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Formerly considered as a passive process, the resolution of acute inflammation is now

recognized as an active host response, with a cascade of coordinated cellular and

molecular events that promotes termination of the inflammatory response and initiates

tissue repair and healing. In a state of immune fitness, the resolution of inflammation

is contained in time and space enabling the restoration of tissue homeostasis. There is

increasing evidence that poor and/or inappropriate resolution of inflammation participates

in the pathogenesis of chronic inflammatory diseases, extending in time the actions

of pro-inflammatory mechanisms, and responsible in the long run for excessive tissue

damage and pathology. In this review, we will focus on how resolution can be the target

for therapy in “Th1/Th17 cell-driven” immune diseases and “Th2 cell-driven” immune

diseases, with inflammatory bowel diseases (IBD) and asthma, as relevant examples.

We describe the main cells and mediators stimulating the resolution of inflammation

and discuss how pharmacological and dietary interventions but also life style factors,

physical and psychological conditions, might influence the resolution phase. A better

understanding of the impact of endogenous and exogenous factors on the resolution of

inflammation might open a whole area in the development of personalized therapies in

non-resolving chronic inflammatory diseases.
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INTRODUCTION

Inflammation is part of the normal response of the host to
invasion by harmful microorganisms or to tissue injury (1).
The acute inflammatory response is initiated within minutes
of recognition of a danger signal, and begins with an onset
phase coordinated by several families of chemokines, cytokines,
eicosanoids, proteases, vasoactive amines, neuropeptides and
neurotransmitters, and other pro-inflammatory mediators
produced by resident immune and structural cells in the
injured/infected tissue, which is followed by a rapid influx
of granulocytes from blood to the tissue inflammatory site
(2). Self-amplifying networks of pro-inflammatory pathways
perpetuate leukocyte recruitment and activation.

In a state of immune fitness, the inflammatory response is
contained in time and space, and is programmed to resolve,
i.e., return from the infected or injured state to a “healthy”
state corresponding to that of pre-inflamed tissue. Formerly
considered as a passive process, the natural resolution of
acute inflammation is now known as an active host response,
with highly coordinated cellular and molecular events with
release of anti-inflammatory cytokines, loss of receptors for pro-
inflammatory signals, and production of a wide range of pro-
resolving mediators including recently uncovered specialized
pro-resolving lipid mediators (SPMs) that enable restoration of
tissue homeostasis (3). A failure in pro-resolving pathways may
extend in time the actions of pro-inflammatory mechanisms
resulting in prolonged or chronic inflammation with recurrent
exacerbations, responsible in the long run for excessive tissue
damage and pathology (Figure 1).

Poor and/or inappropriate resolution of inflammation has
indeed emerged as a critical process in the pathogenesis of
numerous chronic inflammatory and auto-immune diseases
including inflammatory bowel diseases (IBD) (such as Crohn’s
disease and ulcerative colitis) (4). Persistent airway inflammation
in chronic lung diseases, such as asthma, may also be due to
defects in pro-resolving molecular pathways (5, 6).

The possibility to promote resolution of the inflammatory
response as a therapeutic approach has only become apparent
in the twenty-first century (7, 8). Better understanding the
resolution phase of the inflammatory response and how this
process might be influenced by environmental factors might
open a whole area of new, affordable, and personalized
therapeutic options in chronic inflammatory diseases. This
article will first review the main cellular and molecular
mechanisms involved in the resolution of inflammation. Finally,
we will discuss a series of interventions that can potentially
promote resolution with a focus on “Th1/Th17 cell-driven” and
“Th2 cell-driven” immune diseases, with IBD and asthma, as
relevant examples.

THE MAIN DETERMINANTS OF THE
RESOLUTION PHASE

Overall there are two distinct phases in an inflammatory
reaction: the initiation of inflammation and the resolution phase

FIGURE 1 | Dynamics of the inflammatory response in chronic inflammation.

The acute inflammatory response is a highly coordinated sequence of events

characterized by an onset phase coordinated by several families of

chemokines, cytokines, and pro-inflammatory mediators that is followed in

health by an active resolution phase brought about by the engagement of

specific cellular mechanisms under the control of several pro-resolving

mediators to promote resolution of the tissue inflammation as well as healing

and repair. A failure in pro-resolving pathways can extend in time the actions of

pro-inflammatory mechanisms resulting in prolonged or chronic inflammation

with recurrent exacerbations.

(Figure 1). A post-resolution phase of inflammation that links
innate and adaptive immune systems has also been described
(9, 10). For effective resolution of inflamed tissues to occur and
to restore tissue homeostasis, specific cellular mechanisms that
are under the control of pro-resolving mediators are enlisted to
promote termination of the inflammatory response and initiate
tissue repair and healing (Figure 2). Better understanding of how
the environment can impact on the resolution of inflammation
will lead to an improved understanding of why the chronic
inflammatory diseases persist.

Cells Involved in the Resolution of
Inflammation
Macrophages
One of the key events in determining the initiation of
the resolution phase is the recruitment of non-phlogistic
monocytes and their differentiation into macrophages at sites
of inflammation. Indeed, central to the successful resolution
of inflammation, is the process of local leukocyte clearance
by apoptosis and subsequent phagocytosis of the apoptotic
cells by surrounding monocyte-derived phagocytes (Figure 2).
Engulfment of apoptotic cells signals to the phagocytosing
macrophages that the inflammatory response is ending, and alters
macrophage mediator production from a predominantly pro-
inflammatory (M1) to an anti-inflammatory and pro-resolving
phenotype (M2), that further enhances phagocytosis of apoptotic
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FIGURE 2 | Key cellular actors of resolution. For effective resolution of inflamed tissues to occur and to restore tissue homeostasis, specific cellular mechanisms that

are under the control of pro-resolving mediators are enlisted. They promote termination of the inflammatory response and initiate tissue repair and healing.

