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Abstract

A fundamental problem in linguistics is how literary texts can be quantified mathematically. It

is well known that the frequency of a (rare) word in a text is roughly inverse proportional to

its rank (Zipf’s law). Here we address the complementary question, if also the rhythm of the

text, characterized by the arrangement of the rare words in the text, can be quantified math-

ematically in a similar basic way. To this end, we consider representative classic single-

authored texts from England/Ireland, France, Germany, China, and Japan. In each text, we

classify each word by its rank. We focus on the rare words with ranks above some threshold

Q and study the lengths of the (return) intervals between them. We find that for all texts con-

sidered, the probability SQ(r) that the length of an interval exceeds r, follows a perfect Wei-

bull-function, SQ(r) = exp(−b(β)rβ), with β around 0.7. The return intervals themselves are

arranged in a long-range correlated self-similar fashion, where the autocorrelation function

CQ(s) of the intervals follows a power law, CQ(s) * s−γ, with an exponent γ between 0.14

and 0.48. We show that these features lead to a pronounced clustering of the rare words in

the text.

Introduction

Can literature be characterized by mathematical laws? According to Zipf [1], the frequency of

a word as function of its rank follows approximately a power law, and also the number of dif-

ferent words in a text increases with its length roughly by a power law [2, 3]. The question is if

also the rhythm of the text characterized by the arrangement of lower and higher ranked

words, can be quantified mathematically in a similar basic way. In the last decades, when ana-

lyzing the rhythm of a text, the text was usually mapped onto a sequence {yi}, i = 1, . . ., N, of

numbers that specify either the lengths of words or sentences, or the ranks or frequencies of

each word, or mapped into various binary sequences that specify the occurrences of specific

words. Then record analysis methods from statistical physics like Hurst analysis [4], (multi-

fractal) detrended fluctuation analysis (DFA and MF-DFA) [5, 6], or entropy measures have

been used to search for linear and nonlinear memory in the text [7–13].
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For example, Ebeling and Neimann [8] transformed the letters in the Bible, Grimm Tales,

and Moby Dick into binary sequences of appearance/non-appearance and used DFA and

power-spectrum analysis to detect correlations. Montemurro and Pury [9] applied Hurst anal-

ysis to rank transformed texts (Shakespeare, Dickens, Darwin collections) while Kosmidis

et al. [10] applied DFA to the frequencies of the words. All authors found that the studied fluc-

tuation functions for the considered texts were significantly different from shuffled texts, sug-

gesting Hurst exponents well above 1/2 and thus indicating long-term memory in the texts. It

has been argued by Altmann et al. [11] how the correlations could flow from highly structured

linguistic levels down to the building blocks of a text (words, letters, etc.). Moreover, Altmann

et al. [12] considered USENET discussion groups and indicated that the cumulative distribu-

tion of the intervals between specific words follow a Weibull function. They emphasized that

different values of the exponent may correspond to different semantic categories. But despite

all efforts, the specific mathematical laws that govern the rhythm of a text remained unclear. As

we point out here, one of the reasons for this limitation lies in the large amount of white noise

which, in addition to the long-range memory, characterizes the arrangement of words in a text

and prohibits showing the degree of memory in the common Hurst or DFA analysis.

In this article, we apply the return-interval technique (also called peak-over-threshold

method) to single-authored texts, for analyzing the arrangement of the rare words in the text.

The method itself has been rigorously established in the statistical physics domain, and has

been effective in analyzing extremes in natural and financial sciences (see, e.g., [14–21]).

When applying to language data, the return-interval technique has the great advantage by not

requiring any mapping of the words to numbers.

Materials and Methods

In the return-interval analysis of extreme events one considers, in records with N data points,

the NQ rarest events and investigates the statistics of the intervals between consecutive events.

By definition, NQ/N is the fraction of rare events, and RQ = N/NQ is the mean length of the

intervals.

