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Abstract: Magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer
detection. This systematic review investigated the role of quantitative MRI features in classifying
molecular subtypes of breast cancer. We performed a literature search of articles published on the
application of quantitative MRI features in invasive breast cancer molecular subtype classification in
PubMed from 1 January 2002 to 30 September 2021. Of the 1275 studies identified, 106 studies with
a total of 12,989 patients fulfilled the inclusion criteria. Bias was assessed based using the Quality
Assessment of Diagnostic Studies. All studies were case-controlled and research-based. Most studies
assessed quantitative MRI features using dynamic contrast-enhanced (DCE) kinetic features and
apparent diffusion coefficient (ADC) values. We present a summary of the quantitative MRI features
and their correlations with breast cancer subtypes. In DCE studies, conflicting results have been
reported; therefore, we performed a meta-analysis. Significant differences in the time intensity curve
patterns were observed between receptor statuses. In 10 studies, including a total of 1276 lesions, the
pooled difference in proportions of type III curves (wash-out) between oestrogen receptor-positive
and -negative cancers was not significant (95% confidence interval (CI): [−0.10, 0.03]). In nine studies,
including a total of 1070 lesions, the pooled difference in proportions of type 3 curves between
human epidermal growth factor receptor 2-positive and -negative cancers was significant (95% CI:
[0.01, 0.14]). In six studies including a total of 622 lesions, the pooled difference in proportions of
type 3 curves between the high and low Ki-67 groups was significant (95% CI: [0.17, 0.44]). However,
the type 3 curve itself is a nonspecific finding in breast cancer. Many studies have examined the
relationship between mean ADC and breast cancer subtypes; however, the ADC values overlapped
significantly between subtypes. The heterogeneity of ADC using kurtosis or difference, diffusion ten-
sor imaging parameters, and relaxation time was reported recently with promising results; however,
current evidence is limited, and further studies are required to explore these potential applications.

Keywords: magnetic resonance imaging; dynamic contrast enhancement; diffusion weighted image;
breast cancer; subtypes; quantitative values

1. Introduction

Breast cancer is the most frequently diagnosed malignancy and the leading cause of
cancer-related deaths among women [1]. Breast cancer is a heterogeneous disease with a
high degree of diversity in the risks of therapeutic resistance and disease progression [2,3].
Therefore, individualized management is widely accepted [2,3]. However, previous clas-
sifications based on tumour size, grade, and histology cannot completely reflect tumour
characteristics. Gene expression profiling has revealed four major breast cancer subtypes:
luminal-A, luminal-B, human epidermal growth factor receptor 2 (HER2)-enriched, and
basal-like [3]. Each subtype has varied prognoses, progression risks, responses to treatment,
and survival outcomes. Commercial multigene assays are expensive and time-consuming;
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thus, the St. Gallen International Expert Consensus panel has suggested surrogate subtypes
based on semiquantitative immunohistochemical scoring of oestrogen receptor (ER) and
progesterone receptor (PR) status, in situ hybridisation tests for HER2 overexpression, and
proliferation according to the Ki-67 labelling index (Ki-67) [2–4].

Luminal-type (hormone receptor [HR]-, ER- or PR-positive) breast cancer is the most
frequent type and is divided into luminal-A and luminal-B subtypes, which are defined
by low- (Ki-67 < 14) and high- (HER2-positive or Ki-67 ≥14) proliferation subtypes [2,3,5].
Endocrine therapy is the mainstay of systemic therapy. Luminal-A is not responsive to
chemotherapy, while luminal-B may be amenable to chemotherapy as well as endocrine
therapy [2,3].

HR-negative breast cancers include HER2-positive and basal-like subtypes. They tend
to be of higher grades with higher Ki-67 indexes [6–11]. HER2, a transmembrane receptor
tyrosine kinase in the epidermal growth factor receptor family, is amplified or overexpressed
in approximately 20% of breast cancers and is associated with poor prognosis, although
good response to HER2-targeted therapies [4,6].

Basal-like breast cancers on multigene assays are usually triple-negative (TN) breast
cancers on semiquantitative scoring [11]. TN breast cancer is more widely used than basal-
like cancer. It accounts for approximately 15% of all breast tumours. TN breast cancer is
characterised by a lack of ER, PR, or HER2 expression. TN tumours are usually high-grade
invasive ductal carcinomas with a high risk of distant relapse in the first 3–5 years following
diagnosis [11]. Chemotherapy is the standard systemic therapy for TN breast cancers [4,11].

Local therapy for all patients with non-metastatic breast cancer consists of surgical
resection, with consideration of postoperative radiation. The choice of systemic therapy
is determined by the cancer subtype [4]. While the breast cancer subtype is diagnosed
by immunochemical staining of biopsied or resected specimens, receptor expression can
change during treatment [12,13]. In approximately 25% of cases, the HER2 status may
be discordant between the primary tumour and metastases [12,13]. Loss of HER2 status
after neoadjuvant chemotherapy has also been reported [13]. In patients with recurrent
or metastatic lesions, multiple biopsies may be desirable; however, biopsy is an invasive
and costly procedure. Non-invasive assessment of receptor status, especially in recurrent
lesions, may improve personalised treatment.

Breast magnetic resonance imaging (MRI) offers information on not only the cross-
sectional morphology of the lesion but also functional lesion features [14,15]. Researchers
have studied the relationship between quantitative MRI findings and breast cancer sub-
types. This systematic review aimed to evaluate the relationship between quantitative MRI
findings and breast cancer subtypes to determine whether MRI findings can predict breast
cancer subtypes.

2. Materials and Methods
2.1. Protocol Registration

This systematic review was conducted according to the pertinent sections presented
in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement, which was used for the analysis [16]. The protocol was registered in the Interna-
tional Prospective Register of Systematic Reviews (PROSPERO) database with a registration
number of 308,403 (https://www.crd.york.ac.uk/PROSPERO, accessed on 16 March 2022).