Pro-inflammatory mediators: red circles, pro-resolving mediators: blue circles. Anx, annexin; DCs, Dendritic cells; Eos, eosinophils; Gal, Galectin; IBD, inflammatory

bowel disease; IL, interleukin; ILC2, Type 2 innate lymphoid cells; ILC3, Type 3 innate lymphoid cells; MDSCs, Myeloid-derived suppressor cells; MiRs, MicroRNAs;

NK, Natural killer; PMN, polymorphonuclear cells; TGF-beta, Transforming growth factor beta; Th1, Type 1 T helper cells; Th2, Type 2 T helper cells; Treg, regulatory T

cells; SPMs, specialized pro-resolution lipid mediators; VIP, vasoactive intestinal peptide.

cells and promotes the return to tissue homeostasis (11, 12).
This shifting balance between pro-inflammatory M1 and wound-
healing M2 macrophages over time is essential for proper
resolution of inflammation (13).

Regulatory T Cells
Regulatory T (Treg) cells can also play roles in the resolution
process, by promoting repair and regeneration of various organ
systems and may link innate and adaptive immune systems [for
a recent review see (14)]. Treg cells, like T helper (Th) cells,
derive from the progenitor CD4+ naive T cell. The population
of Treg cells consists of thymus-derived Treg cells called natural
Treg (nTregs) cells, and Treg cells induced in the periphery or
induced Treg (iTregs) cells. Treg cells suppress the activation and
function of inflammatory leukocytes, specifically macrophages,
through the production of anti-inflammatory cytokines (IL-10
and TGF-β) and by scavenging IL-2 (high expression of IL-2R

CD25), signaling of surface molecules, cytolysis, and metabolic
control (15, 16).

Treg cells are important players for maintaining
homeostatic balance in the intestine [reviewed in (17)].
Acute Treg cell deficiency results in an exacerbated
inflammatory immune response toward commensal intestinal
bacteria leading to a chronic inflammatory state as found
in IBD (18).

Similarly, in mouse models of allergic asthma, resolution
of allergic airway inflammation was dependent on
CD4+CD25+Foxp3+ expressing Treg cells (19). Accumulation
of Treg cells in local draining lymph nodes of the lung correlated
with spontaneous resolution of chronic asthma in another
murine model (20). Moreover, in the lung, Treg cells have also
been described to directly stimulate lung tissue repair, as a
consequence of the production of amphiregulin, an autocrine
growth factor (21).
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Innate Lymphoid Cells
Innate lymphoid cells (ILCs) are a large family of cells with
various immunological functions (22). They can be classified into
different subgroups based on their cytokine production and their
expression of key transcription factors, similar to T cell subsets.
In various mouse models of asthma and IBD, studies suggest a
role for ILCs in the induction of inflammation [for recent reviews
see (23, 24)]. Recent evidence suggests a more complex role for
these cells, with dual roles in the induction of inflammatory
diseases but also the control of chronic inflammation. Type 2 ILC
(ILC2) cells demonstrate a flexibility and plasticity dependent
on the local microenvironment and can potentially act both as
effectors and suppressors [reviewed in (25, 26)]. ILC2 cells, by
producing IL-5 and IL-13, promote the development of type
2 allergic inflammation, independent of Th2 cells (9, 27). In
contrast, the production of IL-9 by ILC2s was recently reported
to mediate resolution of inflammation in a model of chronic
arthritis, another chronic non-resolving disease (28). Also, a
potential role for ILC2 has been suggested in tissue repair after
acute lung injury in a mouse model of H1N1 influenza virus
infection through the production of amphiregulin (29).

The same holds true for type 3 ILC (ILC3) cells, the most
abundant ILC subtype in the human intestine at steady state
(30). ILC3 cells are the main contributors to intestinal IL-22
production, which is a tightly regulated mediator for immune
homeostasis in the intestinal tract (31).

NK cells are also members of the ILC family with potential
roles of SPM-induced resolution of eosinophilic inflammation in
Th2 asthma (32, 33).

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous
population of cells, consisting of myeloid progenitor cells, and
immature macrophages, granulocytes and dendritic cells. These
cells are not present in the normal healthy steady state, and
appear in pathological situations related to chronic inflammatory
situations and stress. Their main function is the suppression of T
cell function (34–36).

Recently, a recommendation was published to classify these
cells into two different subsets based on their phenotype and
function (37). Polymorphonuclear (PMN) andmononuclear (M)
MDSCs share several partly overlapping immunosuppressive
mechanisms, where inhibition of anti-CD3/CD28-induced T-cell
proliferation and IFN-γ production are the general functional
tests used for their identification. In general, MDSCs use
several mechanisms to carry out their immunosuppressive
function. As biomarkers, the expression of various transcription
factors and apoptotic regulators (pSTAT3, cEBP/b, S100A8/9)
and immune-regulatory genes and molecules (ARG1, NOS2,
NOX2, and PNT) are associated with MDSCs and/or PMN-
MDSC and M-MDSC subsets (37, 38). These molecules have
immunosuppressive effects and negatively regulate T cells by
impairing IL-2R signaling pathways, trigger apoptosis (39, 40),
and induce Treg cell expansion and IL-10 and TGF-ß production
(41, 42). Moreover, MDSCs have a relevant role in resolution
of inflammation by efferocytosis of apoptotic neutrophils (35), a
process supported in part by IL-10 (42).

Mediators Participating in the Resolution
of Inflammation
During the inflammatory response, diverse mediators are
synthesized in a strict temporal and spatial manner to
act on specific receptor targets and to actively prevent
the overshooting of acute inflammatory mechanisms, and
ultimately restore tissue homeostasis. Functionally, these anti-
inflammatory and pro-resolving mediators counter-regulate
key events of inflammation. Different from solely anti-
inflammatory actions, pro-resolving mediators actions typically
target specific pro-resolution mechanisms: limitation and/or
cessation of neutrophil recruitment; promotion of non-phlogistic
monocyte recruitment; induction of neutrophil apoptosis and
their subsequent efferocytosis by macrophages, enhancement of
efferocytosis, reprogramming of macrophages from classically
activated to alternatively activated cells; return of non-apoptotic
cells to the blood or egress via the lymphatic vasculature;
stimulation of tissue repair and cellular repopulation of the tissue,
leading to “adapted homeostasis” [recently reviewed in (43)].

