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Single-cell analysis of a tumor-derived 
exosome signature correlates with prognosis 
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Abstract 

Background: Tumor-derived exosomes (TEXs) are involved in tumor progression and the immune modulation pro-
cess and mediate intercellular communication in the tumor microenvironment. Although exosomes are considered 
promising liquid biomarkers for disease diagnosis, it is difficult to discriminate TEXs and to develop TEX-based predic-
tive biomarkers.

Methods: In this study, the gene expression profiles and clinical information were collected from The Cancer 
Genome Atlas (TCGA) database, IMvigor210 cohorts, and six independent Gene Expression Omnibus datasets. A 
TEXs-associated signature named TEXscore was established to predict overall survival in multiple cancer types and in 
patients undergoing immune checkpoint blockade therapies.

Results: Based on exosome-associated genes, we first constructed a tumor-derived exosome signature named 
TEXscore using a principal component analysis algorithm. In single-cell RNA-sequencing data analysis, ascending TEX-
score was associated with disease progression and poor clinical outcomes. In the TCGA Pan-Cancer cohort, TEXscore 
was elevated in tumor samples rather than in normal tissues, thereby serving as a reliable biomarker to distinguish 
cancer from non-cancer sources. Moreover, high TEXscore was associated with shorter overall survival across 12 can-
cer types. TEXscore showed great potential in predicting immunotherapy response in melanoma, urothelial cancer, 
and renal cancer. The immunosuppressive microenvironment characterized by macrophages, cancer-associated 
fibroblasts, and myeloid-derived suppressor cells was associated with high TEXscore in the TCGA and immunotherapy 
cohorts. Besides, TEXscore-associated miRNAs and gene mutations were also identified. Further experimental research 
will facilitate the extending of TEXscore in tumor-associated exosomes.

Conclusions: TEXscore capturing tumor-derived exosome features might be a robust biomarker for prognosis and 
treatment responses in independent cohorts.
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Introduction
Exosomes are 30–150  nm-sized extracellular vesicles of 
endosomal origin that inherit constituents from multiple 
cell types [1]. Relying on the plentiful cargos including 
proteins, nucleic acids, lipids, and metabolites, exosomes 
participate in intercellular communication and further 
influence the surrounding microenvironment in both 
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biological and pathological conditions [2, 3]. Although 
all cell types are capable of generating exosomes, tumors 
are especially prone to massively releasing exosomes. 
The level of exosomes in plasma or other body fluids of 
patients with tumors is higher than that in normal donors 
[4]. Increasing evidence indicates that tumor-derived 
exosomes (TEXs) emerge as a vital modulator in vari-
ous tumorigenesis processes, including tumor invasion, 
metastasis, and treatment resistance [5]. TEXs are taken 
up by immune cells and stromal cells that constitute the 
tumor microenvironment (TME), thereby changing TME 
infiltration pattern and affecting cell behavior [6, 7].

The unique message carried in exosomes, their abun-
dance in peripheral circulation, and the convenience of 
liquid biopsy together provide distinct advantages over 
other common cancer biomarkers [8, 9]. For instance, 
plasma exosomes bearing CD63, a classic exosome 
marker [10, 11], and Cav1—which is elevated in pros-
tate cancer and melanoma [12, 13]—are useful mela-
noma markers and are associated with poor prognosis in 
melanoma [14]. In pancreatic cancer, GPC1(+) circulat-
ing exosomes may serve as a noninvasive tool to enable 
the early detection of cancer and guide treatment deci-
sions [15]. However, exosomes derived from various body 
fluids of patients with cancer are a heterogeneous mix 
of vesicles, as they are likely sourced from both tumor 
cells and normal cells [16]. Thus, it is essential to iden-
tify exosome markers to distinguish between cancer and 
normal sources. In this way, the underlying mechanisms 
of TEXs-related modulation of the TME, tumor progres-
sion, and metastasis could be unveiled.

Despite recent progress in approaches for TEXs iso-
lation and analysis of corresponding cargos, the roles 
of TEXs as potential diagnostic or prognostic biomark-
ers remain unconfirmed. Immune checkpoint blockers 
(ICBs) have revolutionized tumor treatment strategies by 
tackling the tumor evasion of the host immune response. 
Despite the clinical success of ICBs in multiple cancers, 
favorable and durable response merely occurred in a 
subset of patients. Considering the practicality and cost-
effectiveness, exosome estimation may be a promising 
diagnostic tool and indicator for ICBs. Gang Chen et al. 
reported that metastatic melanoma released a high level 
of exosomal PD-L1 in early stage of treatment associated 
with immunosuppression, which might stratify potential 
responders to ICBs therapy [17]. Recently, several clini-
cal trials have investigated whether plasma exosomes can 
be used as a novel diagnostic and screening indicator in 
ICBs therapy. For instance, NCT03854032 assessed the 
dynamic exosomes amounts as well as exosomal PD-L1 

levels under the treatment of nivolumab and indoleam-
ine 2, 3-dioxygenase 1 inhibitor in patients with head and 
neck cancer [18]. Therefore, despite insufficient evidence 
in the clinical validation, exosomes exhibited great poten-
tial as robust biomarkers for predicting response to ICBs.

Single-cell RNA-sequencing analysis is an emerging 
technique that provides gene expression profiles at the 
resolution of an individual cell [19], thus enabling iden-
tification of various cell types and investigation of key 
genes and pathways involved in cancer progression and 
resistance [20, 21]. Considering the lack of studies focus-
ing on exosomes from single-cell platform, we sought to 
explore exosome-associated mechanisms by utilizing sin-
gle-cell RNA-seq data.

In current study, we integrated exosomes associated 
genes including exosome proteins identified in malig-
nant pleural effusion, classical exosome markers, and 
operators in regulating TEXs secretion. A tumor-derived 
exosome-related signature, termed TEXscore, was estab-
lished by utilizing a principal component analysis (PCA) 
algorithm to predict overall survival outcomes across 
various cancers. Additionally, the predictive power of 
TEXscore for ICBs was further investigated. High TEX-
score was associated with immunosuppressive micro-
environment. Moreover, combining these analyses with 
noncoding RNA data and genome data, we also revealed 
TEXscore relevant mechanisms.