2.2. Search Strategy

The PubMed database was screened for studies on the associations between quantita-
tive MRI values and breast cancer. We limited the literature search to articles published
from 1 January 2002 to 30 September 2021. One reviewer performed the data acquisition
using the following search terms: “magnetic resonance imaging”, “breast neoplasms” and
“subtype or phenotype or Ki-67 or receptors, oestrogen or receptors, progesterone or re-
ceptor, and ErbB-2”. The secondary references were manually checked and included in
the study.

https://www.crd.york.ac.uk/PROSPERO
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2.3. Inclusion and Exclusion Criteria

The primary endpoint of the systematic review was the association between molecular
subtypes of breast cancer and quantitative MRI values. Studies (or subsets of studies) were
included if they satisfied all the following criteria: (1) inclusion of patients with invasive
breast cancer confirmed by histopathology, (2) pre-treatment MRI, (3) quantitative analysis
of MRI, (4) MRI correlation with breast cancer subtypes or factors that determine subtype,
(5) human women, and (6) English language. We considered studies reporting visual
evaluations, such as high signal intensity and heterogeneity without quantification, to
be qualitative studies and did not include them. The exclusion criteria were: (1) reviews
without meta-analyses, case reports, or editorials, and (2) radiomics, machine learning, or
artificial intelligence studies. We regarded simple methods, such as histogram analysis,
diffusion tensor imaging (DTI), and pharmacokinetic analysis, as non-radiomics. The
results of this study are summarised in Figure 1. Ethical approval was not required for
this study.
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Figure 1. Flow diagram for literature search.

2.4. Article Selection and Data Extraction

One radiologist screened the selected titles and abstracts to ensure conformity with
the inclusion criteria and documented the rationale for exclusion. Supplementation for
article selection was performed by screening the reference lists. After screening, the full
texts were reviewed. The following data were extracted from the literature: authors, year of
publication, number of patients, number of cases in each subtype, sequences and analytic
methods included in image analysis, and results.

2.5. Quality Assessment

The methodological quality of the acquired studies was checked based on the Quality
Assessment of Diagnostic Studies (QUADAS 2) [17].
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2.6. Data Synthesis

When there were more than five studies with similar methodologies, conflicting
results, and no prior meta-analysis, a meta-analysis was performed using RevMan v5.4
(Cochrane Collaboration, London, UK). The mean difference in the prevalence of imaging
findings was analysed using a random effects model. In the analysis of the apparent
diffusion coefficient (ADC), we suspected that region-of-interest (ROI) placement might be
a cause of heterogeneous results; therefore, we identified the ROI placement methods and
classified them.

3. Results
3.1. Literature Search

A total of 1267 articles were identified in the electronic databases. Following the
removal of 485 duplicates, the titles and abstracts of 782 articles were screened. Of the
782 articles, 596 did not fulfil the inclusion criteria. Nine laboratory studies, 23 qualitative
studies, 16 reviews or case reports, and 40 studies with radiomics were excluded. Eight
studies were identified from the citation search and were also included. Figure 1 shows an
overview of the literature search and study selection process.

3.2. Study Characteristics

The included studies encompassed 104 original studies and two meta-analyses, with
publication years ranging from 2003 to 2021. A total of 12,989 patients, excluding double-
counted patients in prior meta-analyses (n = 3466), met the selection criteria. Quantitative
features were mostly derived from kinetic parameters measured using DCE (n = 45) or
diffusion-weighted imaging (DWI) (n = 68). Five studies assessed relaxation time and four
assessed magnetic resonance spectroscopy (MRS). Of these, 10 studies analysed both DWI
and DCE, one DCE and relaxation time, one DCE and MRS, one DCE, DWI, and relaxation
time, and one DCE, DWI, and MRS.

3.3. Methodological Quality of the Included Studies

Patient selection was generally well-defined within the respective methodology. How-
ever, in 18 studies, more than 10% of cases were excluded for ambiguous reasons such as
poor image quality. In one study, the sum of cases did not match the total number. This
may have contributed to potential bias. All studies reported the methodology of the index
test and were, thus, not considered a significant source of potential bias. Although im-
munohistochemical staining criteria differed among studies, the reference standards in all
studies were histopathology with immunohistochemical staining and were not considered
a significant source of potential bias. The subtype classification method was adapted from
the 2011 St. Gallen Consensus meeting [18]. All patients underwent the reference test with
the appropriate timing when they were included in the analysis.

3.4. Dynamic Contrast-Enhanced-Magnetic Resonance Imaging

Investigations regarding DCE-MRI are summarised in Table 1. DCE-MRI offers in-
formation not only on lesion cross-sectional morphology, but also on functional lesion
features, such as tissue perfusion and enhancement kinetics [14]. In DCE-MRI, highly
vascularised tumours tend to show early and strong contrast enhancement and wash-out
of contrast in the delayed phase. Many methods have been proposed, with the proportion
of time-intensity curve patterns (n = 14) being the most widely used.
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Table 1. Summary of dynamic contrast-enhanced MRI findings according to molecular prognostic
factors and subtypes, arranged in chronological order based on publication data in PubMed.

Author, Year
Number of
Breast Ca

(Subtypes)
Assessment Findings

Szaboet al.,
2003 [19] 61 Time to peak,

TIC, enhancement ratio

Short time to peak associated with HER2-positive status
and ER-negative status.

Type III curves (wash-out) associated with
Ki-67 positivity.

Lee et al.,
2008 [20] 194 TIC, enhancement ratio Washout curve may predict a higher level of Ki-67.

Chen et al.,
2008 [21] 90 TIC No significant association between kinetic parameters

and ER status.

Makkat et al.,
2008 [22] 55 Deconvolution Higher tumour blood flow in PR negative group than in

PR-positive group.

Girardi et al.,
2010 [23] 72 TIC, enhancement ratio Significant correlation between Ki-67 and type III

curves (wash-out).

Chang et al.,
2009 [24] 139 Time to peak, TIC Short time to peak correlated with ER-negative status.

Fernández-
Guinea et al.,

2010 [25]
68 Time to peak, TIC,

enhancement ratio Short time to peak associated with Ki-67.

Li et al., 2010 [26] 31 T2 * dynamic, Ktrans, Kep,
Ve, MTT R2* influenced by blood volume in breast carcinomas.

Li et al., 2010 [27] 37
(16T N, 21 L) Ktrans, Kep, Ve, MTT Lower Ve, shorter MTT and higher Kep in TN than

those in non-TN.

Koo et al.,
2012 [28] 70 Ktrans, Kep, Ve

Higher Ktrans and Kep in ER-negative group than those
in ER-positive group.

Lower Ve in ER-negative group than in
ER-positive group.

Youk et al.,
2012 [29] 271 TIC, enhancement ratio No specific kinetic feature for TN.

Millet et al.,
2014 [30] 273 Initial enhancement, time to

peak, enhancement ratio
No significant association between kinetic parameters

and either HR or HER2.