Pro-resolving mediators are diverse in nature, and include
SPMs (lipoxins, resolvins, protectins, andmaresins), proteins and
peptides [annexin A1 (AnxA1), galectins, adrenocorticotropic
hormone (ACTH), and IL-10], gaseous mediators including
hydrogen sulfide (H2S) and carbon monoxide (CO), nucleotides
(e.g., adenosine), as well as neuromodulators released under
the control of the vagus nerve such as acetylcholine and
neuropeptides released from non-adrenergic non-cholinergic
neurons (44). As diverse as their nature is their origin, where
mediators of resolution can be produced locally, acting in
paracrine and autocrine manners, or produced at distant sites,
followed by their systemic release and extravasation to sites of
inflammation (43). Below the main pro-resolving mediators will
be described.

Specialized Pro-resolving Lipid Mediators (SPMs)
Recently, a new array of lipid molecules that function in the
resolution of inflammation were elucidated and collectively
named SPMs (3, 45, 46). These mediators, such as lipoxins
(Lx), resolvins (Rv), protectins (PD), and maresins (Mar),
are produced during the inflammatory response and derive
from polyunsaturated fatty acids (PUFAs). Whereas, Lx derive
from the omega-6 PUFA arachidonic acid, the omega-3
PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) give rise to Rv, PD, and Mar (Figure 3). More
recently SPMs produced from both the omega-6 and omega-
3 docosapentaenoic acids have been described (47). The SPMs
are produced via biosynthetic circuits engaged during cell–
cell interactions including different innate immune cells, for
example macrophages or neutrophils, and structural cells at
sites of inflammation. SPMs can also been produced through
interactions of platelets with leukocytes (48).

These bioactive lipids display potencies in the nanomolar
range, and signal through cognate G-protein coupled receptors
(GPR) such as the N-formyl peptide receptor 2 (ALX/FPR2),
GPR32, and GPR18 with many cell type-specific actions (49, 50)
(Figure 4).
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FIGURE 3 | Overview of the pathways for synthesis of resolvins from omega-3 polyunsaturated fatty acids, DHA and EPA. DHA, docosahexaenoic acid; EPA,

eicosapentaenoic acid, MaR, maresin; PD, protectin; Rv, resolvin.

LXA4 binds to the ALX/FPR2. This receptor displays diverse
ligand affinities that extend beyond interactions with LXA4.
Indeed, ALX/FPR2 can interact with over 30 ligands with various
affinities, and has been identified as the first receptor to engage
both bioactive lipids and peptides/proteins, including annexin
A1 (50). ALX/FPR2 is widely expressed on human leukocytes,
including neutrophils, eosinophils, monocyte-macrophages, T
cells, NK cells, and ILC2 cells, as well as on tissue resident cells,
such as airway epithelial cells and fibroblasts (33, 51, 52). Its
expression is up-regulated by local inflammatory-mediators such
as IL-13 and IFN-γ (51, 53).

After initiation of the resolution of inflammation,
repolarization by resolvin E1 (RvE1) induces a M2 wound
healing-type macrophage (54). In addition, different Rv and
Mar interact with ERV1/ChemR23, GPR32 and GPR18 on
macrophages to enhance their efferocytosis, phagocytosis and
IL-10 transcription (54–61). Other more recently described
targets of these mediators are Treg cells and type 2 ILCs (33, 62).
SPMs can prevent naïve CD4+ T cell differentiation into Th1
and Th17 cells and enhance the generation of Treg cells (63).

Evidence for the functional importance of these lipid

mediators in the resolution of inflammation comes from mouse
models of diverse inflammatory disorders where SPMs are able
to control inflammation, limit tissue damage, shorten resolution

intervals, and promote wound healing [for a recent reviews see
(6, 16, 64)].

Annexin A1
An important mediator of the resolution of inflammation
is the glucocorticoid-regulated protein annexin (Anx) A1,
also known as lipocortin-1. AnxA1 is highly abundant in
myeloid-derived cells such as neutrophils and macrophages, and
exerts profound effects on several phases of the resolution of
inflammation (65). AnxA1 signals through the FPR2, which
also binds the SPMs LxA4 and RvD1 (50). Studies in mice
indicate that this protein has important modulatory functions
in neutrophil trafficking by reducing neutrophil infiltration and
activating neutrophil apoptosis. AnxA1 also promotes monocyte
recruitment, clearance of apoptotic neutrophils by macrophages
and can switch macrophages toward a pro-resolving M2
phenotype (65). Studies have demonstrated thatmast cell-derived
AnxA1 is important for the cromones-induced inhibition of
allergic mast cell degranulation (16).

IL-10
IL-10 is a cytokine important in controlling excessive
inflammation. It mediates its major functions through
inhibition of cytokine production and down-regulating antigen
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FIGURE 4 | Specialized pro-resolving lipid mediators signal through G-protein coupled receptors on a variety of cell involved (deranged) immune response leading to

cell specific responses. Akt, protein kinase B; ALX/FPR2, N-formyl peptide receptor 2—LXA4 receptor; AnxA1, annexin A1; BLT1, leukotriene B4 receptor 1; CD,

cluster domain; CMKLR1, chemokine like receptor 1 or Chemerin Receptor 23; DVR1, RvD1 receptor or G protein coupled receptor (GRP)32; DVR2, RvD2 receptor

or GRP18; ERK, extracellular signal regulated kinases; IL, interleukin; INFγ, interferon γ; Mcl-1, anti-apoptotic protein in mast cells; miR, microRNA; mTOR,

mammalian target of rapamycin; NK cell, natural killer cell; NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells; P, phosphorylated; PDK1,

phosphoinositide-dependent protein kinase 1; PI3K, phosphatidylinositol 3-kinase; PMN, polymorphonuclear cells; Rv, resolvin; LX, lipoxin; S6K, ribosomal protein S6

kinase; Th17 cell: Thelper 17 lympocyte; Treg cell: regulatory T lymphocyte; TNFα, tumor necrosis factor α; Traf6: TNF receptor associated factor 6.

presentation by macrophages, monocytes, and dendritic cells
(DCs) and thereby inhibiting adaptive immune cells such as
Th2 and Tregs (66–68). IL-10 can also inhibit eosinophilia,
by suppression of IL-5 and GM-CSF and by direct effects on
eosinophil apoptosis [(69) #1607; (70) #1622].