Accordingly, in a text with N words, we consider the fraction NQ/N of the rarest words that

by definition have a rank above Q. Two consecutive rare words are separated by l non-rare

words, and the (return) interval between them is r = l + 1. As in studies of catastrophic rare

events, we focus on the statistics and the arrangement of these return intervals for fixed Q and

how it changes when Q is increased. The mean interval length RQ represents the characteristic

length scale. Since the power law relation between rank and frequency of a word observed by

Zipf is not strictly universal and changes in different texts [22, 23], RQ is not a universal func-

tion of Q (see Fig B in S1 File). In the following, for comparing different texts, instead of keep-

ing Q fixed, we keep RQ = N/NQ fixed. We like to note that our study complements and

extends a previous study by Altmann et al. [12] where exclusively the return intervals of a spe-

cific word (that occurs Ns times in the text) have been considered. The mean distance charac-

terizing this word is accordingly Ns/N, which has been coined wavelength by Zipf [1]. In

contrast, RQ considered here is the mean distance between all rare words with rank above Q.

In our study, we have analyzed the following 10 texts: (i) Les Miserables by V. Hugo

(French), number of words N = 691407, maximum rank Qmax = 31659, (ii) Ulysses by J.

Joyce (English), N = 325692, Qmax = 34359, (iii) Phänomenologie des Geistes by G. Hegel

(German), N = 220159, Qmax = 9866, (iv) Hong Lou Meng by C. Xueqin (Chinese),

N = 703033, Qmax = 18311, (v) Magura by K. Yumeno (Japanese), N = 273928, Qmax = 15883,

(vi) Essai by M. Montaigne (French), N = 822630, Qmax = 41235, (vii) The Great Boer War by

A.C. Doyle (English), N = 249384, Qmax = 13408, (viii) Die Traumdeutung by S. Freud
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(German), N = 250564, Qmax = 28864, (ix) Journey to the West by C. Wu (Chinese),

N = 649217, Qmax = 14061, and (x) Daibosatsu Toge by K. Nakazato (Japanese),

N = 2951319, Qmax = 49099. The Chinese and Japanese texts were preprocessed into words

with the ICTCLAS and MeCab, respectively, which are standard software packages for

chunking.

Fig 1a illustrates the intervals for a certain sequence in Les Miserables, for RQ = 2 and 4.

Words with ranks above Q are denoted by large bars, otherwise by short bars. Fig 1b shows a

larger sequence, for RQ = 4, 8, and 16. The bars are for words above the respective Q values.

The intervals between them characterize the rhythm of the text. One can see by eye that the

bars, in particular for RQ = 16, are not homogeneously distributed, but tend to cluster. This

means, short intervals have a tendency to follow short intervals, while long intervals have a ten-

dency to follow long intervals.

Results

Exceedance Probability

For analyzing the statistics of the intervals, for fixed RQ, and discovering the mathematical

laws behind them, we have determined (i) how often an interval of length r, r = 1, 2, 3, . . .,

appears in a text, and (ii) how often intervals above a certain length r appear. After division by

the total number of intervals NQ − 1, (i) yields the probability distribution PQ(r) of the interval

length, while (ii) yields the exceeding probability SQ(r). SQ(r) is the probability that in a text an

interval between consecutive words with rank above Q, is longer than a given interval length r.
By definition, SQ(0) = 1 and SQ(r − 1) − SQ(r) = PQ(r) for r� 1.

Fig 2 shows SQ(r), for the 10 texts considered, for RQ = 2, 4, 8, 16, 32 and 64. The dashed

lines show SQ for the shuffled texts. It is easy to show that in this case, SQ(r) = (1 − 1/RQ)r�

exp(−|ln(1 − 1/RQ)|r), yielding SQ(r)ffi exp(−r/RQ) for RQ� 1. Accordingly, deviations from a

simple exponential can be viewed as measure of the complexity of a text. The figures show that

for RQ = 2, i.e. when half of the total words (with ranks above the median rank) are considered,

Fig 1. Return intervals in a text. (a) shows the word sequence of Les Miserables from word 31096 to word 31116. Punctuations are considered as words.