Materials and methods
Establishment of TEXscore
For selected tumor-derived exosome-associated genes, 
the expression of each gene was first transformed into a 
z-score. Then, PCA analysis was conducted, and the prin-
cipal component 1 was identified as the original score. 
This approach focuses the score on the set with the larg-
est block of well-correlated (or anti-correlated) genes in 
the set, while down-weighting contributions from genes 
that do not track with other set members. The PCA algo-
rithm has been used to establish model signatures in our 
previous work [22, 23]. In the current study, the PCA 
algorithm was performed utilizing the IOBR R package 
[24]. The TEXscore could be calculated reproducibly 
using the IOBR “calculate_sig_score” function by provid-
ing a list of TEXscore genes.

Single‑cell RNA‑sequencing data preprocessing
The raw data of single-cell RNA-sequencing from a previ-
ous study of Ashley Maynard et al. [20] were downloaded 
from The National Center for Biotechnology Information 
(NCBI) BioProject (https:// www. ncbi. nlm. nih. gov/ biopr 
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oject/ PRJNA 591860). These data included 49 clinical 
biopsies obtained from 30 patients with metastatic lung 
cancer before and during targeted therapy. A list of cell 
types was annotated in the single-cell RNA-sequencing 
data, a total of 3754 cancer cells were determined by 
inferCNV. Similar to the TEXscore construction meth-
ods described above, TEXscore was calculated for each 
cancer cell from the clinical biopsies.

Data source and preprocessing
Data from The Cancer Genome Atlas (TCGA) were 
downloaded from the UCSC Xena browser (https:// gdc. 
xenah ubs. net). To enhance comparability between the 
samples, RNA-sequencing count data were transformed 
into Transcripts Per Million (TPM) [25] to calculate 
gene signature scores. Detailed clinical information for 
TCGA datasets was obtained via the R package TCGA-
biolinks [26]. To further validate survival difference 
depending on TEXscore, the independent cohorts down-
loaded from Gene Expression Omnibus (GEO) were 
analyzed: Cristescu R and colleagues’ gastric cancer data 
(GSE62254) and Rousseaux S and colleagues’ lung can-
cer data (GSE30219). The RNA-sequencing data of mul-
tistep process of lung squamous carcinogenesis were 
downloaded under GSE33479. The transcriptome and 
clinical data of the IMvigor210 dataset from patients with 
metastatic urothelial cancer treated with an anti-PD-L1 
agent (atezolizumab) were downloaded from http:// resea 
rch- pub. gene. com/ IMvig or210 CoreB iolog ies. Except 
from IMvigor210, other cohorts of RNA-seq on patients 
undergoing ICB included patients with melanoma 
treated with nivolumab (GSE91061), patients with meta-
static melanoma treated with PD-1 inhibitor (GSE78220), 
and patients with renal cell carcinoma treated with anti-
PD-1 (nivolumab) immunotherapy (GSE67501). Due to 
different platforms and methods of RNA-sequencing, 
various normalization methods were performed in the 
GEO datasets. For the GSE33479 and GSE67501 cohorts, 
normalized data were provided by source reference. For 
the GSE91061 and GSE78220 cohorts, data were normal-
ized to fragments per kilobase of transcript per million 
fragments sequenced (FPKM). For the GSE30219 and 
GSE62254 cohorts, gene expression data were generated 
from Affymetrix platform, so the data were normalized 
using robust multiarray averaging (RMA) algorithm. 
Genomic data were analyzed using R (version 3.5.0) and 
R Bioconductor packages.

Inference of infiltrating cell infiltration in the tumor 
microenvironment
To quantify the proportions of immune cells, we used 
the Cell type Identification By Estimating Relative Sub-
sets Of RNA Transcripts (CIBERSORT) algorithm [27] 
which allows for sensitive and specific discrimination of 
22 human immune cell phenotypes, including B cells, T 
cells, natural killer cells, macrophages, dendritic cells, 
and myeloid subsets. Gene-expression profiles were 
prepared using standard annotation files, and data were 
uploaded to the CIBERSORT web portal (http:// ciber 
sort. stanf ord. edu/), with the algorithm run using the 
22 human immune cell phenotype signature and 1000 
permutations. To characterize other immune micro-
environment and prevalent gene signatures activation 
in each tumor samples, PCA algorithm was applied to 
determine the pathway activity using gene sets curated 
by Mariathasanet al. [28], Cristescu et  al. [29], Rooney 
et  al. [30], Rosario et  al. [31] and Zeng et  al. [22]. We 
thereby obtained, for each signature, an enrichment score 
per sample that indicated the extent of upregulation or 
downregulation of the associated genes. A minimum 
overlap of two genes was required.

Differentially expressed gene (DEGs) analysis
DEGs were determined using the R package DESeq2 
[32]. DEG analysis was conducted using a generalized 
linear model with the Wald statistical test with R pack-
age DESeq2, under the assumption that the underlying 
gene expression count data were distributed per negative 
binomial distribution. DEGs satisfying the significance 
criteria (adjusted P-value < 0.05) were selected for fur-
ther analysis. The Benjamini–Hochberg correction was 
applied to calculate the adjusted P value for multiple tests 
[33].

Functional and pathway enrichment analyses
Gene annotation enrichment analysis was conducted 
using the clusterProfiler package [34]. Gene Ontol-
ogy (GO) [35] and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [36] terms were identified with a strict 
cutoff of P < 0.01 and a false-discovery rate (FDR) of less 
than 0.05.

Identification of target genes of TEXscore negative 
associated miRNAs
The top 10 TEXscore negative associated miRNAs 
were identified according to the correlation analysis 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA591860
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(Additional file 7: Table S2). The downstream target genes 
list of above miRNAs were downloaded from TargetScan 
(http:// www. targe tscan. org/ vert_ 72/) and miRDB [37] 
(http:// www. mirdb. org/). The intersection of both target 
lists from TargetScan and miRDB were taken for further 
analyzes.

Identification of TEXscore relevant mutations
The Mutation Annotation Format (MAF) files were 
downloaded with TCGAbiolinks, and the mutation status 
was inferred from the MAF files. Mann–Whitney U test 
was applied to define the significance of binary variables 
(wild type or mutated). Benjamini–Hochberg method 
was conducted to convert the P values to the adjusted 
P values. The R package maftools was used to generate 
mutation landscape of TEXscore genes in the TCGA-
LUAD and TCGA-LUSC cohorts.