Galectins
Galectins are ß-galactoside-binding lectins produced by, and
acting upon, cells of both the innate and adaptive immune
systems, modulating multiple processes within the host. Some
members of this family of lectins are proposed to play pro-
resolving functions, namely Galectin (Gal)-1 and 9. Gal-1 is
found in resolving exudates in a murine model of peritonitis
induced by zymosan (71), where it stops recruitment of

neutrophils and lymphocytes (72, 73). DCs that are differentiated
in a Gal-1 rich environment show enhanced regulatory function,
reducing the progression of inflammation in a mouse model
of multiple sclerosis by promotion of IL-10-mediated T-
cell tolerance (74). Gal-1 also induces the conversion of
macrophages into a pro-resolving M2 phenotype (75). Gal-3
enhances efferocytosis of apoptotic granulocytes by monocyte-
derived macrophages (MDMs) (76). Gal-9 promotes apoptosis of
extravasated immune cells including neutrophils and Th1 cells,
and is protective in different experimental animal models of
chronic auto-immune diseases (77–79). Finally, Gal-1 and Gal-
9 promote the generation of Treg cells (80, 81) and induce the
production of IL-10 by peripheral blood mononuclear cells from
healthy donors (82).
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ACTH and Melanocortins
Melanocortins, including adrenocorticotrophic hormone
(ACTH) and the α, β and γ-melanocyte-stimulating hormone
(MSH) are derived from a larger precursor molecule known as
the pro-opiomelanocortin (POMC) protein. They exert their
numerous biological effects by activating 7 transmembrane
GPCR (83). ACTH does not only induce cortisol production,
as previously assumed, but also exerts anti-inflammatory
actions by targeting melanocortin receptors present on immune
cells (84). The protective actions of melanocortins include
inhibition of leukocyte transmigration and reduction of pro-
inflammatory cytokine production (85, 86). Melanocortins also
promote clearance of apoptotic cells (86) and cutaneous wound
healing (87).

Gaseous Mediators
Carbon monoxide (CO) and hydrogen sulfide (H2S) are the
best characterized gaseous substances that, in addition to
their important roles in physiological and pathophysiological
processes, have confirmed pro-resolving actions during
inflammatory processes [reviewed in (88)]. H2S promotes
neutrophil apoptosis and stimulates macrophage phagocytosis
(89, 90). CO can inhibit leukocyte migration and reduce
pro-inflammatory cytokine production (91). CO has shown
therapeutic potential in animal models of acute lung injury (92).

Adenosine
Adenosine, is a purine nucleoside generated by the
dephosphorylation of adenine nucleotides. In addition to
being a potent endogenous physiologic and pharmacologic
regulator of many functions, adenosine has pro-resolving
mechanisms including inhibition of neutrophil and T cell
functions, efferocytosis and macrophage reprogramming
[reviewed in (93)].

Neuropeptides and Neurotransmitters
It is important to consider that not only immunological
mediators, but also factors produced by the nervous system,
like neuropeptides and neurotransmitters, contribute to
the resolution of inflammation. During an inflammatory
response several anti-inflammatory neuropeptides with an
immunomodulatory role are produced. One example is
vasoactive intestinal peptide (VIP) displaying anti-inflammatory
functions in various models of chronic inflammatory disease.
VIP impairs the development and infiltration of self-reactive Th1
cells into target organs, as well as the release of inflammatory
cytokines and chemokines and the subsequent recruitment and
activation of macrophages and neutrophils (94). In addition,
VIP stimulates the production of IL-10 and IL-1RA, both
important mediators of resolution, and induces the generation
of tolerogenic DCs regulating the Th/Treg cells balance (95–99).
Very recently, VIP was shown to modulate the differentiation
of human macrophages toward the M2 phenotype, which is
important in the resolution of inflammation (100).

Another example is the vagal regulation of immune responses,
specifically controlling resolution and the production of SPMs
(101). Disruption of the vagal system delays the resolution

of the inflammatory response upon bacterial peritoneal
infections via reduced numbers of group 3 ILCs (102). In
macrophages, the nicotine acetylcholine receptor, α7nAChR,
mediates anti-inflammatory actions and contributes to the
regulation of phagocytosis. Especially M2-type macrophages
express this receptor that has a protective and pro-survival role
(103) and M2-type macrophages are important producers of
protectin conjugates in tissue regeneration (PCTR)1 during
resolution (104).

Other Mediators Participating to the
Resolution of Inflammation
Anti-inflammatory Cytokines
TGF-β is a potent inhibitor of classical pro-inflammatory
macrophage activation (105). TGF-β is also a mediator in critical
processes in wound healing, stimulating angiogenesis, fibroblast
proliferation, collagen synthesis and deposition and remodeling
of extracellular matrix (106, 107). Additionally, TGF-β regulates
immune responses through the development and differentiation
of Th17 cells and FoxP3+ Treg cells (108, 109). TGF-β inhibits
the differentiation of T helper subsets as it inhibits the expression
of Tbet and GATA3, thereby blocking the differentiation of Th1
and Th2 cells respectively (110, 111).

IL-22 primarily targets non-hematopoietic cells and plays
a role in host defense at barrier surfaces where it promotes
tissue regeneration (112). IL-22 is produced by Th17 and
Th22 cells, ILCs and NKT cells (113). It has different roles
in the gastrointestinal tract including tissue regeneration,
maintenance of the intestinal barrier and intestinal defense
against pathogens (113–116). IL-22 levels are enhanced in the
lungs of patients with asthma (117). However, in inducible lung-
specific IL-22 transgenic mice, a significant decrease in allergic
airway hyperresponsiveness and allergic inflammation occurred
indicating an immune modulating effect of IL-22 (118).