Yamaguchi et al.,
2015 [31] 192 Percent volume of TIC,

enhancement ratio
No significant association between kinetic parameters

and either HR or HER2.

Kawashima et al.,
2014 [32]

116 (24 LA, 29 LB,
23 HER2, 40 TN) Enhancement ratio, TIC Higher enhancement ratio at 2 min in LB and HER2

than in LA.

Mazurowski
et al., 2014 [33]

48 (28 LA, 8 LB,
4 HER2, 8 TN)

Lesion enhancement rate to
background parenchymal

enhancement rate

Cancers with higher ratios of lesion enhancement rate to
background parenchymal enhancement rate were more

likely to be LB.

Li et al., 2015 [34] 52 Ktrans, Kep, Ve No significant association between kinetic parameters
and Ki-67.

Leong et al.,
2015 [35]

194 (140 L,
18 HER2, 36 TN)

Enhancement ratio,
volumetric analysis of the

kinetic patterns, TIC

Higher enhancement ratio and rapid initial
enhancement in ER-negative, PR-negative, and TN.
Higher rapid washout component in HER2-positive

group than in HER2-negative group.

Blaschke et al.,
2015 [36]

112 (73 L,
11 HER2, 28 TN)

percent volume
of enhancement

Greater percent volume for HER2 subtype in the early
phase compared to L and TN.

Lee et al.,
2016 [37]

52 (39 L, 4 HER2,
9 TN) Ktrans, Kep, Ve, initial AUC Median Ve higher in PR-positive group than in the

PR-negative group.
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Table 1. Cont.

Author, Year
Number of
Breast Ca

(Subtypes)
Assessment Findings

Shin et al.,
2017 [38] 88 (39 LA, 49 LB) Ktrans, Kep, Ve Higher Ktrans in LB than in LA.

Catalano et al.,
2017 [39]

21 (6 LA, 8 LB,
7 HER2) Ktrans, Kep, Ve

Higher Kep in non-L than in L.
Higher Kep in HER2-positive group than in

HER2-negative group.

Caiazzo et al.,
2018 [40] 27

Enhancement ratio, maximum
enhancement, slope of

the enhancement

Positive correlation between Ki-67 and both maximum
enhancement and maximum slope of the enhancement.

Kawashima et al.,
2017 [41]

137 (82 LA,
55 LB) Enhancement ratio, SER Higher SER in LB than in LA.

Trimboli et al.,
2018 [42] 25

Time to peak, maximum
enhancement, enhancement

ratio, TIC

Enhancement ratio correlated with
HER2 overexpression.

Wang et al.,
2018 [43]

116 (43 LA, 55 LB,
7 HER2, 11 TN)

TIC, time to peak,
enhancement ratio

HER2 status associated with type III curves (wash-out).
LA less likely to have type III curves (wash-out).

Heacock et al.,
2018 [44]

142 (83 L,
31 HER2, 28 TN) initial enhancement ratio Higher initial enhancement ratio in HER2 subtype and

TN compared to L.

Incoronato et al.,
2018 [45]

49 (13 LA, 29 LB,
4 HER2, 3 TN) Ktrans, Kep

Kepmax could discriminate between LA and
LB subtypes.

Ktransmax could discriminate between LA and
non-L subtypes.

Macchini et al.,
2018 [46]

95 (24 LA, 54 LB,
5 HER2, 12 TN)

TIC, enhancement ratio,
maximum enhancement,
AUC, maximum slope,

wash-out rate, time to peak

Subtypes related to maximum enhancement, peak time,
and maximum slope.

ER correlated with maximum and relative enhancement,
wash-in rate, and AUC.

Tao et al.,
2018 [47]

85 (67 L,
18 others) TIC Distribution of curve types differed significantly for ER

and Ki-67 but not PR or HER2 expression.

Nagasaka et al.,
2019 [48]

101 (82 L,
19 others) Ktrans, Kep, Ve Lower Ve in the high Ki-67 group.

Gigli et al.,
2019 [49]

75 (30 TN,
45 others)

Peak enhancement, time to
peak, SER, enhancement ratio Lower enhancement ratio and higher SER in TN.

Montemezzi
et al., 2018 [50]

453 (66 LA,
292 LB, 39 HER2,

56 TN)
TIC Smaller proportion of type III curves (wash-out) in LA.

Xie et al.,
2019 [51]

134 (26 LA, 68 LB,
18 HER2, 22 TN)

Maximum slope,
washout slope Lower maximum slope in TN than in non-TN.

Song et al.,
2019 [52]

85 (50 L,
25 HER2, 10 TN)

Peak enhancement, percent
volume of enhancement, total

enhancing lesion volume

Higher peak enhancement and total enhancing lesion
volume in the high-Ki-67 group than those in the

low-Ki-67 group.

Yuan et al.,
2019 [53]

196 (148 L,
30 HER2, 18 TN) TIC, early enhancement rate TIC type positively correlated with positive expression

of HER2.

Dilorenzo et al.,
2019 [54]

82 (6 LA, 56 LB,
4 HER2) BPE

Among patients with mild BPE, luminal B tumours
were more common.

Among patients with marked BPE, TN cancers were
more common.

Li et al, 2019 [55] 164 BPE BPE was positively associated with positive ER status.

Sun et al.,
2020 [56]

145 (28 LA, 56 LB,
37 HER2, 24TN) Ktrans, Kep, Ve, IAUGC60 Higher 5th percentile of the Ktrans, IAUC60, and Ve in

the high Ki-67 group.
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Table 1. Cont.

Author, Year
Number of
Breast Ca

(Subtypes)
Assessment Findings

Matsuda et al.,
2020 [57] 50 (50 L) T1, T2 Higher SD of T1 and T2 after contrast injection in the

high Ki-67 group.

Shin et al.,
2020 [58]

238 (198 L,
14 HER2, 26 TN) TTE, maximum slope, SER

Shorter TTE in HER2-positive group than in the
HER2-negative group.

Shorter TTE in the high Ki-67 group than in the low
Ki-67 group.

Onishi et al.,
2020 [59]

125 (107 L,
5 HER2, 12 TN) TTE, maximum slope Shorter TTE in TN or HER2 subtype compared to L.

Yamaguchi et al.,
2021 [60]

97 (69 LA, 14 LB,
5 HER2, 9 TN) Maximum slope Maximum slope correlated with Ki-67.

Du et al.,
2021 [61]

200 (41 LA, 98 LB,
25 HER2, 36 TN) Ktrans, Kep, Ve Higher Ktrans and Kep in HER2 subtype.