The sequences beneath illustrate how the return intervals between rare words and their lengths are defined: For RQ = 2 and 4, only words with ranks above

the corresponding Q value (here: Q = 46 and 544, respectively) are picked out and denoted by the large bars. The other words are denoted by the small

bars. The return intervals are the intervals between consecutive large bars, i.e. the number of small bars between 2 consecutive large bars plus 1, and are

listed beneath the sequences. (b) shows, in a segment of 300 words, the position of words with ranks above Q = 544, 2731, and 7265. The corresponding

mean return times are RQ = 4, 8, and 16, respectively. For RQ = 8 and 16, the words are not distributed homogeneously but tend to cluster.

doi:10.1371/journal.pone.0164658.g001
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Fig 2. The probability SQ(r) that in a text the return intervals between words with rank above Q (see Fig 1) exceed a certain length r.

We consider Q values where the mean return intervals have lengths RQ = 64, 32, 16, 8, 4, and 2 (from top to bottom). By definition, SQ(0) =

1. For transparency, we have multiplied SQ for RQ = 32, 16, 8, 4, and 2 by 10−2, 10−4, 10−6, 10−8, and 10−10, respectively, and plotted SQ as a

function of r/RQ. The dots are the numerical results. The gray lines are the best fit to S = exp[−b(r/RQ)β], with b ¼ ½
R1

0
dxexpð� xbÞ�

b
for RQ�

16 (see SI). The value of β is shown for each fit with its error bar as the standard deviation of the fit. The figure shows that for all texts and RQ

above 2, stretched exponentials (where β < 1) make a remarkable fit. In each text, approximately the same exponent β characterizes SQ for

RQ� 16. The exponent varies only slightly in the different texts: Means and standard deviations were 1.1 and 0.13 for RQ = 2, 0.86 and

0.067 for RQ = 4, 0.85 and 0.059 for RQ = 8, 0.77 and 0.037 for RQ = 16, 0.76 and 0.037 for RQ = 32, 0.77 and 0.048 for RQ = 64. The dashed

straight lines are for the shuffled texts. For 20 shuffled texts of Les Miserables, the means were 1.0 for all RQs, with standard deviations of

0.0052, 0.013, 0.0080, 0.012, 0.010, 0.028, for RQ = 2, 4, 8, 16, 32, and 64, respectively.

doi:10.1371/journal.pone.0164658.g002
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SQ is described, for most texts, by a simple exponential. This changes when we increase RQ. For

RQ� 4, in all texts SQ(r) follows a perfect “stretched” exponential

SQðrÞ ¼ exp ð� bðbÞðr=RQÞ
b
Þ; ð1Þ

where the exponent β first slightly decreases with increasing RQ. For RQ above 4, β is between

0.71 and 0.86. The parameter b depends on β. We show in the SI that for large RQ,

b ¼ ½
R1

0
dx exp ð� xbÞ�

b
, which indeed gave the best fit in all texts for RQ� 16. Stretched expo-

nential functions, sometimes also referred to as Weibull functions, appear in science in many

contexts, in materials science [24] as well as in climate and earth sciences [16–19], just to men-

tion a few. In our case, the agreement between the measured data and the stretched exponen-

tial form is exceptionally good. We like to note that our result also supports the previous

findings in [12] where the return intervals between a certain single word in a text have been

analyzed and for the corresponding exceedance probabilities also Weibull functions have been

considered.