IL-1RA (receptor antagonist) is a natural inhibitor of the pro-
inflammatory cytokine IL-1 as it functions as an IL-1 receptor
competitor (119). It is produced by CD163+ wound healing M2
macrophages (120). In IBD, polymorphism in the IL-1RA gene
have been demonstrated and an imbalance of IL-1 and IL1RA has
been suggested to induce mucosal inflammation associated with
IBD (121, 122).

More recently, IL-4 has been reported to induce macrophage
proliferation and activation with reduced pulmonary injury after
infection with a lung-migrating helminth (123).

MicroRNAs
MicroRNAs (MiRs) are small non-coding RNA molecules that
can bind to complementary sequences of mRNA molecules
thereby regulating/inhibiting post-translational gene expression.
MiRs are contributors to the resolution of inflammation by
targeting pro-inflammatory genes (124). MiRs 21, 146b, 208a,
and 219 are increased during the resolution phase of acute
resolving peritonitis in mice (125) and RvD1 can regulate
expression of these proresolving MiRs (126). MiR-146b down-
regulates NF-κB signaling (127), and MiR-219 targets 5-
lipoxygenase, with a decreased formation of leukotrienes (19).
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These results indicate that MiRs actively contribute to resolution
of inflammation.

Extracellular Vesicles
The paracrine manner of the cellular communication in
resolution may be achieved not only by secretion of immune
mediators but also through extracellular vesicles. Extracellular
vesicles are small membrane vesicles (exosomes, microvesicles,
and apoptotic bodies) secreted by all cell types including
immune cells in a controlled manner. Extracellular vesicles have
recently been reported both as immune activators and immune
suppressors as they contain for example MHC class I and II
and T cell co-stimulatory molecules (128, 129). However, the
most described function of extracellular vesicles is triggering
of the immune system, and very recently involvement of
extracellular vesicles in inflammation resolution, tissue repair
and regeneration was reported (130, 131).

IMPAIRED RESOLUTION OF CHRONIC
INFLAMMATION IN THE INTESTINE AND
THE LUNG

The pathways involved in the initiation of IBD or asthma
differ from each other with respect to cytokine involvement
and composition of the resident tissue. IBD is associated with
a Th1/Th17T cell-mediated response induced by interleukin-
12 (IL-12) and IL-23, with concomitant increased production
of IL-2, IL-17, IL-18, and IFN-γ (132, 133), whereas asthma
and allergic diseases are associated with a typical T helper
type 2 (Th2)-mediated response characterized by the production
of interleukin-4 (IL-4), IL-5, and IL-13 (134). Therefore,
specific tissue resolution processes exist, guided by the local
microenvironment that are impaired in disease [reviewed
recently in (135)]. There is increasing evidence that poor and/or
inappropriate resolution of inflammation participates in the
pathogenesis of IBD or asthma, being responsible in the long run
for excessive tissue damage and pathology. In this chapter, we
give some insights into resolution deficiencies in IBD and chronic
asthma [for a recent and full review see (6, 136)].

Inflammatory Bowel Diseases
IBD afflicts around 0.5% of the population in westernized
countries (137). It is a chronic relapsing disease that includes
Crohn’s disease, a chronic trans-mural inflammatory disease of
the gastrointestinal tract, mainly affecting the ileum and colon,
characterized by leukocyte infiltration, granuloma, scarring, and
fistulae and ulcerative colitis, a more superficial neutrophilic
inflammatory lesion of the colon that progresses proximally. The
inflammation partially, but never completely, resolves leading
to tissue remodeling and disruption of the normal epithelial
architecture that fails to fully regenerate, resulting in persistent
increased epithelial permeability and inflammation.

In IBDmultiple factors are identified that contribute to disease
pathogenesis with a focus on host susceptibility genetic factors
in combination with a qualitatively and quantitatively abnormal

gut microbiota and an excessive immune response (138–
142). The pro-inflammatory response is extensively studied,
and the suppression of this phase is the main therapeutic
strategy in Crohn’s disease, and is still the central research
focus, whereas much less is known about the resolution phase.
Standard Crohn’s disease therapy involves corticosteroids and
immunosuppressants like azathioprine but these therapies are
palliative and do not alter the natural history of IBD (143).
In the last 20 years biological therapies (antibodies directed
against cytokines, like anti-TNFα antibodies) have changed
the treatment of more severe IBD. However, only ∼50% of
Crohn’s Disease patients achieve clinical remission with the anti-
TNFα Humira R© or Remicade R©. Indeed, the treatment results
in a waning of the responsiveness to anti-TNF-α with time
and only a minority of patients achieve mucosal healing (143,
144). Alternative therapies such as blocking the migration of
effector T cells into the inflamed gut by targeting the α4β7
integrin, and recently also the blockade of IL-23 are showing
additional success (145, 146) although they are effective only
in a minority of patients. These treatments specifically blocking
pro-inflammatory mediators cause immuno-suppression, and
thereby induce an increased risk of infection. This exemplifies
why new approaches and new therapies are needed to tackle
the problems of chronic intestinal inflammation. Therefore, a
better understanding of IBD pathophysiology is needed with a
focus on the disturbed resolution of inflammation. In the line of
this, the results of a recent meta-analysis focusing on mucosal
healing in IBD as reported from endoscopic studies show that
both partial, and full mucosal healing—thus a proper resolution
of inflammation—predict favorable clinical outcome (147).

There is more andmore evidence that persistent inflammation
in IBD can occur as a result of inadequate engagement of a series
of pro-resolving pathways and many studies have shown that
pro-resolving mediators are able to prevent experimental colitis
in different murine models [reviewed recently in (136, 148)].

MaR1 improves established chronic colitis induced by
multiple dextran sulfate sodium (DSS) administrations (149).
Systemic treatment of mice with PD1 or RvD5 protects
against colitis and intestinal ischemia/reperfusion-induced
inflammation (150). Other studies report protective roles for
SPMs in experimental colitis [summarized in (151)]. Indications
that SPM biosynthesis might be dysregulated in patients
with IBD come from a study in which RvD5 and PD1 were
upregulated in human IBD colon biopsies (150). Interestingly,
mucosal expression of LXA4 is elevated exclusively in biopsies
from individuals in remission from ulcerative colitis (152).
Evidence, whether a defect in SPM signaling exists in IBD
remains to be explored.