Pelissier et al.,
2021 [62]

150 (30 LA,
30 LB, 30 HER2,
30 TN, 30 ILC)

Maximum slope Lower maximum slope in LA.

You et al.,
2021 [63]

142 (12 LA,
113 LB, 17 TN) BPE Lower BPE in TN.

Abbreviations: AUC, area under the curve; BPE, background parenchymal enhancement; ca, carcinoma; en-
hancement ratio = (signal intensity after contrast injection − baseline signal intensity)/baseline signal intensity;
ER, oestrogen receptor; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IAUGC60,
initial area under the gadolinium curve after the first 60 s; Kep, outflow rate constant; Ktrans, inflow transfer
constant; L, luminal type; LA, luminal-A type; LB, luminal-B type; maximum slope = [(maximum signal − baseline
signal) × 100%]/[baseline signal × (peak time − contrast arrival time)]; MTT, mean transit time; PR, progesterone
receptor; R2 *, 1/T2 *; SD, standard deviation; SER, signal enhancement ratio = (maximum signal − baseline sig-
nal)/(signal at last cycle − baseline signal); T2*, T2* relaxation time; TIC, time intensity curve; TN, triple-negative
breast cancer; TTE, time-to-enhancement; Ve, leakage space; washout slope = [(signal at last cycle − maximum
signal) × 100%]/[maximum signal × (last cycle time − peak time)].

Twelve studies evaluated time-intensity curve patterns and ER status; however, two
studies did not show the exact values and were excluded from this meta-analysis [50,53]. In
the meta-analysis of these 10 studies, including a total of 1276 lesions [19–21,23–25,30,43,46,47],
the pooled difference in proportions of type III curves (wash-out) between ER-positive
cancer and ER-negative cancers for all included tumours was −0.04, (95% confidence
interval [CI] = [−0.10, 0.03]), heterogeneity τ2 = 0.00, I2 = 39%, test for overall effect Z = 1.13
(p = 0.26) (Figure 2a).

Ten studies evaluated time-intensity curve patterns and HER2 status; however, one study
did not mention the exact values and was excluded from this meta-analysis [53]. In the meta-
analysis of these nine studies, including a total of 1070 lesions [19,20,23–25,30,43,46,47], the
pooled difference in proportions of type III curves (wash-out) between and HER2-positive
and HER2-negative cancers for all included tumours was 0.08, (95% CI = [0.01, 0.14]),
heterogeneity τ2 = 0.00, I2 = 0%, test for overall effect Z = 2.40 (p = 0.02) (Figure 2b).

Seven studies evaluated time-intensity curve patterns and Ki-67 status; however, one
study did not mention the exact values and was excluded from this meta-analysis [20]. In
the meta-analysis of these six studies including a total of 622 lesions [21–26], the pooled
difference in proportions of type III curves (wash-out) between the high- and low-Ki-67
groups for all included tumours was 0.30, (95% CI = [0.17, 0.44]), heterogeneity τ2 = 0.02,
I2 = 68%, test for overall effect Z = 4.42 (p < 0.01) (Figure 2c).

Seventeen studies evaluated the enhancement ratio, and conflicting results were re-
ported. However, highly variable analyses among the studies prevented us from conducting
a meta-analysis [19,20,23,25,29–32,35,40–44,46,49,64].
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A pharmacokinetic analysis was performed in 11 studies. Ktrans is a transfer constant
that measures the rate of transport of contrast medium from the plasma to the extravas-
cular extracellular space (EES), and provides a measure of vascular permeability and
blood flow. Ve is the tumour volume occupied by the EES and Kep describes the outflow
rate of the contrast medium from the EES back to the plasma. Higher Kep and lower
Ve values in DCE-MRI were observed in the TN subtype [27,28]. Two studies analysed
the relationship between TN cancers and pharmacokinetic parameters. Both reported
significantly higher Kep and lower Ve values in TN cancers than in other subtypes [27,28].
However, the relationships between other pharmacokinetic parameters and prognostic
factors were conflicting. Six studies evaluated whether HER2-positive cancers had a higher
Ktrans than that in HER2-negative cancers. Two of them demonstrated significant dif-
ferences [38,61], and the other four demonstrated no significant differences [28,37,39,48].
Similarly, eight studies evaluated the relationship between Ki-67 status and Ktrans. Three
studies demonstrated significant differences, and five studies demonstrated no signifi-
cant differences [28,34,37–39,48,56,61]. These studies used the same model proposed by
Tofts [65]; however, there were highly variable values between the studies, which hindered
the meta-analysis. For example, the mean Ktrans of invasive breast cancers with a low
Ki-67 (Ki-67 < 14 %) in one study was 2.56/min [61], whereas that in another study was
0.18/min [38].

Two studies reported that the HER2 subtype exhibited higher rapid early contrast
uptake [36,42]. Many other indices have been proposed; however, these have been evalu-
ated in only a few studies or conflicting results were reported. For example, two studies
reported that a short peak time was associated with positive HER2 status [19,24]; however,
three did not find any significant differences [20,30,32].
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Three studies evaluated background parenchymal enhancement (BPE) and breast
cancer subtypes [54,55,63]. One study reported that moderate and marked BPE prevailed
over minimal and mild BPE in patients with TN cancers [54], whereas another reported
that BPE was significantly lower in patients with TN cancer compared with patients with
non-TN cancers [63].

3.5. Diffusion-Weighted MR Images
3.5.1. Apparent Diffusion Coefficient

The DWI results are summarised in Table 2. Sixty-three of the 68 DWI studies analysed
the ADC. There have been two meta-analyses regarding the subtypes and Ki-67 [66,67].
Meyers et al. reported that the ADC values of breast cancer subtypes overlapped signifi-
cantly, with no clear proposed threshold to distinguish between them [66]. In this meta-
analysis, the I2 ranged from 95% to 98%, suggesting considerable heterogeneity. Surov et al.
reported that correlation coefficient of ADC and Ki-67 was −0.22 (95% CI = [−0.50; 0.06])
with an I2 of 91%, suggesting considerable heterogeneity [67].

Table 2. Summary of diffusion-weighted imaging findings according to molecular prognostic factors
and subtypes.

Author, Year
Number of
Breast Ca

(Subtypes)
Assessment ROI Findings

Surov et al.,
2017 [67] 476 ADC Meta-analysis. No significant correlation between Ki-67 and ADC.