Clustering of rare words

The knowledge of SQ(r) allows us to quantify the clustering of the rare words (with rank above

Q) noticed in Fig 1. Let us assume that after a rare word at a certain position in the text, the fol-

lowing t words have ranks below Q. The question we ask is: What is the probability WQ(t, Δt)
that there is at least one word with rank above Q among the next Δt words at positions t + 1,

t + 2, � � �, t + Δt after the considered rare word. In the theory of extreme events, W is of great

importance. It gives the probability that an extreme event will happen in the next Δt time

steps, provided that the last extreme event occurred t time steps ago. It can be easily verified

that this probability (which is also called “hazard function”), is related to the exceedance prob-

ability SQ(r) by

WQðt;DtÞ ¼
SQðtÞ � SQðt þ DtÞ

SQðtÞ
: ð2Þ

The nominator is the probability that a rare word occurs at positions between t and t + Δt. The

denominator is a normalization factor ensuring WQ(t,1) = 1, this way taking into account

the condition that there were no rare words at the t positions after the considered rare word.

Combining Eq (2) with Eq (1) yields

WQðt;DtÞ ¼ 1 � exp ð� bðbÞ½ðt þ DtÞ=RQ�
b
Þ= exp ð� bðbÞ½t=RQ�

b
Þ: ð3Þ

For t = 0, Eq (3) reduces to

WQð0;DtÞ ¼ 1 � exp ð� bðbÞ½Dt=RQ�
b
Þ: ð4Þ

For a purely random arrangement of rare words, β = 1 and Eq (4) yields WQð0;DtÞ �
Wð0Þ

Q ¼ 1 � exp ð� DtÞ=RQÞ Since β in Eq (4) is below 1, WQ(0, Δt) is larger than Wð0Þ

Q , i.e. the

rare words cluster. As an example, consider Δt/RQ = 1/64, i.e. we ask what is the probability

that directly after a rare word with return period 64 another rare word appears in the text. For

a pure random arrangement we have WQ ffi 1=64, while for a text characterized by β = 3/4 we

have WQ ffi 1=20.

Long-Range Memory in Literary Texts
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Long-range memory in the return intervals

Next we consider the intrinsic reason for this clustering. We denote the lengths of the consecu-

tive intervals in the text, for fixed Q resp NQ, by ri, i = 1, 2, . . ., LQ = NQ − 1 and ask, if interval i
with length ri and interval i + s with length ri + s are correlated. To this end, we study the auto-

correlation function

CQðsÞ ¼
1=ðLQ � sÞ

PLQ � s
i¼1
ðri � RQÞðriþs � RQÞ

1=LQ

PLQ
i¼1
ðri � RQÞ

2
: ð5Þ

By definition, CQ(0) = 1. For randomly arranged words (for example, after shuffling the text or

the intervals), CQ(s) fluctuates around zero for s� 1 (see Fig C in S1 File). If there is short-

range memory in the intervals, CQ(s) will decay exponentially, while in the presence of long-

range memory, CQ(s) will decay by a power law.

Fig 3 shows, for the same texts and RQ values as in Fig 2, the autocorrelation function CQ(s)
of the return intervals. In all texts, CQ(s) follows, over several decades, a clear power law,

CQðsÞ ¼ CQð1Þs
� g; s > 0: ð6Þ

Accordingly, the intervals are arranged in a self-similar long-range correlated fashion. The

exponent γmeasures how fast the long-range memory decays. There is no clear picture for the

behavior of γ. In the first 5 texts, for RQ above 4, γ seems to be rather independent of RQ, vary-

ing between γ = 0.24 for Ulysses and γ = 0.38 for Hong Lou Meng. In the second set of texts, γ
only seems to be independent of RQ for the Chinese and Japanese texts. The means and stan-

dard deviations of γ across the 10 texts were 0.36 and 0.036 for RQ = 2, 0.31 and 0.040 for

RQ = 4, 0.34 and 0.035 for RQ = 8, 0.34 and 0.049 for RQ = 16, 0.33 and 0.084 for RQ = 32, 0.35

and 0.12 for RQ = 64. For the English and the German text, γ increases with RQ, while it

decreases for the French text. The long-range memory is the reason for the clustering of the

rare words observed in Fig 1, since due to the memory short intervals have the tendency to fol-

low short intervals, and long intervals long ones. We like to note that in purely long-range cor-

related records, the exponents β and γ are approximately the same [16, 26] which is not the

case here. Also, the exponent γ does not depend on RQ for large RQ. Accordingly, literary texts

have a more complex structure than purely long-term persistent records. As we show below,

the return intervals contain also a large fraction of white noise, which effectively diminishes

the long-term correlations, this way leading to a larger value of β.

