomes (1982 mitochondrial and 179 chloroplast 
genomes)13. Because of their small size, mitochondrial and plas-
tid genomes from different species were the first to be analyzed 
by phylogenomic approaches. The outcome of such interspecific 
comparisons turns out to be highly dependent on the sample size. 
This is illustrated by two pioneering studies performed 4 years 
apart by the same group with a view to reconstructing plastid 
evolution14,15. In these analyses, 9 and 15 plastid genomes, respec-
tively, were compared, and a total of 210 and 274 different 
protein-coding plastid genes were identified. Of these, 45 and 44, 

respectively, were found in all plastid genomes in the respective set, 
while 44 and 117 proteins found in at least one plastid genome had 
nucleus-encoded counterparts in other species14,15.

Whereas the first complete plastid DNA (ptDNA) sequences were 
published 30 years ago16,17, it took a while longer for the first 
two plant mitochondrial genomes to be sequenced18,19, primarily 
because plant mitochondrial DNAs (mtDNAs) are much larger 
(e.g. ~370 kbps: Arabidopsis thaliana) than animal mtDNAs20,21 or 
ptDNAs (e.g. ~150 kbps for A. thaliana). Because mitochondria are 
common to all eukaryotes, their phylogenetic and phylogenomic 
analysis markedly contributed to the elucidation of the deep branch-
ing order of all eukaryotes, including protist, fungal, animal, and 
plant lineages (reviewed by 22). However, in the mitochondria of 
land plants, frequent genomic rearrangements, the incorporation of 
foreign DNA from nuclear and chloroplast genomes, and peculi-
arities of gene expression – most notably RNA editing and trans-
splicing – are significantly more prominent than in chloroplasts 
(reviewed by 23). Furthermore, the physical organization of plant 
mtDNAs includes a mixture of linear, circular, and branched struc-
tures, resulting from homologous recombination – which appears to 
be an essential characteristic of plant mitochondrial genetic processes, 
both in shaping and in maintaining the genome (reviewed by 24).

Estimating organellar proteomes
Plastids
The first publication predicting the size and evolutionary origin of 
the chloroplast proteome encoded in the (at that time incompletely 
sequenced) nuclear genome of the flowering plant A. thaliana 
identified the genes for chloroplast proteins based on the fact that 
their predicted products bore chloroplast transit peptides (cTPs)25 
(Table 1). The study predicted between 1900 and 2500 nucleus-
encoded chloroplast proteins, of which a minimum of 35% derived 
from the cyanobacterial ancestor. In the entire A. thaliana genome 
sequence, 3574 (14.0%) genes coding for chloroplast proteins 
were identified by a prediction program26, but the total number of 
cTPs obtained was not corrected for the expected numbers of false 
positives and negatives. Such genome-wide predictions have been 
repeated several times, employing different versions (with continu-
ously improved annotation) of the Arabidopsis genome and differ-
ent types or combinations of predictors (see Table 1). Interspecies 
comparisons of the sets of predicted chloroplast proteins have also 
been performed. The first such comparison published, between 
Arabidopsis and rice, conservatively estimated that some 2100 
(A. thaliana) and 4800 (Oryza sativa) proteins carried cTPs, and 
defined a subset of around 900 tentative chloroplast proteins, 
predominantly derived from the cyanobacterial endosymbiont and 
with functions mostly related to metabolism, energy, and transcrip-
tion, that is shared by both species27.

As outlined above and shown in Table 1, genome-wide cTP 
predictions vary markedly in their outcome, depending on the type 
or combination of predictors used, and their sensitivity and spe-
cificity. In fact, a detailed comparative analysis of the performance 
of five different predictors for subcellular targeting demonstrated 
a disappointingly small overlap between the outcomes of differ-
ent predictions. Conversely, when all predicted proteins that had 
been identified by at least one of the programs were considered, far 
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too many proteins were found to have been assigned to a specific 
compartment28. This clearly shows that predictive models inevita-
bly involve a trade-off. Tightly constrained models which pinpoint 
only proteins that are truly located in the respective compartment 
(i.e. with high specificity) will fail to detect all of the proteins 
actually localized there (many false negatives), whereas saturated 
predictions that identify most of the truly located proteins (i.e. with 
high sensitivity) will also turn up many proteins that are actually 
destined for other compartments (many false positives). Moreover, a 
subset of chloroplast proteins does not contain cTPs, either because 
these proteins are inserted in the outer membrane or because they 
employ another ER-dependent pathway for targeting and import 
into chloroplasts (reviewed by 9,29) – although the latter fraction 
may well be quite small30.