Meyer et al.,
2021 [66] 2990 ADC Meta-analysis. No significant difference in ADC values

between subtypes.

Kim et al.,
2009 [68] 62 ADC Solid No significant correlation between ADC and ER, HER2, or Ki-67.

Jeh et al.,
2011 [69] 107 ADC Solid Lower ADC for ER-positive than for ER-negative status.

Higher ADC for HER2-positive than for HER2-negative status.

Choi et al.,
2012 [70] 290 ADC Solid Lower ADC for ER-positive than for ER-negative status.

Lower ADC in the high-Ki-67 group than in the low-Ki-67 group.

Martincich et al.,
2012 [71] 192 ADC Solid Lower ADC for ER-positive than for ER-negative status.

Highest ADC for the HER2-positive subtype.

Youk et al.,
2012 [29]

271 (119 L,
94 HER2, 58 TN) ADC Whole Higher ADC for TN than that of others.

Choi et al.,
2012 [70] 118 (89 L) ADC Solid

Lower ADC for ER-positive status than for ER-negative status.
Higher ADC for HER2-positive status than for

HER2-negative status.

Richard et al.,
2013 [72]

118 (33 LA, 28 LB,
11 HER2, 37 TN) ADC Whole Lower ADC for ER-positive status than for ER-negative status.

Park et al.,
2015 [73] 110 ADC Solid Higher ADC in HER2-positive IDC than in HER2-negative IDC.

Baba et al.,
2014 [74] 70 ADC Solid Higher ADC for HER2-positive than HER2-negative status.

Lower ADC for ER-positive than ER-negative status.

Miyake et al.,
2014 [75] 89 ADC Unknown Relative strong correlation for minimal ADCs between the

two readers.

De Felice et al.,
2014 [76] 75 ADC Solid No significant difference in ADC between the high-Ki-67 and

low-Ki-67 groups.

Mori et al.,
2015 [77] 86 (42 LA, 44 LB) ADC Solid Lower ADC in LB than in LA.

Liu et al.,
2015 [78]

176 (67 LA, 45 LB,
29 HER2, 35 TN) ADC Whole Higher ADCs for TN than those for LA or LB.

Higher ADCs for HER2-positive subtype than those of LA or LB.
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Table 2. Cont.

Author, Year
Number of
Breast Ca

(Subtypes)
Assessment ROI Findings

Li et al.,
2015 [34] 52 ADC Solid Lower ADC in the high-Ki-67 group than in the low-Ki-67 group.

Molinari et al.,
2015 [79]

115 (60 LA, 33 LB,
8 HER2, 14 TN) ADC Solid Lower ADC in the high-Ki-67 group than in the low-Ki-67 group.

Lower ADC in LB than in LA.

Kim et al.,
2015 [80]

173 (43 LA, 84 LB,
9 HER2, 37 TN) ADC Whole

Lower ADC in the high-Ki-67 group than in the low-Ki-67 group.
Higher ADC for HER2-positive status than for

HER2-negative status.

Sun et al.,
2015 [81] 52 ADC Solid Kurtosis positively correlated with Ki-67.

Diffusivity negatively correlated with Ki-67.

Arponen et al.,
2015 [82] 104 (11 TN) ADC Solid ADC correlated with PR, but not with HER2, ER, or Ki-67.

Cho et al.,
2016 [83]

50 (29 L, 6 HER2,
15 TN)

ADC,
IVIM Whole Lower ADCmax and Dtmax for ER-positive status.

f and Df, showed correlation with hormonal factor expression.

Karan et al.,
2016 [84] 70 ADC Solid No significant difference in ADC according to ER or

HER2 statuses.

Kato et al.,
2016 [85]

98 (46 LA, 34 LB,
5 HER2, 13 TN) ADC Solid Higher ADCmin in LA than in LB.

Kong et al.,
2018 [86]

46 (27 L, 9 HER2,
10 TN) ADC Solid No significant difference in ADC according to ER or HER2 status.

No significant difference in ADC between TN and non-TN.

Lee et al.,
2016 [37]

52 (39 L, 4 HER2,
9 TN) ADC Solid

Higher ADC for HER2 positive status than for
HER2-negative statuses.

Lower ADC for ER-positive than for ER-negative statuses.

Guvenc et al.,
2016 [87]

48 (38 L,
10 others) ADC Solid Lower ADC for ER-positive than ER-negative status.

No significant difference according to HER2 status.

Kitajima et al.,
2016 [88]

216 (153 L,
19 HER2, 44 TN) ADC Solid

Lower ADC for high Ki-67 than for low Ki-67.
No significant difference in ADC according to ER or

HER2 statuses.

Kim et al.,
2016 [89]

275 (58 LA,
138 LB, 27 HER2,

52 TN)

ADC,
IVIM Solid No significant difference in ADC for ER, HER2, or Ki-67 statuses.

Lower Dt in the high-Ki-67 group than in the low-Ki-67 group.

Shin et al.,
2017 [38] 88 (39 LA, 49 LB) ADC Solid Lower ADC in LB than in LA

Shin et al.,
2016 [90] 140 (60 LA, 80 LB) ADC Solid Lower ADC in LB than in LA

Durando et al.,
2016 [91]

107 (64 L,
20 HER2, 23 TN) ADC Solid No significant difference between subtypes.

Onaygil et al.,
2017 [92] 42 (33 L, 9 others) DTI Solid Higher RD and lower FA, RA, and GA for ER-negative status.

Ki-67 significantly negatively correlated with FA, RA, and GA.

Lee et al.,
2017 [93]

82 (62 L, 9 HER2,
11 TN)

ADC,
IVIM Unknown

Lower ADC for ER-positive than in ER-negative statuses.
Dt 50th, 75th, and 90th percentile metrics reduced for ER-positive

status.
Dt 75th percentile value is a significant differentiator of tumour

subtype and Ki-67.

Yamaguchi
et al., 2017 [94]

53 (28 LA, 10 LB,
4 HER2, 11 TN) ADC Unknown FA correlated with Ki-67 and ER.

Suo et al.,
2017 [95]

49 (27 L,
22 others)

ADC,
IVIM Solid α and Df correlated with Ki-67.

ADC, Dt, f, DDC, and MD correlated with ER.
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Table 2. Cont.

Author, Year
Number of
Breast Ca

(Subtypes)
Assessment ROI Findings

Catalano et al.,
2017 [39]

21 (6 LA, 8 LB,
7 HER2) ADC Unknown Lower ADC in the low-Ki-67 group than in the

high-Ki-67 group.