Statistics
The normality of the variables was tested utilizing the 
Shapiro–Wilk normality test [38]. For comparisons of 
two groups, statistical significance for normally distrib-
uted variables was estimated via unpaired Student’s t test, 
and non-normally distributed variables were analyzed 
via the Mann–Whitney U test. For comparisons of more 
than two groups, Kruskal–Wallis and one-way ANOVA 
were applied for non-parametric and parametric vari-
ables, respectively [39]. The correlation coefficient was 
calculated using Spearman and distance correlation anal-
yses. Chi-square test and two-sided Fisher’s exact tests 
were used to analyze contingency tables. Using the R 
package survminer, the cutoff values of each dataset were 
computed based on the association between the survival 
outcome and TEXscore in each independent dataset. The 
Kaplan–Meier method was used to depict survival curves 
for the subgroups in each dataset, and the log-rank test 
was used to determine statistically significant differ-
ences. The univariate Cox proportional-hazards regres-
sion model was applied to compute the hazard ratios for 
univariate analyses. The sensitivity and specificity of the 
signature scores were depicted by the receiver operating 
characteristic curve (ROC) and quantified by the area 
under the ROC (AUC) using the R package pROC [40]. 
All statistical analyses were conducted using R (https:// 
www.r- proje ct. org/), and the P-values were two-sided. 
P values lower than 0.05 were considered statistically 
significant.

Results
The construction of tumor‑derived exosome associated 
score
To characterize tumor-derived exosomes, a total of 33 
tumor-derived exosome-associated genes were selected 
and divided into three modules (Additional file  7: 
Table S1). As reported in a previous study [41], Module 
1 contains genes from an extracellular vesicles-associated 
gene signature of which proteins detected in extracellu-
lar vesicles of malignant pleural effusion. Genes in Mod-
ule 2 included membrane transport and fusion proteins 
(FLOT1), tetraspanins (CD9, CD63, CD81), chaperones 
(HSP70), integrins (ITGA1, ITGB1), and multivesicular 
body synthesis proteins (ALIX, TSG101), which have 
been widely accepted as classic exosome marker genes in 
multiple studies [5, 42, 43]. To expand the universality of 
TEX for other cancers, genes manipulating TEX secre-
tion summarized by McAndrews et  al. were added in 
Module 3 [43]. The GO enrichment analysis and KEGG 
enrichment analysis of the selected genes revealed that 
TEX genes were enriched in pathways associated with 
exosome formation and release (exosomal secretion, 
extracellular exosome biogenesis, extracellular vesi-
cle biogenesis, focal adhesion, and regulation of actin 
cytoskeleton). In addition, tumor progression pathway, 
such as PI3K-Akt signaling pathway, significantly corre-
lated with TEX genes (Additional file 1: Figure S1A, B). 
Therefore, we considered that the above selected genes 
were associated with exosome formation and secretion 
characteristics and tumor progression features. Next, 
utilizing PCA algorithm to integrate the selected genes, 
we defined a tumor-derived exosome-associated signa-
ture (TEXscore), which could also reflect TEX features to 
some extent. First, we sought to examine the TEXscore 
in a single cancer cell dimension. From the single-cell 
RNA-seq data of patients with non-small cell lung can-
cer (NSCLC) undergoing tyrosine kinase inhibitor (TKI) 
therapy, we pooled 3754 cancer cells together, resulting 
in several clusters via unsupervised graph-based cluster 
analysis. For each cancer cell, TEXscore was calculated 
and depicted in Fig. 1A. To delineate the different treat-
ment statuses during therapy, three key time points were 
stressed. Notably, TEXscores of cancer cells increased 
at progressive disease (PD) status when tumor acquired 
drug resistance, compared with the relatively low TEX-
scores at the time point of pre-treatment (Pre) and par-
tial response (PR)/stable disease (SD) statuses, implying 
an association between TEXscore and cancer progression 
undergoing treatment (Kruskal–Wallis test, P ≤ 2e−16; 
Fig. 1B, C). Additionally, exosomes-associated signatures 
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generated from the three modules (Additional file  7: 
Table  S1) separately were established using PCA algo-
rithm, leading to a similar conclusion that TEXscore and 
exosomes-associated signature scores elevated signifi-
cantly in PD status (Fig. 1C).

TEXscore differs in tumor samples and normal tissues
We sought to assess TEXscore in tumor samples and 
normal tissues. In the GSE33479 cohort [44], stages 0 
and 1 represented normal bronchial mucosa tissues, 

with increasing degree of malignancy at more advanced 
stages, where stage 8 subsumed lung squamous carci-
noma tissues. Intriguingly, TEXscore maintained a linear 
increase from normal tissue to invasive tumor samples 
(Fig.  2A). Next, we tried to validate the different TEX-
score levels between tumor samples and normal tissues 
in a pan-cancer survey. In the TCGA-Pan-Cancer cohort, 
TEXscore increased in most cancer types—except for 
TCGA-Glioblastoma (TCGA-GBM), TCGA-Mela-
noma (TCGA-SKCM), and TCGA-Kidney Clear Cell 

Fig. 1 Single-cell transcriptome analysis reveals TEXscore distribution in NSCLC during targeted therapy. A t-SNE plots showing expression level of 
TEXscore in patients with NSCLC. B t-SNE plots showing cancer cells in patients with NSCLC colored by treatment time point (PD, PR/SD, and Pre). 
C Exosome-associated signature scores correlated with treatment time point PD during targeted therapy. The statistical difference of three gene 
clusters was evaluated using Kruskal–Wallis test. P values are indicated
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Fig. 2 TEXscore holds promise in discriminating of tumor and normal tissues in the TCGA-Pan-Cancer cohort. A TEXscore increased along with the 
ascending malignancy degrees of lung tissues in GSE33479. Spearman rank correlation rho = 0.3968921, P = 6.011e−06. B TEXscore was elevated 
in most cancer types in the tumor tissues compared with normal tissues in the TCGA-Pan-Cancer cohort. C–F The capacity to identify tumor 
sources or normal tissues sources of TEXscore in the (C) TCGA-LUAD cohort, (D) TCGA-LUSC cohort, (E) TCGA-OV cohort, and (F) TCGA-PRAD cohort. 
(TCGA-LUAD: AUC = 0.891; TCGA-LUSC: AUC = 0.85; TCGA-OV: AUC = 0.798; TCGA-PRAD: AUC = 0.731.) P-values are shown with ****, ***, **, ns 
representing P < 0.0001, P < 0.001, P < 0.01, no significant, respectively
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Carcinoma (TCGA-KIRC)—indicating that TEXscore 
correlated with tumor characteristics (Fig.  2B). Espe-
cially, TEXscore enabled the discrimination of tumor and 
normal tissues with a considerably higher predictive effi-
cacy in TCGA-Lung Adenocarcinoma (TCGA-LUAD), 
TCGA-Lung Squamous Cell Carcinoma (TCGA-LUSC), 
TCGA-Ovarian Cancer (TCGA-OV), and TCGA-Pros-
tate Cancer (TCGA-PRAD) cohorts (TCGA-LUAD: 
AUC = 0.891, TCGA-LUSC: AUC = 0.85, TCGA-OV: 
AUC = 0.798, TCGA-PRAD: AUC = 0.731; Fig. 2C–F).

