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ABSTRACT Enterohemorrhagic E. coli (EHEC) is responsible for significant human illness,
death, and economic loss. The main reservoir for EHEC is cattle, but plant-based foods are
common vectors for human infection. Several outbreaks have been attributed to lettuce
and leafy green vegetables grown in the Salinas and Santa Maria regions of California.
Bacteria causing different outbreaks are mostly not close relatives, but one group of closely-
related O157:H7 has caused several of them. This unusual pattern of recurrence may
have some genetic basis. Here I use whole-genome sequences to reconstruct the genetic
changes that occurred in the recent ancestry of this EHEC. In a short period of time corre-
sponding to little genetic change, there were several changes to adhesion-related sequen-
ces, mainly adhesins. These changes may have greatly altered the adhesive properties of
the bacteria. Possible consequences include increased persistence of cattle infections,
more bacteria shed in cattle feces, and greater virulence in humans. Similar constellations
of genetic change, which are detectable by current sequencing-based surveillance, may
identify other bacteria that are particular threats to human health. In addition, the Santa
Maria subclade carries a nonsense mutation affecting ArsR, a repressor of genes that confer
resistance to arsenic and antimony. This suggests that the persistent source of Santa Maria
contamination is located in an area with arsenic-contaminated groundwater, a problem
in many parts of California. This inference may aid identification of the reservoir of EHEC,
which would greatly aid mitigation efforts.

IMPORTANCE Food-borne bacterial infections cause substantial illness and death.
Understanding how bacteria contaminate food and cause disease is important for
combating the problem. Closely-related E. coli, likely originating in cattle, have repeatedly
caused outbreaks spread by vegetables grown in California. Such recurrence is atypical,
and might have a genetic basis. The genetic changes that occurred in the recent ancestry
of these E. coli can be reconstructed from their DNA sequences. Several mutations affect
genes involved in bacterial adhesion. These might affect persistence of infection in cattle,
quantity of bacteria in their feces, and human disease. They also suggest a way of
detecting dangerous bacteria from their genome sequences. Furthermore, a subgroup
carries a mutation affecting the regulation of genes conferring arsenic resistance. This sug-
gests that the reservoir for contamination utilizes groundwater contaminated with arsenic,
a problem in parts of California. This observation may be an aid to locating the persistent
reservoir of contamination.

KEYWORDS Escherichia coli, adhesins, adhesion molecules, arsenic resistance, food-
borne pathogens

Enterohemorrhagic E. coli (EHEC) cause substantial human morbidity and mortality. They
produce Shiga toxin and are most commonly of serotype O157:H7 (1–3). Their reservoir

is mainly cattle, which, unlike humans, do not experience severe symptoms as a result of
infection. Some strains can colonize the rectoanal junction (RAJ) of cattle (4), leading to a
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persistent infection and in some cases a “supershedder” phenomenon (5, 6), in which
orders of magnitude more bacteria are excreted in the feces.

Lettuce and leafy green vegetables grown in the Salinas and Santa Maria Valleys of
California have been vectors for several outbreaks of EHEC in recent years. Though
most have been caused by O157:H7 strains, in most cases strains causing different out-
breaks have not been otherwise very closely related. Some of them, however, were recurrent
outbreaks of very closely related O157:H7 (7, 8), differentiated by just a few single-nucleotide
polymorphisms (SNPs) in the entire;5Mb genome.

Although the E. coli causing the recurrent outbreaks from Salinas are distinguish-
able from those from Santa Maria, only a few SNPs separate them. This suggests that
genetic traits of the bacteria contribute to the recurrence of contamination or to the
human infection rate or symptom severity.

The NCBI Pathogens database contains clusters of closely-related isolates of foodborne
pathogen species, including E. coli. It also provides a phylogenetic tree for each cluster, and
information about single-nucleotide polymorphisms (SNPs) within the cluster. The history of
nucleotide changes along the branches of the tree can be inferred by maximum parsimony
reconstruction of ancestral states (9, 10). The effects of nucleotide changes on proteins can
be determined because their location in the genome is known, and the genome is anno-
tated with the coding sequences. Details of these procedures are given in Text S1 in the sup-
plemental material.

Fig. 1 shows the phylogenetic tree for the cluster of E. coli containing the recurrent outbreak
isolates (PDS000035073.159). The clade of isolates attributed to Salinas is shown in blue, and
those attributed to Santa Maria are shown in red. Together with one other isolate, these form a
larger clade. The isolates in the tree are all very closely related, differing by at most 69 SNPs.

The uncolapsed tree is shown in Fig. S1 in the supplemental material. Information about
the isolates can be found at the NCBI Pathogen Detection website (PDT000639468.2).

Adhesion-related mutations. The line of descent from the root to the last com-
mon ancestor of the Salinas and Santa Maria clades is colored green in Fig. 1. Eighteen
single-nucleotide changes that alter protein sequences are inferred to have occurred along
this path: 2 nonsense mutations, and 16 that change one amino acid to another.