Choi et al.,
2017 [96] 221 (149 L, 72 TN) ADC Whole Higher ADC kurtosis in TN than ER-positive status.

Kawashima
et al., 2017 [41] 137 (82 LA, 55 LB) ADC,

IVIM Solid Lower Dt and ADC in LB than in LA.

Amornsiripanitch
et al., 2018 [97]

107 (38 LA, 44 LB,
25 unknown)

ADC,
CNR Whole DWI CNR associated with Ki-67.

Zhuang et al.,
2018 [98] 80 ADC Whole

Lower ADCmin in the high-Ki-67 group than in the
low-Ki-67 group.

Higher ADCmax, and ∆ADC in the high-Ki-67 group than
those in the low-Ki-67 group.

Fan et al.,
2018 [99]

126 (26 LA, 67 LB,
22 HER2, 11 TN) ADC Whole Lower ADC in LB than in HER2 subtype.

Aydin et al.,
2018 [100]

61 (50 L,
11 others) ADC Solid

Weak negative correlation between ADC and Ki-67.
No significant difference in ADC according to HER2, ER, or

Ki-67 statuses.

Shen et al.,
2018 [101]

71 (14 LA, 28 LB,
14 HER2, 15 TN) ADC Solid Lower ADC in the high-Ki-67 group than in the

low-Ki-67 group

Incoronato et al.,
2018 [45]

49 (13 LA, 29 LB,
4 HER2, 3 TN) ADC Unknown Lower ADC in LB than in non-L.

Ozal et al.,
2018 [102] 63 (45L, 18 others) DTI Solid Correlation between ER status and MD, HER2 status and RA,

Ki-67 and RA, Ki-67 and VR.

Surov et al.,
2018 [103] 870 ADC Unknown ADC weakly correlated with Ki-67.

Mao et al.,
2018 [104] 77 IVIM Solid Ki-67 negatively correlated with Dt.

Zhao et al.,
2018 [8]

119 (22 LA, 50 LB,
22 HER2, 25 TN)

ADC,
IVIM Unknown

Higher Df in non-L than in L.
TN showed increased Df and f and decreased Dt compared to

other subtypes.

Suo et al.,
2019 [105]

134 (27 LA, 70 LB,
17 HER2, 20 TN) ADC Solid ADC decreased for ER-positive, PR-positive, and

HER2-negative statuses.

Kim et al.,
2018 [106]

187 (112 LA,
75 LB) ADC Solid ADC not significantly correlated with Ki-67.

Song et al.,
2019 [52]

85 (50 L, 25 HER2,
10 TN)

ADC,
IVIM Solid No significant associations between IVIM parameters and

prognostic factors.

Huang et al.,
2019 [107] 46 ADC Solid ADC kurtosis positively associated with Ki-67.

Mean diffusivity and ADC negatively correlated with Ki-67.

Montemezzi
et al., 2018 [50]

453 (66 LA,
292 LB, 39 HER2,

56 TN)
ADC Solid

Higher ADC in LA than other subtypes.
Higher SD of ADC and ADC95th percentile in TN than those

in LA.

Xie et al.,
2019 [51]

134 (26 LA, 68 LB,
18 HER2, 22 TN) ADC Whole Higher ADC in TN than other subtypes.

Yuan et al.,
2019 [53]

196 (148 L,
30 HER2, 18 TN) ADC Solid No significant difference in ADC for HER2, ER, or Ki-67 status.

Horvat et al.,
2019 [108]

107 (71 LA, 13 LB,
4 HER2, 19 TN) ADC Solid/Whole Lower ADC in L than in non-L (Whole).

No significant difference in ADC for HER2 or ER status (Solid).
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Table 2. Cont.

Author, Year
Number of
Breast Ca

(Subtypes)
Assessment ROI Findings

You et al.,
2019 [109]

148 (14 LA, 75 LB,
40 HER2, 19 TN) ADC, IVIM Unknown

HER2-positive cancers showed higher 5th percentile mean
diffusivity in the HR-positive group compared to the

HR-negative group.

Surov et al.,
2019 [110]

661 (177 LA,
279 LB, 66 HER2,

111 TN)
ADC Solid

Significant overlap of ADC values among different
tumour subtypes.

Lower ADC in LB compared to LA and HER2 subtypes.

Choi et al.,
2019 [111]

101 (50 L,
18 HER2, 20 TN) ADC Whole ∆ADC related to Ki-67, molecular subtype.

Horvat et al.,
2019 [112]

91 (49 LA, 8 LB,
11 HER2, 23 TN) ADC Solid

Higher ADC in the HER2-positive group than in the
HER2-negative group.

No significant differences according to ER and PR statuses.

Okuma et al.,
2020 [113] 88 (82 L, 6 others) ADC Solid Peritumour/tumour ADC ratio significantly associated with

Ki-67 but not ER or HER2 status.

Du et al.,
2021 [61]

200 (41 LA, 98 LB,
25 HER2, 36 TN) ADC Solid

Lower ADC in L than in non-L.
Lower ADC in the high-Ki-67 group than in the

low-Ki-67 group.

Morawitz et al.,
2021 [114]

56 (9 LA, 36 LB,
1 HER2, 6 TN) ADC Unknown Higher ADC in the HER2-positive than in the

HER2-negative groups.

Uslu et al.,
2021 [115]

51 (27 L, 13 HER2,
11 TN) IVIM Unknown Df and f higher in HER2 subtype than in TN.

Df higher in HER2 subtype than in L.

Iima et al.,
2021 [116]

86 (60 L,
26 others)

ADC with
diffusion time Solid

Lower ADCshort and ADC in ER-positive group compared
to ER-negative group.

Larger rate of ADC change with diffusion time in the
high-Ki-67 group than in the low-Ki-67 group.

Tuan Linh et al.,
2021 [117]

49 (15 LA, 18 LB,
16 HER2) ADC Solid

Lower ADC in the high-Ki-67 group than in the
low-Ki-67 group.

No correlations between ADC and ER, PR, and HER2.

Guo et al.,
2021 [118]

105 (79 L,
26 others) ADC Whole 10th percentile ADC predicted HER2 and ER statuses.

Skewness predicted the Ki-67 status.