Fraction of White Noise

The prefactor CQ(1) characterizes the strength of the long-range memory. For RQ above 4,

CQ(1) is well above 0.1 and approximately text independent (see Table A in S1 File). For rec-

ords with purely random long-range correlations, one has [25]

CQð1Þ � Cð0ÞQ ð1Þ ffi ð1 � gÞ 1 �
g

2

� �
: ð7Þ

Since CQ(1) obtained for the 10 texts is below Cð0ÞQ ð1Þ, white noise is superposed to the long-

range correlations.

Accordingly, for each threshold Q, the return intervals ri are a superposition of white noise

ηwn(i) and long-range memory ηlrm(i),

ri ¼ aZwnðiÞ þ ð1 � aÞZlrmðiÞ: ð8Þ

Long-Range Memory in Literary Texts

PLOS ONE | DOI:10.1371/journal.pone.0164658 November 28, 2016 6 / 14



Following [25], the fraction of whitenoise a can be estimated by

a ¼
1

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CQð1Þ=½C
ð0Þ

Q ð1Þ � CQð1Þ�

q : ð9Þ

Fig 3. Long-range memory in the rhythm of a text. The figure shows the autocorrelation function CQ(s) that quantifies the correlations

between the return intervals, for the same RQ values and the same texts as in Fig 2. For transparency, we have multiplied CQ for RQ = 16, 8,

4, and 2 by 10−1, 10−2, 10−3, and 10−4, respectively. Since autocorrelation functions are known to show strong finite-size effects [25], we

considered only s-values up to (NQ − 1)/100. For s above 10, the data were binned logarithmically. The straight lines are the best linear fit to

the data, provided all data were positive. The fitted values γ are shown with their error bars as standard deviations. At RQ = 2, the first data

point was negative for Ulysses, The Great Boer War, Die Traumdeutung, and Daibosatsu Toge. At RQ� 4 all texts show clear power-law

correlations.

doi:10.1371/journal.pone.0164658.g003
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We find that for all texts, a decreases initially with increasing RQ. For RQ between 8 and 64, a is

approximately constant for each text varying between 0.55 (Hong Lou Meng) and 0.69 (Mon-

taigne) (see Table A in S1 File). Accordingly, the fraction of white noise in the return intervals

is larger than the fraction of long-range correlated noise. But nevertheless, it is this small frac-

tion with long-range memory that leads to the clustering of the rare events.

Conditional mean return intervals

To further quantify the clustering of the rare events, we follow [27] and rank, for fixed RQ, the

NQ − 1 intervals according to their length. Then we distinguish between intervals below the

median (short intervals) and above the median (long intervals), and determine the mean inter-

val length after a period of n consecutive short resp. long intervals. For each of the 10 texts, the

left-hand graphs in Fig 4 show this conditional average divided by the mean interval length RQ

as a function of n, for RQ = 2, 8, and 32. Without memory, the conditional average is identical

to RQ. Due to the long-range memory, the conditional average after the short intervals (open

circles) is well below 1, while it is well above 1 after the long intervals (full circles). The effect is

enhanced when the segment length n is enlarged. The effect is also enhanced when the ranked

intervals, as shown in the right-hand graphs in Fig 4, are divided into quarters and the condi-

tional averages after the lowest quarter (open circles) and the largest quarter (full circles) are

considered.