AnxA1 stimulates intestinal mucosal wound repair in a
murine model of colitis (153) and AnxA1-containing exosomes
and microparticles have been shown to accelerate the process
of mucosal healing in vivo DSS models of colitis (154). In
humans, AnxA1 is released by inflamed colonic biopsies from
patients having ulcerative colitis (UC) and depends on the
severity of inflammation (152, 155). In Crohn’s disease, AnxA1
biosynthesis is dysregulated and higher levels correlate with
successful intervention with biologicals against TNF-α (156).
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In another study in Crohn’s Disease, AnxA1 is involved in
intestinal homeostasis after anti-TNF-α treatment and suggested
as a potential biomarker of therapeutic efficacy of anti-TNF-α
treatment (157).

The production of IL-10 by Tregs is of particular interest
in IBD. IL-10 deficiency in mice can lead to the development
of spontaneous inflammatory bowel disease (158) and IL-10
receptor mutations found in patients result in an early-onset
enterocolitis (159, 160). Furthermore, a IBD-like colitis can occur
in response to recent immune checkpoint inhibitor treatments
used in antitumor therapy aiming at blocking Treg cells (161).
Tregs accumulate and IL-10 is upregulated in the gut during
active IBD (162–166) but a clear demonstration that this pro-
resolving mechanism operates in the gut mucosa in IBD is
still missing.

Several authors report conflicting data whether or not it might
be possible to use Galectin family member levels as markers for
disease activity (167–171).

There is also evidence that α-MSH has potent anti-
inflammatory activity in experimentally induced colitis (172,
173). Oral delivery via Bifidobacterium expressing α-melanocyte-
stimulating hormone can prevent colitis in an experimental
murine model (174).

H2S is able to improve the colonic barrier integrity in amurine
model of experimental colitis (175). Administration of inhibitors
of H2S synthesis in models of colitis result in an increase in
severity of disease (176). In patients with active ulcerative colitis,
alterations in the expression of genes involved in the purine
metabolic pathway have been demonstrated (177). Like H2S,
CO has been shown to exert potent protective effects in the
gastro-intestinal tract (178).

Several gastro-intestinal neuroendocrine peptides and
amines with pro-resolving properties, as members of the
chromogranin/secretogranin family, VIP, somatostatin, and
ghrelin are affected in experimental colitis and changes
of these mediators occur during active IBD in patients
[recently reviewed in (179)]. The exact role of neuroendocrine
peptides/amines with pro-resolving properties in IBD has to be
further elucidated.

Asthma and Allergic Diseases
In the industrialized world, millions of individuals suffer from
inappropriate activation and dysregulation of Th2 cell immune
responses responsible for allergic asthma and rhinitis, food
allergies and atopic dermatitis (also known as eczema), being
part of a process called the atopic march. These disorders are
increasingly prevalent and are a major public health problem
(180). Th2 cell mediated immune responses are characterized by
the release of type 2 signature cytokines (i.e., IL-4, IL-5, IL-9,
and IL-13) from cells of both the innate and adaptive immune
systems (134, 181).

Current therapeutic strategies for chronic Th2 immune
disorders are mainly anti-inflammatory, and aim at controlling
symptoms. In chronic persistent asthma, inhaled corticosteroids
are the main anti-inflammatory treatment effective in most
patients, causing relatively minor adverse effects (182). A subset
of asthma patients (∼10%) experience persistent symptoms

and/or frequent exacerbations despite high doses of inhaled
corticosteroids and are often treated with prolonged systemic
corticotherapy having many potential side-effects (183).
Monoclonal antibodies targeting inflammatory pathways that
activate immune responses leading to airway inflammation have
been developed to help broaden the current arsenal of asthma
treatment options (184). The first anti-body based biological
therapy approved for treatment of asthma was omalizumab,
targeting IgE, a component of the allergic cascade (185). More
recently, monoclonal antibodies have been approved, targeting
IL-5 or its receptor (mepolizumab, reslizumab, benralizumab),
a key cytokine promoting eosinophil inflammation (186).
Other monoclonal antibodies targeting a wide variety of
intermediaries in the pro-inflammatory cascade are currently
being tested for their effectiveness in the treatment of asthma
(184). These biological therapies can reduce exacerbations and
have glucocorticoid-sparing effects, but the clinical responses to
these antibody-therapies are variable, with at least 30% of severe
asthmatic patients being non-responders (187).

These therapeutic strategies can be combined with allergen-
specific immunotherapies in chronic allergic diseases that are
able to improve symptoms but they do not cure allergic
disorders (188, 189).

As for IBD, there is increasing evidence that chronic and
uncontrolled inflammation in Th2 immune disorders, might
result not just from an excessive uncontrolled pro-inflammatory
response but also from uncontrolled and insufficient engagement
of pro-resolving pathways and thus impaired resolution of
exacerbations (5, 33, 190).