You et al.,
2021 [63]

142 (12 LA, 39 LB.
74 HER2, 17 TN) ADC Unknown

ADC 95th percentile and ADC kurtosis differed significantly
among 4 subtypes, especially between TN and

other subtypes.
Meta-analysis is shown first; other studies are arranged in chronological order in which they were published on
PubMed. Abbreviations: ADC, apparent diffusion coefficient; ADCmax, maximum ADC; ADCmin, minimum
ADC; ADCshort, ADC values at short diffusion times; ∆ADC, ADCmax – ADCmin; ca, carcinoma; CNR,
contrast-to-noise ratio; DDC, distributed diffusion coefficient; Df, fast components of diffusion or pseudodiffusion
coefficient; Dt, true diffusion or slow low component of diffusion; Dtmax, maximum Dt; DTI, diffusion tensor
imaging; ER, oestrogen receptor; f, fraction of fast diffusion; FA, fractional anisotropy; GA, geodesic anisotropy;
HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IDC, invasive ductal carcinoma; IVIM,
intravoxel incoherent motion; L, luminal type; LA, luminal-A type; LB, luminal-B type; MD, mean diffusivity; PR,
progesterone receptor; RA, relative anisotropy; RD, radial diffusivity; ROI, region of interest; Solid; only solid
portion and exclude necrosis, haemorrhage; TN, triple-negative; Unknown, no description of ROI placement
method; VR, volume ratio; Whole, whole lesion; α, anomalous exponent term characterizing the deviation from
the monoexponential behaviour (0 ≤ α ≤ 1).

These meta-analyses may be affected by heterogeneous methodologies, one of which
might be the ROI placement. We classified ROI placement as follows: evaluation of the
whole lesion (whole), solid portion of the lesion excluding cystic/necrotic/haemorrhagic
portion (solid), and ROI placement methodology not found (unknown). One study evaluated
the effect of ROI placement using both solid and whole methods [108]. Seventeen studies
with a known ROI placement methodology evaluated whether TN breast cancers had higher
ADC values than other cancer subtypes. In the solid portion measurement group, one of the
12 studies demonstrated significant differences [50,52,53,71,72,74,79,82,86,91,105,110], while
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four of the five studies reported significant differences in the whole lesion measurement
group [29,51,78,80,96]. Twelve studies with known ROI placement methodology evaluated
whether luminal-B-type breast cancers had lower ADC values than luminal-A-type cancers.
In the solid portion measurement group, six out of nine studies demonstrated significant
differences [41,50,77,79,85,97,105,110,117], while one out of three studies demonstrated
significant differences in the whole lesion measurement group [78,80,98].

Although ADC values differed among breast cancer subtypes, the ADC values of
different tumour subtypes overlapped significantly [66,110]. Instead of using the mean
ADC, more sophisticated methods, such as differences in ADC and diffusion kurtosis, have
been evaluated with promising results. Two studies evaluated the relationship between
ADC differences (maximum ADC to minimum ADC) and subtypes. They reported that the
ADC difference was significantly associated with Ki-67 expression [98,111].

In probability theory and statistics, the alteration of a normative distribution pattern
is known as kurtosis. Diffusion kurtosis imaging attempts to account for this variation to
provide a more accurate model of diffusion as a reflective marker for tissue heterogene-
ity [119]. Similarly, skewness, which reflects the asymmetry of ADC value distribution, has
been introduced in cancer imaging [105,118]. Three studies reported a positive association
between diffusion kurtosis and the Ki-67 index [81,107,109]. Similarly, one study reported
significantly higher ADC kurtosis in the TN group than in the ER-positive group [96].

3.5.2. Intravoxel Incoherent Motion

Intravoxel incoherent motion (IVIM) MRI is a non-invasive imaging method that
allows the evaluation of both tissue diffusivity and tissue microcapillary perfusion. When
DWI is performed with multiple b-values (usually 0–1000 smm−2), the signal intensity at
low b-values (e.g., 0–100 smm−2) reflects both water diffusion in tissues and microcircu-
lation within the capillaries. In contrast, at higher b-values, the signal intensity is more
reflective of tissue diffusivity. Thus, the classical IVIM model uses a biexponential analysis
that provides the tissue diffusion coefficient (Dt), perfusion-related diffusion (Df), and
perfusion fraction (f).

Ten studies evaluated the association between IVIM and breast cancer subtypes. Seven
studies evaluated whether high-Ki-67 tumours had lower Dt than low-Ki-67 tumours.
Three of them demonstrated significant differences [41,89,104], whereas the other four
demonstrated no significant differences [8,64,93,115]. Five studies evaluated whether HER2-
positive cancers had higher Df than HER2-negative cancers. Two demonstrated significant
differences [89,115], and the other three demonstrated no significant differences [8,52,93].
Owing to the large heterogeneity of the results, we did not perform a meta-analysis.

3.5.3. Diffusion Tensor Imaging

DTI is a conceptual framework that provides quantitative information on the direc-
tional diffusivity of water molecules [120]. The measurement of DTI indices, such as
ADC, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), geodesic
anisotropy (GA), relative anisotropy (RA), and volume ratio (VR), provides quantification.
The mammary ductal network may result in diffusion anisotropy in healthy fibroglandu-
lar tissue [121]; however, cancer cells may destroy these structures, leading to reduced
anisotropy. Two studies reported that FA was significantly higher in the low-Ki-67 group
and ER-positive cancers [92,94].

3.6. Relaxation Time

The relaxation time findings are summarised in Table 3. One study reported sig-
nificantly longer T2* relaxation times in higher histologic grades, which correlated with
high signal intensity on T2-weighted imaging [122]. Using synthetic MRI, three studies
assessed T1 and T2 relaxation times [57,61,123]. Two reported significantly higher T2 in the
HR-negative group compared to the HR-positive group [61,123].
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Table 3. Summary of relaxation time findings according to molecular prognostic factors and subtypes.

Author, Year
Number of
Breast Ca

(Subtypes)
Assessment Findings

Liu et al.,
2013 [124] 104 R2 * R2 * weakly correlated with Ki-67 expression

Seo et al.,
2017 [122] 92 T2 * No significant difference in T2 * according to ER or HER2 status.

Matsuda et al.,
2020 [57] 50 T1, T2, PD No significant difference in T1, T2, or PD between the high-Ki-67

group and the-low Ki-67 groups.

Du et al.,
2021 [61]

200 (41 LA, 98 LB,
25 HER2, 36 TN) T1, T2, PD

Higher T1 and T2 in the HR-negative group than in the
HR-positive group.

Higher T1 and T2 in the high-Ki-67 group than in the
low-Ki-67 group.