Memory in the text when the words are substituted by ranks

Finally, we like to discuss if the memory quantified for the return intervals can be found

directly in the text when each word is substituted by its rank. To this end, we first followed [7–

10] and performed a fluctuation analysis. As in [10], we focus on the Detrended Fluctuation

Analysis (here DFA2) [28] which in the last decade has become the standard method for

detecting long-range memory in data sets. In DFA2, one considers a fluctuation function F(s)
to detect the long-range memory. To obtain F(s), one divides the data of interest

fy�i g; i ¼ 1; . . . ;N, into non-overlapping windows μ of lengths s. Then one focuses, in each

segment μ, on the cumulated sum Yi of the fy�i g, and determines the variance F2
m
ðsÞ of the Yi

around the best polynomial fit of order 2. After averaging F2
m
ðsÞ over all segments μ and taking

the square root, one arrives at the desired fluctuation function F(s). One can show that in long-

term persistent records where the autocorrelation function C(s) decays by a power law,

CðsÞ ffi ð1 � gÞð1 � g=2Þs� g; 0 < g < 1, the fluctuation function increases by a power law,

FðsÞ � sh; ð10Þ

where the exponent h can be associated with the Hurst exponent and is related to the correla-

tion exponent γ by h = 1 − γ/2. For white-noise records, h = 1/2. Accordingly, an exponent

h> 1/2 characterizes the long-term persistence in a record and can be easily obtained from a

double logarithmic plot of F versus s, as long as the graph of F(s) represents a straight line in

the double-logarithmic presentation.

Our results for the 10 texts considered (shown in Fig 5) confirmed the previous results [8–

10] obtained for different texts. They show that the fluctuation functions in the double loga-

rithmic presentation are not straight lines but show crossover behavior, from an exponent

close to 0.5 at small scales to an exponent close to 1 at large scales. Shuffling of the texts leads

to F(s)/ s1/2. Accordingly, the shape of F(s) clearly indicates some kind of long-range memory

at large scales, but a specific law is difficult to derive from the behavior of F(s). It has been

noticed in [25] that this kind of shape of F(s) characterizes records which exhibit both long-

range memory and white noise (see the discussion above, Eq (8)). It has been suggested [25]

Long-Range Memory in Literary Texts
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that in this case, F(s) is not the appropriate function to look at. To accurately characterize the

strength of white noise and long-range memory one has to study the autocorrelation function

C(s) between the ranks of two words separated by s words. C(s) is defined as CQ(s), when LQ is

substituted by the length of the text, ri by the rank of the ith word in the text and RQ by the

mean rank. It has been shown in [25] that the white noise only affects the prefactor in C but

not the power-law decay.

Fig 4. Quantification of the memory effect for 10 texts. For each text, the left-hand graphs show the (conditional) average length of a return interval in

units of the mean interval length RQ, for RQ = 2, 8 and 32, after n consecutive short (open circles, below the median) or long (full circles, above the median)

intervals. The red, green, and black circles are for RQ = 32, 8, and 2, respectively. The figure shows that short (long) intervals are more likely followed by

short (long) intervals, and quantifies the clustering of rare words for large RQ that we observed in Fig 1b. When the text is shuffled, all symbols are very close

to 1. In the right-hand graphs, the ranked intervals are divided in quarters. Now the short intervals are from the first quarter, the large intervals from the fourth

quarter.

doi:10.1371/journal.pone.0164658.g004
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Fig 6 shows C(s) for the 10 texts considered. The figure shows that C(s), like CQ(s), decays by

a clear power law in all texts, suggesting that the ranks of the words are long-range correlated.

As a consequence, words with high (low) ranks are more likely to follow words with high (low)

rank, and this in turn gives rise to the clustering of the rare words that we have discussed in the

previous subsections. The exponents γ in C(s) are close to the exponents obtained for CQ(s). The

figure also shows that the prefactor of s−γ is well below the value (1 − γ)(1 − γ/2) for pure long-

range correlated records, so we can conclude that in addition to long-range memory, there is a

large fraction a of white noise in the rank representation of literary texts that can be estimated in

a similar way as described above for the return intervals. Our estimations show that a is around

0.75: a = 0.76 for Les Miserables, 0.74 for Ulysses, 0.73 for Phänomenologie des Geistes, 0.71 for

Hong Lou Meng, 0.77 for Dogura Magura, 0.71 for Essai, 0.79 for The Great Boer War, 0.78 for

Die Traumdeutung, 0.72 for Journey to the West, and 0.75 for Daibosatsu Toge.