First, pro-resolving mediators have proved efficient at
improving disease and inflammatory outcomes in a variety of
asthma models. Treatment with SPMs decreases key features
of asthma pathobiology, including airway hyperresponsiveness,
mucus metaplasia, and Th2 cell bronchial inflammation (53,
191–193). AnxA1 deficient mice exhibit spontaneous airway
hyperresponsiveness and exacerbated allergen responses (194)
and AnxA1 mimetics inhibit eosinophil recruitment (195).
Ablation of IL-10 signaling in Th2 cells leads to exacerbated
pulmonary inflammation (196). In murine models, IL10 knock-
out mice develop enhanced allergic airway responses (197, 198)
[(199) #1421]. IL-10 also inhibits pro-inflammatory cytokine
production by Th2 cells and down-regulates mast cell and
eosinophil function (200). Administration of recombinant Gal-
9 or α-MSH diminish allergic airway inflammation [(201)
#1453; (202)]. Low H2S production in ovalbumin sensitized
and challenged mice results in aggravated AHR and increased
airway inflammation (203). In a rat model of asthma, exogenous
administration of H2S reduces airway inflammation and airway
remodeling (204). VIP can inhibit eosinophil migration (205)
and airway remodeling in asthmatic mice (206). Intestinal
epithelial cell-derived Gal-9 is involved in the resolution of
allergic responses through the induction of tolerogenic DCs and
associated Treg cell response (207, 208). In addition, some of
these galectins can block IgE binding on mast cells and as such,
inhibit allergic inflammation (209, 210). The role of adenosine
in the resolution of inflammation of chronic asthma is not
yet elucidated.
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Based on the evidence for the functional importance of pro-
resolving mediators in allergic asthma mouse models, defects in
the production or the activity of pro-resolving mediators might
therefore participate in the chronicity and severity of human
asthma. Several studies in distinct populations have reported
that SPMs are underproduced in more severe asthma together
with a defect in the expression of their related receptors [for
a recent review see (6)]. Annexin A1 (AnxA1) levels are also
decreased in patients with asthma (211), and in wheezy infants
(212). Moreover, plasma and bronchoalveolar AnxA1 levels are
correlated with lung function (FEV1 %) (213, 214). Compared
with non-asthmatics, asthmatic individuals have reduced levels
of IL- 10 in bronchoalveolar lavage fluid (215) and a decreased
secretion of IL-10 from alveolar macrophages (216).

Furthermore, polymorphisms in the IL10 gene resulting in low
IL-10 production have been associated with severe asthma (217).
T cells from allergic asthmatic patients are partially resistant to
IL-10 mediated suppression [(218) #1396]. In humans, galectin-3
production has been reported to be lower in asthma, particularly
in neutrophilic asthma (76, 219). Macrophages from sputum
samples of asthma patients express reduced levels of Gal-1
and Gal-9 (82). Several human studies have shown a decrease
in serum or exhaled-breath H2S levels in both adult and
infants (220–222). Moreover, lower H2S levels are correlated
with abnormal pulmonary lung function tests and severity
of asthma (220, 221). There is relatively limited information
available regarding the role of neuropeptides in the resolution of
inflammation in asthma but Tomaki et al. found that SubP levels
in sputum correlate with airway obstruction in asthma (223).

HOW TO IMPROVE RESOLUTION IN
CHRONIC INFLAMMATORY DISEASES

Targeting the inflammation phase has been the main focus
in medical research for the past decades, resulting in
treatment options for immune-mediated diseases that dampen
inflammation and display immunosuppressive actions (see
Figure 1). This comes with a burden for the body, since
anti-inflammatory immune suppressive therapies, for example
corticosteroids or anti-TNF inhibitors, may have increased risks
of infection. In addition, the development of expensive targeted
anti-inflammatory biologicals creates an economic burden
on society.

Immune responses are very complex and only recently the
first initiative to define the naturally occurring variation and the
boundaries of a healthy immune response to complex stimuli
was published (224). Interestingly, there is considerable variation
in the ability of tissue inflammation to resolve within a healthy
population (225).

Different endogenous factors such as age, genetics, sex,
ethnicity, might influence the nature and extent of the acute
inflammatory response including the resolution process (226).
Studies have highlighted how epigenetic reprogramming can
lead to chronic inflammation and impede resolution resulting in
inflammatory diseases (227, 228). Gut microflora plays a critical
role in the stimulation and maturation of a balanced immune

system (229). There is also evidence that life style factors, physical
and psychological conditions can impact on the magnitude of the
inflammatory response (230).

Understanding the mechanism required for adequate
resolution of inflammation may support the development of
new resolution-based strategies able to direct the inflammatory
processes in a controlled way. Different approaches can be
considered (Figure 5).

Pharmacological Interventions
Many current therapeutic approaches to manage chronic
inflammation aim at repressing overactive pro-inflammatory
responses by reducing pro-inflammatory mediator activity (i.e.,
corticosteroids or biologics). In addition to their potent anti-
inflammatory properties, steroids can display several pro-
resolving properties (7, 65, 231, 232), however, this comes
with many potential side-effects, such as osteoporosis, diabetes,
systemic hypertension, and impaired immune function.

Several synthetic pharmaceutical analogs with pro-resolving
properties have been proven to be active in animal models
[reviewed in (233, 234)]. Toward this end, stable synthetic
mimetics to endogenous SPMs are under development, and
in matching studies, these mimetics display similar biological
actions to the parent mediators in animal models of diverse
inflammatory disorders with an advantage of resisting local
inactivation (including mimetics encapsulated in vesicles) (235–
239). Several of these mimetics are in pre-clinical development
programs for different chronic inflammatory conditions [for
reviews see (3, 240)]. In a double-blind placebo-controlled
clinical trial, a topical 15-R/S-methyl-LXA4 preparation was
tested for the treatment of infantile atopic eczema (241). In this
study, the efficacy of the lipoxinmimetic was at least equivalent to
gold standard topical steroid therapy for the reduction of eczema
severity by quantitative and qualitative measures.

Dietary Interventions
Omega-3 PUFAs
The main bioactive omega−3 PUFAs, eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA), are poorly synthesized
in humans. They are components of seafood, especially oily
fish, of fish oil, liver oil, krill oil and algal oil supplements,
and of a small number of highly concentrated pseudo-
pharmaceutical products.

EPA and DHA have long been known to have beneficial
health effects including anti-inflammatory, anti-thrombotic, and
immuno-regulatory properties (242–244). These n−3 LCPUFAs
are substrates for biosynthesis of potent SPMs such as resolvins,
protectins, and maresins (Figure 3). DHA is concentrated in
neural tissues including brain and retina and in sperm; EPA and
DHA are found in membranes of all other cells and tissues and
in human milk (245–247). Increased dietary intake of EPA and
DHA results in their enrichment in blood and in many cells
and tissues. Omega-3 PUFAs can exert significant effects on
the intestinal environment and modulate the gut microbiota
composition (248).

The airway mucosa is also enriched with DHA in healthy
individuals (249). Interestingly, airway mucosal levels of n−3
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FIGURE 5 | New resolution-based strategies able to direct the inflammatory processes in a controlled way.

PUFAs are lower in patients with asthma than in people without
asthma (249). Population surveys report that diets rich in n-3
fatty acids are associated with lower asthma prevalence (250).