Pan‑cancer survey of TEXscore and associations 
with prognosis
Exosomes are considered attractive noninvasive bio-
markers across cancer types, especially for those with 
specific tumor biomarkers detected in various body 
fluids. Here, we showed the pan-cancer TEXscore in 
17 TCGA cancer types, with cancer types ranked by a 
median TEXscore (Fig. 3A). High TEXscores were dis-
played in TCGA-PRAD, TCGA-Breast Cancer (TCGA-
BRCA), TCGA-Esophageal Cancer (TCGA-ESCA), 
TCGA-Head and Neck Cancer (TCGA-HNSC), 
TCGA-Rectal Cancer (TCGA-READ), TCGA-LUSC, 
TCGA-GBM, and TCGA-LUAD, suggesting that these 
tumors were prone to generating more TEX (Fig. 3A). 
As expected, high TEXscore (both as a continuous var-
iable and as a categorical variable) was associated with 
worse clinical outcomes, indicating its great capacity 
for predicting overall survival in most cancer types, 
especially for TCGA-LUSC, TCGA-LUAD, TCGA-
Stomach Cancer (TCGA-STAD), and TCGA-Bladder 
Cancer (TCGA-BLCA) (TCGA-LUAD: P = 0.0125, 
Hazard Ratio = 1.48, 95% CI: 1.09−2.02; TCGA-LUSC: 
P = 7e−04, Hazard Ratio = 1.61, 95% CI: 1.22–2.13; 
TCGA-STAD: P = 0.005, Hazard Ratio = 1.76, 95% 
CI: 1.19−2.61; TCGA-BLCA: P < 0.0001, Hazard 
Ratio = 1.87, 95% CI: 1.39−2.51; Fig.  3B–F; Addi-
tional file  2: Figure S2A–H). Furthermore, similar 
trend for TEXscore was validated in gastric cancer 
(GSE62254) and lung cancer (GSE30219) through 

the Kaplan–Meier survival analysis (Additional 
file  2: Figure S2I, J). Although TCGA-Colon Cancer 
(TCGA-COAD), TCGA-ESCA, TCGA-Liver Can-
cer (TCGA-LIHC), TCGA-KIRC, and TCGA-READ 
revealed inverse survival differences, only the latter 
two types showed statistically significant differences 
(Additional file 3: Figure S3). In the integrated cohort 
of TCGA pan-cancer, TEXscore illustrated the robust 
predictive value for overall survival (TCGA-Pan-Can-
cer: P < 0.0001, Hazard Ratio = 1.27, 95% CI: 1.16–1.38; 
Fig. 3G).

Multi-variate Cox regression also recognized TEX-
score as a prognostic factor in TCGA-LUSC, TCGA-
STAD, and TCGA-BLCA cohort (Additional file  7: 
Table  S3). Given the statistical survival difference 
in TCGA-LUSC, TCGA-LUAD, TCGA-STAD, and 
TCGA-BLCA, these four cancer types were selected 
for consequent analysis.

TEXscore predicts therapeutic response to immune 
checkpoint blocker
Given the remarkable success of ICB therapy, numer-
ous predictive biomarkers have been identified to distin-
guish candidate patients who can benefit from ICB, but 
their predictive capacities are limited for diverse rea-
sons. Herein, we sought to explore the predictive value 
of TEXscore for ICB. TEXscore presented non-inferior 
predictive capacity for ICB in melanoma (GSE91061 
and GSE78220) compared with CD8 + T effector and T 
cell inflamed gene expression profile (GEP), which com-
monly associated with immune activation (Additional 
file  4: Figure S4A–D). Furthermore, predictive capacity 
of TEXscore exceeded that of the CD8 + T effector, and 
T cell-inflamed GEP in anti-PD-1 (nivolumab) immuno-
therapy in renal cell carcinoma (GSE67501) (Additional 
file  4: Figure S4E–F). Since TEXscore exhibited prom-
ising power in predicting prognosis in bladder cancer, 
IMvigor210 dataset of patients with metastatic urothe-
lial cancer undergoing anti-PD-L1 therapy was used 
to analyze the performance of TEXscore in screening 

Fig. 3 Pan-cancer survey of TEXscore and associations with survival in TCGA. A Boxplots show individual values of TEXscore in each cancer type 
ranked by median TEXscore. B The forest plot exhibits the hazard ratios of TEXscore in TCGA-Pan-Cancer. The TEXscore served as an unfavorable 
factor (hazard ratio > 0) for the prognosis of most cancer types in the TCGA datasets. C The Kaplan–Meier survival analysis indicated a poor overall 
survival of high-TEXscore patients (high: blue; low: red) in the TCGA-LUAD dataset (P = 0.0125, Hazard ratio = 1.48, 95% CI = 1.09–2.02). D The 
Kaplan–Meier survival analysis indicated a poor overall survival of high-TEXscore patients (high: blue; low: red) in the TCGA-LUSC dataset (P = 7e-04, 
Hazard ratio = 1.61, 95% CI = 1.22–2.13). E The Kaplan–Meier survival analysis indicated a poor overall survival of high-TEXscore patients (high: blue; 
low: red) in the TCGA-STAD dataset (P = 0.005, Hazard ratio = 1.76, 95% CI = 1.19–2.61). F The Kaplan–Meier survival analysis indicated a poor overall 
survival of high-TEXscore patients (high: blue; low: red) in the TCGA-BLCA dataset (P < 0.0001, Hazard ratio = 1.87, 95% CI = 1.39–2.51). G The Kaplan–
Meier survival analysis indicated a poor overall survival of high-TEXscore patients (high: blue; low: red) in the TCGA-Pan-Cancer dataset (P < 0.0001, 
Hazard ratio = 1.27, 95% CI = 1.16–1.38)