Instead of first predicting the entire set of chloroplast proteins and 
then analyzing their homology with proteins from other species (in 
particular cyanobacteria, to identify proteins derived from the origi-
nal endosymbiont), one can do the reverse. In fact, a comparison 

of all A. thaliana proteins with those encoded in cyanobacterial 
genomes, other prokaryotic reference genomes, and yeast allowed 
its authors to extrapolate that ~4500 A. thaliana protein-cod-
ing genes had been acquired from the cyanobacterial ancestor of 
plastids15 and the products of some 1300 should belong to the pre-
dicted chloroplast proteome of 3100 proteins31. Since then, the 
identity of the ancient cyanobacterial endosymbiont that gave rise 
to all contemporary plastids was narrowed down to the progeni-
tors of diazotrophic cyanobacterial lineages because the gene set 
possessed by their modern-day representatives shows the greatest 
similarity to that predicted for the plastid ancestor32.

Interspecies comparisons of nuclear genomes that do not also 
consider the predicted subcellular location of their products do 
not in themselves permit reliable conclusions regarding plastid or 
mitochondrial functions. However, if the species to be compared 
are appropriately selected, indirect but important conclusions can 
be drawn with respect to the protein repertoires of organelles and 
their evolutionary diversification. An early phylogenomic study 

Table 1. Overview of organellar proteome size predictions and 
selected proteomics approaches in Arabidopsis. Note that for the 
predictor TPpred only the total number of 3194 Arabidopsis proteins with 
either chloroplast transit peptides (cTP) or mitochondrial transit peptides 
(mTP) was reported68.

Approach (Estimated) 
number Reference

chloroplast

cTP prediction (ChloroP) and correction 
for false positives/negatives 1900–2500 25

cTP prediction (TargetP) 3574 26

cTP prediction (TargetP) 3646 69

cTP prediction (TargetP) and correction 
for false positives/negatives 3130 31

cTP prediction (combination of 
predictors) and correction for false 
positives/negatives

2090 27

cTP prediction (Predotar) 1591 70

cTP prediction (TargetP) 4255 71

Mass spectrometry 690 72

Mass spectrometry + literature search 916 30

mitochondrion

mTP prediction (TargetP) 2897 26

mTP prediction (TargetP) and correction 
for false positives/negatives 3135 31

mTP predictions (combinations of 
predictors) and correction for false 
positives/negatives