Conclusions

In this article we considered 10 long literary texts from England/Ireland, France, Germany,

China, and Japan and studied systematically the occurrence of the rare words in a text. We

used techniques from the studies of extreme events which do not require a particular mapping

Fig 5. DFA2 fluctuation function F(s). The figure shows F(s) (in arbitrary units) for the 10 texts considered, where each word in a text has been

substituted by its rank in the text.

doi:10.1371/journal.pone.0164658.g005
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of the words to numbers. We considered the fraction NQ/N of the rarest words in a literary text

(that by definition have a rank above Q) and determined the return intervals between them,

for fixed Q. Our major quantities of interest were the exceedance probability SQ(r) that the

length of a return interval exceeds r, and the autocorrelation function of the intervals CQ(s).
We found that for large threshold ranks Q, SQ(r) followed a perfect Weibull-function, while

CQ(s) decays with s by perfect power-laws. When analyzing CQ(1) we found that the return

intervals are not purely long-range correlated, but can be described as a superposition of white

noise and a long-range correlated part. The long-range correlated part is responsible for the

pronounced clustering of the rare words in a literary text.

We found that the same laws (Weibull functions for the exceedance probability and power-

laws for the autocorrelation function of the return intervals) hold, with some variations in the

parameters, for all languages considered, showing that the rhythm of a text quantified by the

return intervals between the words, is surprisingly universal. This is particularly remarkable

since the languages considered belong to different families and vary greatly [29, 30]. English,

German, and French belong to the Indo-European family and use alphabetic writing systems,

whereas Chinese belongs to the Sino-Tibetan family and uses a logosyllabary system. In con-

trast, Japanese adopts multiple writing systems, and its language family is unknown.

Fig 6. Long-range memory in the text when the words are substituted by their ranks. The figure shows the autocorrelation functions

for the 10 texts considered. For transparency, we have multiplied C(s) for the 4 lower functions in both panels by 10−1,10−2, 10−3, and 10−4,

respectively. Since autocorrelation functions are known to show strong finite-size effects [25], we considered only s-values up to (N − 1)/100.

For s above 10, the data were binned logarithmically. The straight lines are the best linear fit to the data, for s� 2. At s = 1, C(1) was negative

for Les Miserables, Dogura Magura, Great Boer War and Daibosatsu Toge.

doi:10.1371/journal.pone.0164658.g006
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We consider the two laws as important “stylized” facts in languages that complement Zipf’s

law. As Zipf’s law, both laws have been obtained empirically and lack a rigorous derivation by

first principles. The results are universal in the sense that the same kind of functions describe

the statistics of the return intervals, but the exponents are clearly not identical. For large thresh-

olds (with NQ/N below 1/8), the exponents in the Weibull function vary between 0.68 and 0.86,

and the exponents in the autocorrelation function vary between 0.14 and 0.48. In the texts con-

sidered, we found no indications that the exponents depend on the language considered.

We concentrated on the arrangements of the rare words in single-authored literary texts.

For the quality of the analysis, we had to consider large texts, with more than 200,000 words. It

would be interesting to see, if the arrangements of the rare words in single-authored texts is

different from the arrangement in speeches. But since typical speeches consist only of few

thousand words, a return-interval analysis as performed here may suffer from strong finite

size effects.

Further extensive work is needed to see, to which extent the laws we find for single-author

texts also hold for multi-author texts, and to which extent language engineering where the

properties of rare words are crucial can benefit from our results. Preliminary work on 3 well

recognized newspapers (see Fig D in S1 File) shows that the Weibull representation of SQ(r) is

still valid, with exponents β slightly smaller than for the single-authored texts. Regarding

CQ(r), the power-law decay is not as clear as for single authored texts.