(See figure on next page.)
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patients with potential therapeutic benefit. Despite the 
lack of a satisfying AUC for TEXscore, the Kaplan–
Meier curve demonstrated that a higher TEXscore was 
linked to prolonged survival time in IMvigor210 (TEX-
score: AUC = 0.576; CD8 + T effector: AUC = 0.628; 

GEPs: AUC = 0.515; IMvigor210: P = 0.0026, Hazard 
Ratio = 1.49, 95% CI: 1.15–1.93; Fig.  4A, B). Consist-
ently, TEXscore was elevated in nonresponders (SD/PD) 
to ICB (chi-square test, P = 0.02382; Fig.  4C, D). Nota-
bly, TEXscore increased as the tumor cell (TC) PD-L1 

Fig. 3 (See legend on previous page.)
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level, reflecting PD-L1 expression on the tumor cells, 
elevated instead of immune cell (IC) PD-L1 level, thus 
further verifying that TEXscore was a tumor-specific 
biomarker (Fig.  4E; Additional file  4: Figure S4G). To 
identify more underlying mechanisms contributing to its 
predictive power for ICB, DEGs between high- and low-
TEXscore subgroups in the IMvigor210 cohort were used 
to perform functional enrichment analysis. The Gene 
Ontology enrichment and KEGG enrichment analyses 
unanimously validated that the genes upregulated in the 
high-TEXscore subgroup were enriched in extracellu-
lar matrix (ECM) remodeling-associated pathways, sug-
gesting that the alterations in ECM components could 
be triggered by exosome release and uptake process 
[45] (Fig.  4F, G). Moreover, Gene set enrichment analy-
sis (GSEA) results and KEGG analysis together clarified 
that genes upregulated in the high-TEXscore subset were 
involved in tumor-related signaling pathways, includ-
ing PI3K-Akt signaling pathway, MAPK signaling path-
way, and pathway in cancer (Fig. 4F–H). These pathways 
emphasized the malignant features of tumor that were 
responsible for the unsatisfactory response during the 
ICB treatment.

TEXscore correlates with immunosuppressive 
microenvironment
Cancer cells deliver immune signaling molecules via 
exosomes to modify the tumor microenvironment 
[46]. The abovementioned results indicated that TEX-
score correlated with poor clinical outcomes in patients 
undergoing ICB, which implied an underlying associa-
tion between TEXscore and immunosuppressive micro-
environment. To gain insight into the exact effects that 
exosomes exert in the tumor microenvironment, we first 
conducted CIBERSORT to investigate the immune cell 
infiltration pattern mediated by exosomes. Intriguingly, 
higher TEXscores were accompanied with rising M0 and 

M2 macrophage infiltration in TCGA-LUSC, TCGA-
LUAD, TCGA-STAD, and TCGA-BLCA, albeit with bare 
statistical significance; in contrast, CD8 + T cells level 
negatively correlated with TEXscore, implying that TEX 
contributed to remodeling of the immunosuppressive 
microenvironment (Additional file 5: Figure S5A–D).

Subsequently, we integrated comprehensive immu-
nosuppressive signatures covering macrophages, can-
cer-associated fibroblasts (CAFs), myeloid-derived 
suppressor cells (MDSCs), epithelial–mesenchymal 
transformation (EMT), and regulatory T cells (Tregs) 
to characterize the relationship between TEXscore and 
the tumor microenvironment. The immunosuppres-
sive microenvironment pattern was significantly distinct 
across different tumor types in TCGA datasets (Fig. 5A). 
Namely, TCGA-SKCM, TCGA-Endometrioid Cancer 
(TCGA-UCEC), TCGA-LIHC, and TCGA-GBM showed 
a negative correlation with the immunosuppressive sig-
natures compared with most cancer types, so there might 
be considerable intertumor heterogeneity in terms of 
TEX secretion status. Meanwhile, TEXscore was mark-
edly related to the extensive immunosuppressive signa-
tures in most cancer types as well as to immune therapy 
resistance signatures, such as immune resistance signa-
ture developed by Peng et al. [47], and TMEscoreB [22], 
which had been confirmed to be nonsensitive markers of 
ICB (Fig.  5B–E). Additionally, immunosuppressive cells 
including CAFs, MDSCs, and macrophages positively 
correlated with TEXscore in the IMvigor210 dataset, col-
lectively validating that TEXscore served as a negative 
indicator for ICB (Additional file 6: Figure S6A–D).

TEXscore‑associated miRNAs mediate tumor biological 
mechanisms
Aberrant miRNA activities are common in diverse can-
cer settings. Currently, massive studies focused on the 
function of miRNAs as exosomal cargos. Therefore, we 

(See figure on next page.)
Fig. 4 TEXscore predicts benefit from immune checkpoint blockers therapy. A ROC analyses suggested the TEXscore exerted inferior predictive 
sensitivity to anti-PD-L1 response compared with CD8 + T cells and GEP in IMvigor210 dataset. (AUC = 0.576, 0.628, 0.515, respectively). B The 
Kaplan–Meier survival analysis indicated a poor overall survival of high-TEXscore patients (high: red; low: blue) in the IMvigor210 dataset (P = 0.0026, 
Hazard ratio = 1.49, 95% CI = 1.15–1.93). C Rate of clinical response (complete response [CR]/partial response [PR] and stable disease [SD]/
progressive disease [PD]) to anti–PD-L1 immunotherapy in high or low TEXscore groups in the IMvigor210 dataset (chi-square test, P = 0.02382). D 
Distribution of TEXscore in different clinical responses (CR/PR, SD/PD) in the IMvigor210 dataset (Chi-square test, P = 0.02382). E PD-L1 expression 
(TC level) were associated with TEXscore. P values are indicated. Tumor cells (TC) level was measured to evaluate PD-L1 expression on tumor 
cells. The specimens were scored as IHC TC0, TC1, or TC2 if < 1%, ≥ 1% but < 5%, or ≥ 5% of TC were PD-L1 positive, respectively. F GO enrichment 
analysis of the DEGs between high (blue) and low (red) TEXscore in IMvigor210 dataset. The x-axis indicates the log10 (P value). G KEGG enrichment 
analysis of the DEGs between high (blue) and low (red) TEXscore in the IMvigor210 dataset. The x-axis indicates the log10 (P value). H GSEA analyses 
displayed key pathways enriched in high (up) TEXscore group. Gene sets that are inferred to reflect key underlying biological processes are colored
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sought to investigate the relationship between TEX-
score and miRNAs. A total of 1882 miRNAs in the 
TCGA-Pan-Cancer cohort were included to dissect 
their relationship with TEXscore. The top 10 miRNAs 
with negative correlation are summarized in Additional 

file  7: Table  S2. Digestive system tumors and urinary 
system tumors, such as TCGA-STAD, TCGA-READ, 
TCGA-COAD, TCGA-BLCA, and TCGA-PRAD, 
exhibited wide links with those miRNAs (Fig.  6A). 
Notably, these identified miRNAs mainly functioned 
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as tumor suppressors, and they were downregulated 
in the high-TEXscore group (Fig.  6B). Since miRNAs 
can repress specific genes expression by binding to the 