2957 73

mass spectrometry 416 28

mTP predictions (combination of 
predictors) 2955–4514 28

mTP prediction (Predotar) 1105 70
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compared all protein-coding genes from only one plant species 
(A. thaliana) with the genes from several animals, yeasts, and 
combined sets of bacteria and Archaea33 and identified 3848 plant- 
specific proteins, of which about 27% were predicted to local-
ize to chloroplasts or mitochondria. In 2007, the phylogenomic 
comparison of several photosynthetic eukaryotes with non- 
photosynthetic eukaryotes, cyanobacteria, non-photosynthetic 
eubacteria, and Archaea enabled researchers to define sets of plant 
proteins with plastid-associated functions without having to depend 
primarily on cTP predictions34. The original set, the so-called 
GreenCut, comprised proteins that were conserved in the green 
algae Chlamydomonas reinhardtii and Ostreococcus tauri, the moss 
Physcomitrella patens, and the flowering plant A. thaliana, but 
were absent from non-photosynthetic organisms, and consisted of 
349 proteins in C. reinhardtii. The more restrictive PlastidCut (with 
90 proteins in C. reinhardtii) was made up of GreenCut proteins 
which were also conserved in one diatom and one red alga species. 
In 2011, a revised version of this analysis (with GreenCut2 and 
PlastidCut2) became available, which was based on the analysis of 
a larger set of sequenced genomes35. To qualify for GreenCut2, a 
protein must (i) have orthologs in A. thaliana, P. patens, O. sativa, 
Populus trichocarpa, C. reinhardtii, and one of the three Ostreococcus 
species with fully sequenced genomes and (ii) not have orthologs 
in a number of bacterial, fungal, and animal species. GreenCut2 
contained 597 Chlamydomonas (and 710 Arabidopsis orthologs 
due to gene duplications) and PlastidCut2 covers 124 proteins in 
C. reinhardtii. A subset (84%) of the PlastidCut2 proteins were 
experimentally localized to, or are predicted to be targeted to, the 
plastid and 52% of all GreenCut2 proteins were experimen-
tally localized to the chloroplast, implying that the majority of 
GreenCut2 proteins are involved in plastid-specific functions. In 
line with this tentative assignment of plastid-related functions of 
GreenCut proteins, mutations in GreenCut2 genes were sixfold over-
represented in a screen for photosynthetic mutants in C. reinhardtii 
which used large-scale random insertional mutagenesis36. How-
ever, it is intriguing that 6% (11%) of all PlastidCut2 (GreenCut2) 
proteins have been experimentally located in non-plastid sites.

Of the 597 GreenCut2 proteins in C. reinhardtii, 105 were miss-
ing in at least one of the other green algae analyzed, and diatoms 
too display a reduced number of GreenCut2 proteins. These find-
ings suggest that (i) adaptation of green algae to specific environ-
mental niches leads to genome specialization and/or reduction and 
(ii) several core plastid functions in the green lineage are either 
not essential or are performed by different pathways/processes in 
diatoms35. In contrast, almost all GreenCut2 proteins are conserved 
in the other plant genomes analyzed, suggesting that the GreenCut2 
proteins are especially relevant to, and representative of, all land 
plants of the green lineage35. The suggestion that the extent of con-
servation of the GreenCut2 inventory in a plant could serve as an 
indicator of a particular genome’s degree of specialization might be 
an oversimplification35 – at least when applied to plastid proteome 
complexity – because one must take account of the fact that plants 
contain multiple types of plastids, such that each variant might be 
of similar complexity to those from green algae. Indeed, analysis 
of chloroplast differentiation in maize, rice, and tomato reveals 
remarkably dynamic changes in plastid proteomes during plant 
development. For instance, to accommodate C

4
 photosynthesis, 

maize chloroplasts differentiate along the developmental axis 
of the leaf blade, leading from an undifferentiated leaf base into 
highly specialized bundle sheath (BS) and mesophyll (M) types. 
Hundreds of proteins detected by proteomics show differential 
BS/M accumulation37, displaying five developmental transitions38. 
Analysis of etioplast-to-chloroplast differentiation in rice by pro-
teomics has shown that etioplast metabolism is already primed to 
accommodate the metabolic changes that occur during the onset of 
photosynthesis, such that only minor metabolic network reconstruc-
tion and modification of enzyme levels occurs during the first phase 
of etioplast-to-chloroplast differentiation39. During the chloroplast-
to-chromoplast transition in tomato, proteomic analyses detected a 
strong decrease in the abundance of proteins required for the light 
reactions and carbohydrate metabolism, and an increase in terpe-
noid biosynthesis and stress-response proteins was noted40.

Mitochondria
The first phylogenomic approach that indirectly addressed the evo-
lution of nuclear genes for mitochondrial proteins compared the 
nuclear protein-coding genes from Saccharomyces cerevisiae to 
the ones encoded by Bacteria and Archaea and found that about 
75% of all yeast nuclear genes of tentatively prokaryotic origin are 
more similar to eubacterial than to archaebacterial homologs41. This 
suggested that the common ancestor of eukaryotes may also have 
possessed a majority of eubacterial genes, though it is still unclear 
how many of these ultimately come from the ancestral mitochon-
drial genome. Subsequent analysis of a sample of 27 sequenced 
eukaryotic and 994 sequenced prokaryotic genomes identified a set 
of 571 genes that was presumed to be present in the common ances-
tor of eukaryotes, underscoring the archaebacterial (host) nature of 
the eukaryotic informational genes and the eubacterial (mitochon-
drial) nature of eukaryotic energy metabolism42. A similar type of 
analysis indicated that gene transfer from bacteria to eukaryotes is 
episodic and coincides with major evolutionary transitions at the 
origin of chloroplasts and mitochondria43.