Of these 18 mutations, 4 affect adhesins (Fig. 1, Table 1). Two are in the same gene and
occur on the same branch of the tree. The gene encodes an immunoglobulin-like domain-
containing protein, which contains several domains of types associated with adhesins. The
others are a nonsense mutation in fdeC and a nonsynonymous mutation in bigA.

In addition to these point mutations, a deletion of 1,218 bp (406 amino acids) occurred
in the adhesin yeeJ, which mediates adhesion to abiotic surfaces and promotes biofilm forma-
tion (11, 12). The deletion is apparently the result of recombination between two copies of a
14 bp sequence in the gene. It eliminates 4 of the 17 immunoglobulin-like domains. The an-
cestral gene is similar in length to the longer variant previously described (12), but the deletion
allele is distinct from the shorter variant and therefore might differ functionally.

Adhesins are found on the surface of bacteria and mediate adhesion to host cells, abiotic
surfaces, and/or other bacterial cells, and can promote biofilm formation. Adhesins are involved
in EHEC adherence to the cells of the RAJ (13). The adhesin mutations described above may al-
ter their adhesive properties, enabling colonization of the RAJ or otherwise accounting for the
recurrence of outbreaks. They might also contribute to human pathogenesis, though this effect
would not be subject to selection because human infections do not usually spread far beyond
the individual first infected.

The nonsense mutation in fdeC likely does not inactivate it. It occurs at position 1,177 of
a 1,417 amino acid protein with many domains. An even shorter version of this protein
binds to mammalian cells (14). Truncation may even be necessary for this binding (15). In
any case, inactivation of adhesin genes can promote adhesion to cells of the RAJ (13).

A nonsense mutation also occurred in arpA, which encodes an ankyrin repeat protein
(erroneously annotated in the MG1655 genome [16]). Deletion of arpA is associated with
neonatal meningitis (17). The protein is distantly related to EspL2, an enterotoxin that pro-
motes adhesion (18, 19), which suggests that this nonsense mutation affects adhesion.
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Constitutive expression of arsenic resistance genes. A nonsense mutation in arsR
occurred along the branch leading to the last common ancestor of the Santa Maria clade.
This gene encodes the repressor of arsB and arsC, the expression of which confers resistance
to arsenic and antimony. This mutation truncates the 117 amino acid protein to 88 residues.
Truncation of a similar ArsR (95% identical) to 89 residues causes increased expression of a
reporter gene in the absence of inducer, corresponding to about 20% of the induced level
(20). Truncation to 87 residues abolishes repressor dimerization, which is apparently neces-
sary for repression (20). The nonsense mutation is therefore expected to result in at least sig-
nificant partial induction, and perhaps full induction, of the arsenic resistance genes in the
absence of inducer.

This mutation would likely be deleterious in the absence of arsenic or antimony, if
only because of wasteful gene expression; this is the presumptive reason for the existence of
the repressor. In the presence of high concentrations of arsenic or antimony, the mutation
would not be deleterious, since the resistance genes would be fully expressed with or without
it. It might, in fact, confer an advantage in an environment in which arsenic or antimony is
present intermittently, as it would diminish or eliminate phenotypic lag for resistance.

Arsenic in ground water is a problem in many regions, including parts of California.
The problem is greatest in portions of the Central Valley (21–23), to the east and north
of Santa Maria. This area is the location of extensive cattle operations, and might contain

FIG 1 Phylogenetic tree of the cluster containing the Salinas and Santa Maria recurrent outbreak strains.
Triangles represent collapsed clades, and the number within each indicates the number of isolates in the
clade. The total number of isolates is 494. Mutations of interest are indicated to the right of the branches
on which they occurred. The scale bar corresponds to four SNPs. The height of the tree from the root to
the most distant tip is 36 SNPs. The tree obtained from the NCBI Pathogens data was rerooted based on
outgroup sequences.
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the persistent source of E. coli responsible for recurrent Santa Maria outbreaks. The E. coli
could make its way to Santa Maria in manure used for fertilizer or through movement of
cattle. Some sources report high arsenic levels in a smaller fraction of wells in the Santa
Maria Valley (23). A search for a local reservoir could focus on cattle operations using
water from wells with high arsenic levels.

Conclusion. Changes to adhesion-related proteins likely play a role in the recurring
EHEC outbreaks vectored by vegetables grown in Salinas and Santa Maria valleys. The
combination of several such mutations may have radically altered the adhesive proper-
ties of the bacteria and the nature of host colonization. In addition to contributing to
persistence and shedding in cattle, they might increase pathogenicity in humans, lead-
ing to a greater probability of outbreak detection and the reporting of a higher fraction
of cases. Altered adhesive properties may play a more general role in foodborne out-
breaks. The occurrence of multiple changes to adhesion-related sequences in a short
time may indicate that the affected bacteria pose a particular threat to human health.

The arsR nonsense mutation that affects the Santa Maria clade may be a clue to the
location of the source of repeated contamination. The use of sequences for tracing sources
of infection is usually based on the inferred relationships between isolates. The case of
arsR exemplifies a different kind of inference, in which the expected phenotypic effects of
mutations have implications for the environment in which a source of infections is growing.
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