3′ untranslated regions (3’UTRs) of target mRNAs, we 
sought to obtain the target mRNA lists of the above 
miRNAs. To further dissect the functions exerted by 

Fig. 5 TEXscore correlates with immunosuppressive microenvironment. A A corplot exhibited the correlations between the TEXscore and 
immunosuppressive signature scores in the TCGA-Pan-Cancer cohort. The coefficient was continuous and was represented using colors from blue 
(negative) to red (positive). P-values are shown with ****, ***, **, * representing P < 0.0001, P < 0.001, P < 0.01, P < 0.05, respectively. B–E A high (red) 
TEXscore was associated with an increase in the immunosuppressive signature score compared with that in the low (blue) TEXscore group in (B) 
TCGA-STAD, (C) TCGA-LUSC, (D) TCGA-LUAD, and (E) TCGA-BLCA datasets, respectively
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TEXscore-associated miRNAs in the high-TEXscore 
settings, a total of 2628 target genes of top 10 nega-
tive miRNAs were selected for further GO and KEGG 
enrichment analyses. Intriguingly, GO enrichment 
analysis demonstrated that the target mRNAs were 
enriched in neurogenesis processes, including axono-
genesis, synapse organization, and neuron projection 
(Fig.  6C). Apart from ECM remodeling mechanism, 
KEGG enrichment analysis provided new insight that 
decreased miRNAs in the high-TEXscore group par-
ticipated in various tumorigenesis signaling pathways 
(Ras signaling pathway, PI3K-Akt signaling pathway, 
and MAPK signaling pathway) (Fig. 6D).

TEXscore is related to stable genomic condition
We analyzed the genomic profile of TEXscore and com-
mon genes. TEXscore significantly decreased in STK11 
mutation settings in the TCGA-LUAD cohort (Mann–
Whitney U test, P = 9.8e−06; Fig.  7A), consistent with 
prior research that wild-type LKB1 restoration enhanced 
exosomes release [48]. Similarly, wild-type TP53, which 
played a vital role in exosome biogenesis, was tightly 
associated with TEXscore in the TCGA-STAD and 
TCGA-Cervical Cancer (TCGA-CESC) cohorts (Mann–
Whitney U test, P = 0.0065, P = 0.0035, respectively; 
Fig.  7B, C). Next, we concentrated on the whole TEX-
score genes alteration rate. The genes from TEXscore 
kept a relatively low mutation rate in the TCGA-BLCA 
and TCGA-STAD, while NSCLC possessed a higher 
mutation rate. EGFR mutation is the most frequently 
encountered driver mutation in NSCLC, especially in 
lung adenocarcinoma [49]. Remarkably, high EGFR 
alteration frequency was observed in the high-TEXscore 
group in the TCGA-LUAD, STK11 mutations predomi-
nated in the low-TEXscore group (Fig.  7D–E), which 
collectively indicated that STK11 and EGFR mediated 
converse effects on exosome secretion.

Discussion
Increasing evidence recognizes exosomes as vital regula-
tors in cancer initiation and progression steps; thus, iden-
tifying and tracking TEX may facilitate the discovery of 
exosome-mediated protumorigenic mechanisms in the 

complex communication system in the tumor microenvi-
ronment. Here, a tumor-specific exosome-associated sig-
nature named TEXscore was constructed using the PCA 
algorithm. Comprehensive exploration of massive data 
derived from TCGA-Pan-Cancer cohorts, IMvigor210 
cohort, and six GEO datasets further expanded our 
understanding of TEX-related tumor-intrinsic features 
and how TEXs modify the tumor microenvironment.

Exosomes can be detected in multiple human body flu-
ids, such as blood plasma, urine, saliva, and pleural fluid; 
however, they are usually mixtures of vesicles produced 
by normal tissues and tumor cells. Despite methods for 
TEX isolation, such as size-exclusion chromatography 
and a series of ultracentrifugations [50, 51], it is still dif-
ficult to separate TEXs from larger extracellular vesicles. 
Regarding tumor-specific characteristics, TEXscore was 
elevated in the tumor tissues compared with normal 
tissues; moreover, it increased directly with the ascend-
ing degree of malignancy of tissue. Furthermore, DEGs, 
GSEA, and KEGG analyses illustrated that tumors with 
high TEXscore displayed higher activation of carcinogen-
esis pathways, including PI3K-Akt and MAPK signaling 
pathways—which had previously been reported to induce 
tumor progression, proliferation, and drug resistance [4, 
52, 53]. The prognostic value of TEXscore was validated 
in the different independent cohorts.

The advantage of single-cell analysis derives from its 
high resolution. Here, we introduced single-cell RNA-
seq data and calculated TEXscore of each cancer cell 
from patients with advanced-stage NSCLC. Our results 
revealed complex heterogeneity of TEX secretion level 
among tumor tissues. Intriguingly, TEXscore elevated at 
the progressive disease status compared with the time 
point before treatment, implying that TEXscore may 
function as an indicator of TKI responses in NSCLC. 
As noted by a prior study [20], the tumor microenvi-
ronment exhibited different immune cell infiltration 
patterns across three time points. The TME at PD was 
characterized by the immunosuppressive milieu where 
macrophages and regulatory T cells dominated; this was 
consistent with immune infiltration in the high-TEXscore 

(See figure on next page.)
Fig. 6 TEXscore-associated miRNAs mediate tumor biological mechanisms. A A corplot displayed the correlations between the TEXscore and top 
10 negatively associated miRNAs levels in the TCGA-Pan-Cancer cohort. The coefficient was continuous and was represented using colors from red 
(negative) to blue (positive). P-values are shown with **, * representing P < 0.01, P < 0.05, respectively. B Top 10 negatively associated miRNAs levels 
decreased in the high-TEXscore settings. P-values are shown with **** representing P < 0.0001. C GO enrichment analysis of the target genes of top 
10 negatively associated miRNAs. Key GO terms are shown ranked by counts. D KEGG enrichment analysis of the target genes of top 10 negatively 
associated miRNAs. Key KEGG pathways are shown ranked by counts
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Fig. 6 (See legend on previous page.)