Plant proteomics has also contributed to our understanding of the 
evolution of the mitochondrial proteome. For instance, a compari-
son of more than 347 mitochondrial proteins identified by pro-
teomics in Chlamydomonas, with their homologs predicted from 
354 sequenced genomes, indicated that Arabidopsis is the non-
algal eukaryote most closely related to C. reinhardtii and that 
free-living α-proteobacteria belonging to the orders Rhizobiales and 
Rhodobacterales better reflect the gene content of the ancestor of 
the chlorophyte mitochondrion than parasitic α-proteobacteria do44.

Non-coding nuclear sequences of chloroplast or 
mitochondrial origin
The continuous transfer of genetic material from organelles to the 
nucleus can result in various outcomes with respect to the func-
tionality of the resulting nuclear sequences (reviewed in 3,45–47): 
(i) rarely, but with high impact on gene evolution, functional genes 
are generated when the transferred open reading frame recruits 
appropriate elements for its expression. The product of the relocated 
gene can then be retargeted to its original compartment or acquire 
new subcellular locations and functions31; (ii) Parts of the trans-
ferred organellar DNA can remain/become functional as material 
for new exons in other genes48; (iii) In the vast majority of cases, the 
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transferred organellar DNA becomes non-functional and accumu-
lates mutations, resulting in the so-called nuclear mtDNA (NUMT) 
sequences (see e.g. 49–55) and nuclear ptDNA (NUPT) sequences 
(see e.g. 56–62). In plants, NUPTs and NUMTs can account for 
several hundred kbps of nuclear genomes, ranging from very small 
insertions to larger segments of mtDNA and/or ptDNA >100 kbps 
in length63, which further facilitates study of the fate of alien DNA 
in the nuclear genome. 

Conclusions
As yet, no single prediction program and no single proteomics 
experiment can accurately identify the full complement of proteins 
located in plastids or mitochondria. At least for model plants like 
C. reinhardtii and A. thaliana, a combination of predictions, large-
scale fluorescence tagging, epitope tagging, proteomics of multiple 
subfractions of organelles, and studies of individual genes/proteins 
will remain the method of choice for identifying entire organelle 
proteomes. To this end, public and searchable databases with a 
web-accessible interface like SUBA3 (http://suba3.plantenergy.
uwa.edu.au/)64 and PPDB (http://ppdb.tc.cornell.edu/)65 are now 
available, which integrate the results of various prediction programs 
of subcellular targeting proteins with large-scale proteomic datasets 
from cellular compartments. It needs to be remembered, however, 
that in the case of plants with distinct plastid variants, prediction 
programs will have their limitations. Here, only proteomics can 

reliably discriminate the diverse proteomes in the several differen-
tiation types of plastids.

Evolutionary trees obtained by phylogenomic analyses have 
changed our perspective on the origin of eukaryotes by supporting 
hypotheses which postulate that the mitochondrial endosymbiont 
was acquired by an archaeon, thus placing eukaryotes within the 
Archaea. Therefore, phylogenomic analyses provided support for 
only two primary domains of life – Archaea and Bacteria – and 
eukaryotes arose through partnership between them (reviewed 
by 66). Moreover, the outcomes of phylogenomic analyses also 
strikingly illustrate the concept of “evolutionary tinkering”67. The 
nucleus can recruit novel exons even from “junk DNA” derived 
from plastids and mitochondria, and genes from cyanobacteria or 
proteobacteria now code in plants for many proteins that are not 
in their original compartment but have ended up elsewhere in the 
cell.
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