Supporting Information

S1 File. The supporting information file includes Figs A-D and Table A, in addition to

some additional mathematical explanation.

(PDF)
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7. Ebeling W, Pöschel T. Entropy and long-range correlations in literary English. Europhys Letters. 1994;

26:241–246. doi: 10.1209/0295-5075/26/4/001

8. Ebeling W, Neiman A. Long-range correlations between letters and sentences in texts. Physica A.

1995; 215:233–241. doi: 10.1016/0378-4371(95)00025-3

9. Montemurro M, Pury PA. Long-range fractal correlations in literary corpora. Fractals. 2002; 10:451–

461. doi: 10.1142/S0218348X02001257

10. Kosmidis K, Kalampokis A, Argyrakis K. Language time series analysis. Physica A. 2012; 370:808–

816. doi: 10.1016/j.physa.2006.02.042

11. Altmann E, Cristadoro G, Esposti MD. On the origin of long-range correlations in texts. Proceedings of

the National Acaddemy of Sciences.2012; 109:11582–11587. doi: 10.1073/pnas.1117723109

12. Altmann E, Pierrehumbert J, Motter E. Beyond Word Frequency: Bursts, Lulls, and Scaling in the Tem-

poral Distributions of Words. PLOS one. 2009; doi: 10.1371/journal.pone.0007678

13. Montemurro MA. Quantifying the information in the long-range order of words: Semantic structures and

universal linguistic constraints. Cortex. 2014; 55:5–16. doi: 10.1016/j.cortex.2013.08.008 PMID:

24074456

14. Corral A. Long-term clustering, scaling, and universality in the temporal occurrences of earthquakes.

Physical Review Letters. 1994; 92(108501). doi: 10.1103/PhysRevLett.92.108501 PMID: 15089251

15. Corral A. Renomalization-group transformations and correlations of seismicity. Physical Review Letters.

2005; 95(028501). doi: 10.1103/PhysRevLett.95.028501 PMID: 16090716

16. Bunde A, Eichner J, Havlin S, Kantelhardt JW. Long-term memory: A natural mechanism for the cluster-

ing of extreme events and anomalous residual times in climate records. Physical Review Letters. 2005;

94(048701). doi: 10.1103/PhysRevLett.94.048701 PMID: 15783609

17. Santhanam M, Kantz H. Long-range correlations and rare events in boundary layer wind fields. Physica

A. 2005; 345:713–721. doi: 10.1016/S0378-4371(04)00998-7

18. Blender R, Raible C, Lunkeit F. Non-exponential return time distributions for vorticity extremes

explained by fractional poisson processes. Quarterly Journal of the Royal Meteorology Society.2015;

141:249–257. doi: 10.1002/qj.2354

19. Turcotte DL. Fractals and Chaos in Geology and Geophysics. Cambridge University Press; 1997. doi:

10.1017/CBO9781139174695

20. Yamasaki K, Muchnik L, Havlin S, Bunde A, Stanley HE. Scaling and memory in volatility return inter-

vals in financial markets. Proceedings of the National Acaddemy of Sciences.2007; 102:9424–9428.

doi: 10.1073/pnas.0502613102 PMID: 15980152

21. Bogachev MI, Eichner JF, Bunde A. Effect of nonlinear correlations on the statistics of return intervals in

multifractal data sets. Physical Review Letters. 2007; 99(240601). doi: 10.1103/PhysRevLett.99.

240601 PMID: 18233431

22. Tanaka-Ishii K, Aihara S. Text constancy measures. Computational Linguistics. 2015; 41:481–502. doi:

10.1162/COLI_a_00228

23. Petersen AM, Tenenbaum J, Havlin S, Stanley HE. Statistical laws governing fluctuations in word use

from word birth to word death. Scientific reports. 2012; 2(313). doi: 10.1038/srep00313 PMID:

22423321
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