Page 14 of 18Wu et al. J Transl Med          (2021) 19:381 

setting, suggesting that TEXscore changed with the 
evolving TME response to TKI treatment.

TME consists of cancer cells, immune cells (i.e., T cells, 
B cells, macrophages, dendritic cells, and natural killer 
cells), and non-immune host cells such as fibroblasts, 
which permits frequent intercellular interaction between 
tumor and surrounding stromal cells [54–56]. By promot-
ing the immune cells differentiation into immunosup-
pressive subtype, TEX reprogram resident milieu into to 
tumor-favoring microenvironment [57, 58]. For example, 
bladder cancer exosomes-mediated TGF-β triggered the 
activation of normal fibroblasts into CAFs, thereby sup-
porting the tumor progression [59]. Likewise, TEX also 
induced CD8 + T cells suppressor phenotype to impair 
antitumor abilities [6]. Consistent with previous studies, 
our pan-cancer analysis revealed the elevated levels of 
CAFs, M2 macrophages, and MDSCs in the high-TEX-
score subgroup, supporting the tight correlation between 
TEXscore and immune inhibitory factors. Given that 
immunosuppressive molecules can be transferred with 
exosomes, accumulated exosomes might amplify the 
immune suppression condition in a cascading way.

To date, the development of predictive biomarkers 
for ICBs is a rapidly emerging field, but few biomarkers 
were identified from exosomes. Our findings implied that 
TEXscore could serve as a potential biomarker to identify 
patients likely to benefit from ICBs. The Kaplan–Meier 
analysis verified that patients with a higher TEXscore 
exhibited worse overall survival in the IMvigor210 cohort. 
Moreover, TEXscore was not inferior to GEP [29] in pre-
dicting response to anti-PD-L1 therapy in the IMvigor210 
cohort. Moreover, TEXscore achieved encouraging pre-
diction accuracy in melanoma (GSE78220, GSE91061), 
non-small cell lung cancer (GSE91061), and renal cell 
carcinoma (GSE67501), though with bare statistical dif-
ference due to the small sample size. Currently, PD-L1 
expression remains the most widely accepted criterion 
for clinical implementation; we showed that PD-L1 was 
upregulated in the high-TEXscore setting. However, it 
seems controversial that high PD-L1 expression usu-
ally indicates better ICB efficacy, while TEXscore serves 
as a negative indicator for ICB. Tumor PD-L1 expres-
sion originates from both intrinsic and external sources, 

driven by oncogenic activation and induced by IFNγ 
production from T cells [60]. PD-L1 subgroup analy-
sis revealed that no significant object response rate was 
observed when grouped by TC-level in IMvigor210 [61], 
indicating that PD-L1 might increase initially by onco-
genic activation and lead to escape from the antitumor 
immune response. Recently, Azuma et  al. evaluated 
PD-L1 expression level by immunohistochemistry in 
surgically resected NSCLC samples; they confirmed that 
PD-L1 overexpression correlated with activating EGFR 
mutations [62]. The KEYNOTE-001 study showed that in 
patients with PD-L1 overexpression (i.e., tumor propor-
tional score [TPS] > 50%), pembrolizumab was less effec-
tive in EGFR-mutant tumors than in EGFR wild-type 
tumors (median overall survival = 6.5 vs. 15.7  months, 
respectively) [63, 64]. Therefore, PD-L1 elevation in the 
high-TEXscore condition may be driven by oncogene 
alterations such as those in EGFR, which are nonsensitive 
to ICB therapy, also associated with immunosuppressive 
microenvironment.

Notably, our data identified the top 10 miRNAs nega-
tively correlated with TEXscore. Interestingly, these miR-
NAs mainly had tumor suppressor roles. Namely, miR-30 
family accounting for the majority of the miRNAs has 
been shown to inhibit tumorigenesis in NSCLC [65], and 
its overexpression prevents breast cancer bone metas-
tasis [66]. Yet, no studies have reported the function of 
miR-30 family in terms of exosome in cancer; therefore, 
our results might suggest a novel mechanism for miR-
NAs in regulating exosomes formation. miRNAs are 
short, noncoding RNAs that repress target genes expres-
sion via binding the 3′UTRs of mRNAs. Thus, in-depth 
knowledge of the target genes of the miRNAs would 
facilitate the understanding of the relationship between 
these miRNAs and exosomes. Intriguingly, the fact that 
target genes were relatively enriched in GO terms regard-
ing the innervation process (including axonogenesis, 
neuron projection, and synapse organization) further 
proposes that miRNAs might strengthen the correla-
tion between TEXs and innervation to some extent. In 
line with our findings, Marianna Madeo et  al. provided 
both in  vivo and in  vitro evidence that tumor-released 
exosomes potentiated cancer innervation [67], but the 

Fig. 7 TEXscore is related to stable genomic condition. A Wild-type (WT) STK11 was significantly associated with higher TEXscore compared 
with mutation status in the TCGA-LUAD cohort (Mann–Whitney U test, P = 9.8e−06). B WT TP53 was significantly associated with higher TEXscore 
compared with mutation status in the TCGA-STAD cohort (Mann–Whitney U test, P = 0.0065). C WT TP53 was significantly associated with higher 
TEXscore compared with mutation status in the TCGA-CESC cohort (Mann–Whitney U test, P = 0.0035). D, E The oncoPrint showing the mutation 
status of TEXscore genes was constructed by those with low TEXscore on the left and those with high TEXscore on the right in the (D) TCGA-LUSC 
cohort and (E) TCGA-LUAD cohort

(See figure on next page.)
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Fig. 7 (See legend on previous page.)
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reverse mechanism, i.e., whether innervation promoted 
exosomes generation, requires further validation.