It is noteworthy that SPMs are present at significant levels
in placenta and human milk (251–253), which suggests an
important role for SPMs in health maintenance during a
particularly vulnerable period of infant development. In a
recent randomized placebo-controlled study from a Danish birth
cohort, supplementation with a high dose of n-3-LCPUFAs (a
dose corresponding to a 10–20-times increase of the normal
intake) during the third trimester of pregnancy was associated
with a significantly lower risk of asthma symptoms and fewer
respiratory infections in children at 3 years (254). This effect
was most prominent among children of women who had low
pre-intervention EPA and DHA blood levels (255).

Recent human studies have shown that increased intake of
EPA and DHA results in higher concentrations of selected SPMs
in the bloodstream (256–258). High doses of n-3 PUFAs reduce
pain and other symptoms in patients with rheumatoid arthritis
(259, 260). Many of the mechanisms of action of EPA and
DHA suggest that they reduce the pro-inflammatory response
(242, 243). However, the discovery of SPMs derived from EPA
and DHA and the potency of those SPMs in animal models
(see earlier) hints that their main action might be promotion
of resolution.

Pre- and Probiotics
The prebiotic galacto- and fructo-oligosaccharides, so-called
non-digestible oligosaccharides, in combination with probiotic
bacteria induced the resolution-inducing lectin galectin 9 in

mouse models for food allergy and in infants suffering from cow’s
milk allergy (209). In vitro studies showed that the epithelial
release of gal 9 by this specific combination of pre- and probiotic
induces tolerogenic DCs that in turn upregulated Treg cells (209,
261). In addition, the combination of Bifidobacterium longum
with inulin-oligofructose resulted in resolution of inflammation
in patients suffering from active colitis (262, 263). Several
preclinical studies have demonstrated that treatment with specific
bacterial strains induces an IL-10 response associated with
a faster resolution of inflammation in allergy and Crohn’s
Disease models (264–266). Overall, there are some indications
that dietary intervention with pre- and probiotics promotes
the induction of resolution of inflammation. However, the
exact mechanisms of resolution induced by pre- and probiotics
remains to be examined.

Exercise/Physical Activity
Exercise enhances functional capacity, through increased aerobic
capacity and muscle strength, improves quality of life and has the
potential to protect from cardiovascular disease, type 2 diabetes
mellitus, and certain types of cancer [reviewed in (267)]. The
potential mechanisms underlying exercise-mediated protection
toward these disorders, include changes in body composition,
neuro-hormonal status, as well as effects on resolution pathways.

Indeed, acute increases in intramuscular IL-6 following
exercise promote resolution processes by increasing the synthesis
of anti-inflammatory cytokines such as IL-1RA and IL-10,
and inhibit pro-inflammatory cytokines such as TNF-α (268).
Exercise also modulates the production of the PUFA derived
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SPMs described earlier. Indeed, maximal physical exertion was
found to result in a rapid post-exercise increase in the urinary
excretion of arachidonic acid (AA) derived lipoxin A4 (LXA4) in
healthy subjects (269). Similarly, EPA derived resolvin E1 (RvE1)
transiently increases early in human serum following exercise and
DHA derived resolvin D1 (RvD1) and protectins increased later
during recovery (270).

Interestingly, levels of LXA4 are found to increase
immediately after exercise in exhaled air condensate of
asthmatic children with exercise induced bronchoconstriction
(EIB) (271). The authors hypothesized that airway LXA4

increases to compensate bronchoconstriction and to
suppress acute inflammation, and that spontaneous
bronchodilation after EIB may be due to LXA4. In
murine studies in relation to asthma, physical exercise
reduced asthma associated bronchial inflammation (IL-
4, IL-5 expression and eosinophil infiltrate) which was
associated with an increase of IL-10 (272, 273). Exercise
in animal models of colitis also reduced levels of TNF-α,
and decreased markers of oxidative stress and histological
damage to the colon in parallel to increased levels of
the resolution-promoting and anti-inflammatory cytokine
IL-10 (274).

Stress Management
Emotional, cognitive, and psychosocial factors are now widely
recognized as significant determinants of health outcomes
including impacts on the immune system (275). In this sense,
a broad variety of mind-body therapies that are able to
decrease stress, including meditation-based stress reduction
programs (MBSR) and yoga have been increasingly proposed
over the past years, as substantial adjuncts to conventional
medical treatment in chronic inflammatory diseases and
cancer patients (275). Convergent evidence suggests that
these mind-body therapies may have effects on immune
functions including effects on the hypothalamic-pituitary-
adrenocortical (HPA) axis function (276) and on NK cell
functions and IL-10 levels within patients suffering from
chronic inflammatory disorders (277–279). More precise impacts
of the mental state on resolution parameters remain to
be examined.

CONCLUSION

There are a number of immune-mediated chronic diseases that
might, at least in part, be controlled or prevented in an immune
fit person, including IBD, allergy, and asthma developed in
this review, as well as rheumatoid arthritis, chronic obstructive
pulmonary disease (COPD), Parkinson’s disease, Alzheimer’s
disease, multiple sclerosis, diabetes or myalgic encephalomyelitis.
The focus of research on resolution of the immune response
as a possible therapeutic approach has only been apparent in
the twenty-first century and there is now increasing evidence
that poor and/or inappropriate resolution of inflammation
participates in the pathogenesis of IBD or asthma, being
responsible in the long run for excessive tissue damage and
pathology. This might now open a whole area in the development
of personalized therapeutic options for chronic immune diseases
driven in part by maladaptive, non-resolving inflammation.

Moreover, since there is a strong link between a compromised
immune system and the brain, individuals can experience a
reduced quality of life and lack of well-being (280, 281). Many
chronic inflammatory diseases are associated with depression,
anxiety, and reduced cognitive function (282) and it is becoming
apparent that many brain diseases (psychiatric and neurological)
are associated with activation of the immune system (281,
283). Therefore, deviant immune fitness because of overreaction
and poor or defective resolution of the immune system has
an enormous impact and is a central issue in these chronic
immune diseases.
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