Several limitations in the current study should be 
acknowledged. First, TEXscore was established based 
on RNA-seq data from tumor tissues, and it should be 
optimized for applying in liquid biopsy. Furthermore, 
our research found that TEXscore was associated with 
poor prognosis, and TEXscore elevated in tumor sam-
ples compared with normal tissues. In the current study, 
TEXscore signature was established relying on exosome-
associated genes integration, thus experimental studies 
are required to further validate TEXscore genes expres-
sion level in exosomes and confirm the relationship 
between TEXscore and clinical outcomes.

Conclusions
Overall, our study developed a gene-expression signature 
(TEXscore) capturing TEX characteristics. Furthermore, 
TEXscore was remarkably associated with immunosup-
pressive microenvironment, thereby possessing potential 
in assessing prognosis and predicting ICB response.
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Additional file 1: Figure S1. TEXscore is associated with exosome 
features. (A) The top ten signaling pathways enriched of TEXscore genes 
by Gene ontology (GO) analysis were shown. (B) The top ten signaling 
pathways enriched of TEXscore genes by KEGG analysis were shown.

 
Additional file 2: Figure S2. High TEXscore correlated with poor overall 
survival. (A-J) Kaplan‐Meier survival curves suggested that a poor overall 
survival of patients with high TEXscore (high: blue; low: red) in (A) 
TCGA-BRCA dataset (P = 0.105, Hazard ratio = 1.37, 95%CI = 0.94–2), (B) 
TCGA-CESC dataset (P = 2e-04, Hazard ratio = 2.59, 95%CI = 1.58–4.24), (C) 
TCGA-GBM dataset (P = 0.0056, Hazard ratio = 1.31, 95%CI = 1.08–1.58), (D) 
TCGA-HNSC dataset (P = 0.0053, Hazard ratio = 1.51, 95%CI = 1.13–2.02), 
(E) TCGA-OV dataset (P = 0.0292, Hazard ratio = 1.35, 95%CI = 1.03–1.76), 
(F) TCGA-PRAD dataset (P = 0.1602, Hazard ratio = 3.12, 95%CI = 0.64–
15.31), (G) TCGA-SKCM dataset (P < 0.0001, Hazard ratio = 1.88, 
95%CI = 1.43–2.49), (H) TCGA-UCEC dataset (P = 0.0057, Hazard 
ratio = 1.79, 95%CI = 1.19–2.72), (I) GSE62254 dataset (P = 1.08e-06, Hazard 
ratio = 2.17, 95%CI = 1.54–3.03), (J) GSE30219 dataset (P = 0.00858, Hazard 
ratio = 1.45, 95%CI = 1.09–1.96).

Additional file 3: Figure S3. High TEXscore correlated with favorable 
overall survival. (A-E) Kaplan‐Meier survival curves suggested that a better 
overall survival of patients with high TEXscore (high: blue; low: red) in (A) 
TCGA-COAD dataset (P = 0.0512, Hazard ratio = 0.67, 95%CI = 0.45–1), (B) 
TCGA-ESCA dataset (P = 0.0584, Hazard ratio = 0.33, 95%CI = 0.1–1.04), (C) 
TCGA-READ dataset (P = 0.04, Hazard ratio = 0.43, 95%CI = 0.19–0.96), (D) 
TCGA-KIRC dataset (P < 0.0001, Hazard ratio = 0.45, 95%CI = 0.33–0.63), (E) 
TCGA-LIHC dataset (P = 0.0874, Hazard ratio = 0.59, 95%CI = 0.33–1.08).

Additional file 4: Figure S4. Predictive value of TEXscore towards 
immune checkpoint blockers in independent cohorts. (A) ROC curve sug-
gested that TEXscore exerted inferior predictive capacity to ICB response 
in GSE91061 cohort. (TEXscore: AUC = 0.64, CD8+ T cells: AUC = 0.622, 
GEP: AUC = 0.607). (B) Rate of clinical response (non-response (NR) and 
response (R)) to ICB in high or low TEXscore groups in the GSE91061 
cohort. (C) ROC curve suggested that TEXscore exerted inferior predictive 
capacity to ICB response in GSE78220 cohort. (TEXscore: AUC = 0.607, 
CD8 + T cells: AUC = 0.542, GEP: AUC = 0.571). (D) Rate of clinical response 
(NR and R) to ICB in high or low TEXscore groups in the GSE78220 cohort. 
(E) ROC curve suggested that TEXscore exerted inferior predictive capac-
ity to ICB response in GSE67501 cohort. (TEXscore: AUC = 0.75, CD8 + T 
cells: AUC = 0.607, GEP: AUC = 0.464). (F) Rate of clinical response (NR 
and R) to ICB in high or low TEXscore groups in the GSE67501 cohort. (G) 
IC level represented PD-L1 expression on tumour-infiltrating immune 
cells through immunohistochemistry (IHC). IC level was not related to 
the TEXscore. Specimens were scored as IHC IC0, IC1, or IC2 if < 1%, ≥ 1% 
but < 5%, or ≥ 5% of IC were PD-L1 positive, respectively.

Additional file 5: Figure S5. Immune cell infiltration level in high and low 
TEXscore settings validated by CIBERSORT in TCGA. (A‑D) High TEXscore 
was accompanied with alteration of M0 and M2 macrophage infiltration in 
(A) TCGA-BLCA cohort, (B) TCGA-LUAD cohort, (C) TCGA-LUSC cohort, (D) 
TCGA-STAD cohort.

Additional file 6: Figure S6. Tumor microenvironment signatures in 
IMvigor210 dataset. (A) Expression of CAFs associated signatures elevated 
in high (red) TEXscore versus the low (blue) in IMvigor210. (B) Expression 
of MDSC associated signatures elevated in high (red) TEXscore versus the 
low (blue) in IMvigor210. (C) Expression of CD4 + T cell associated signa-
tures elevated in low (blue) TEXscore versus the high (red) in IMvigor210. 
(D) Expression of macrophage associated signatures elevated in high (red) 
TEXscore versus the low (blue) in IMvigor210. P-values are shown with 
****, ***, **, *, ns representing P < 0.0001, P < 0.001, P < 0.01, P < 0.05,  no 
significant, respectively.

Additional file 7: Table S1. Tumor-derived exosomes associated genes. 
Table S2. The top 10 miRNAs inversely correlated with TEXscore. Table S3. 
Multi-variate Cox regression results of TEXscore in TCGA-LUSC, TCGA-STAD, 
and TCGA-BLCA cohort. Table S4. Statistical results of Fig. 5B–E. Table S5. 
Statistical results of Figure S5. Table S6. Statistical results of Figure S6.
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