Li et al.,
2021 [123] 122 T1, T2, PD

Higher T2 in the ER-negative group than in ER-positive group.
Higher PD in HER2 -positive IDC than in HER2 -negative IDC.

The T2 values of the TN, LB, and LA types are arranged in
descending order.

Abbreviations: ca, carcinoma; ER, oestrogen receptor; HR, hormone receptor; HER2, human epidermal growth
factor receptor 2; IDC, invasive ductal carcinom LA, luminal-A type; LB, luminal-B type; PD, proton density;
R2 *, 1/T2 *; T2 *, T2 * relaxation time; TN, triple-negative.

3.7. Magnetic Resonance Spectroscopy

The MRS findings are summarised in Table 4. MRS provides biochemical information
regarding the investigated tissues. Increased choline (Cho) is a marker of elevated cellular
proliferation rates in breast cancer [125]. Four studies evaluated the relationship between
MRS and subtypes [21,50,126,127]. Conflicting results were reported with TN breast cancers
and MRS [50,126].

Table 4. T Summary of magnetic resonance spectroscopy finding according to molecular prognostic
factors and subtypes.

Author, Year
Number of
Breast Ca

(Subtypes)
Assessment Findings

Chen et al., 2008 [30] 90 Cho concentration No significant difference of Cho for ER status.

Sah et al., 2012 [126] 151 Cho concentration Lower Cho in TN than in non-TN.

Montemezzi et al.,
2018 [19]

453 (66 LA, 292 LB,
39 HER2, 56 TN) Cho SNR Higher Cho SNR in TN tumours.

Galati et al.,
2019 [127]

102 (30 LA, 58 LB,
14 TN) Cho SNR Significant association between the presence of Cho peak

and higher Ki-67.
Abbreviations: ca, carcinoma Cho, choline; ER, oestrogen receptor; HER2, human epidermal growth factor
receptor 2; LA, luminal-A type; LB, luminal-B type; SNR, signal-to-noise ratio; TN, triple-negative.

4. Discussion
4.1. DCE-MRI

DCE-MRI is a standard diagnostic technique with high sensitivity and variable speci-
ficity for characterising breast lesions. Angiogenesis is one of the main factors affecting
gadolinium uptake and contributes to internal enhancement patterns and kinetic curves.
In DCE-MRI, highly vascularised tumours tend to show early and strong contrast enhance-
ment and wash-out of contrast in the delayed phase. This study demonstrated that a
significantly higher proportion of type 3 curves was observed in the high-Ki-67 group
compared with the low-Ki-67 group. This finding was consistent with the correlation
between vascular endothelial growth factor (VEGF) and histological grade reported in a
pathological study [128].
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In the meta-analysis, a significantly higher proportion of type 3 curves was observed
in HER2-positive cancers than in HER2-negative cancers. This finding was consistent
with the correlation between the overexpression of VEGF and HER2-positive tumours in
pathological studies [6–8,22,36].

Although a negative correlation between ER status and cytosolic levels of VEGF has
been reported in pathological studies [128] and the proportion of type 3 curves tended to be
lower in ER-positive cancers, no significant difference was observed in this meta-analysis.

However, the wash-out curve itself is a common finding in breast cancer, and the
prediction of subtypes based on this finding is difficult. Many indices have been proposed;
however, other indices are immature and conflicting results have been reported.

4.2. DWI

DWI detects the Brownian motion of water protons, thereby reflecting the biological
characteristics of the tissue. ADC is used to quantify Brownian motion. By imaging
alterations in the microscopic motion of water molecules, DWI can yield novel quantitative
and qualitative information reflecting cellular changes that can provide unique insights
into tumour cellularity, with a potential role in the characterisation of breast masses [129].
The decreased ADC values in malignant tumours may be due to their increased cellularity,
larger nuclei with more abundant macromolecular proteins, and reduced extracellular space.
These tissue factors hinder proton diffusion and, consequently, lower ADC values [66,130].

Higher Ki-67 expression usually implies rapid proliferation, and consequently, in-
creased cellularity, which restricts the diffusion of water molecules in the extracellular
and extravascular spaces and is presumed to cause reduced ADC values [131]. A weak
inverse correlation between tumour cellularity and ADC values has been described, and
further associations between proliferation rate and tumour aggressiveness have been pro-
posed [67,77,129].

However, several studies have suggested that highly aggressive invasive breast cancers
rapidly outgrow their vascular supply in certain areas, leading to prolonged hypoxia within
the tumour and subsequent necrosis [106,132–134]. Areas of intratumoral necrotic tissue
and loss of cell membrane integrity are associated with increased intratumoral water
diffusion. This may explain the higher ADC value in the TN subtype when the entire lesion
ADC is measured [78,135,136].

Neoangiogenesis is the basis of cancer cell proliferation. Pathological studies have
demonstrated an association between cytosolic levels of VEGF, an angiogenesis stimulator,
and histologic grade, as well as a negative correlation with ER status [6–8,22,36,128]. Owing
to the perfusion effect, high vascularity can result in increased ADC values. Furthermore,
tumour vessels tend to have larger diameters than normal microvessels as well as discon-
tinuities in the vascular walls, leading to increased total extracellular fluid volumes. The
higher tumour blood flow and increased extracellular fluid appear to compensate for the
low ADC of high cellularity [37,73,78,80,101,112,137,138].

These paradoxical phenomena may cause confusion in subtype predictions based on
the mean ADC. Meyer et al. reported in a meta-analysis that ADC values cannot discrimi-
nate immunohistochemical molecular subtypes [66]. To overcome the increased ADC by
necrosis, methods of assessing heterogeneity using ADC kurtosis and ADC differences,
which may reflect high cellular areas and necrosis, have been proposed, with promising
results [63,96,98,107,111,118].

4.3. Relaxation Time and T2-Weighted Images

In general, HR-positive tumours, which often have low proliferation, may demonstrate
stromal reactions and fibrosis [139]. Intratumoral iso/low T2-signal intensity is a feature of
breast cancer, which may reflect this fibrosis (Figure 3) [14,140–143]. In contrast, TN breast
cancers have high signal intensity on T2-weighted images owing to necrosis [29,144–146].
In addition, a higher tumour grade often correlates with higher neoangiogenesis [128].
Angiogenesis increases total extracellular fluid volume and oedema. Thus, high-grade
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tumours may demonstrate high signal intensity on T2-weighted images. High signal
intensity on T2-weighted images is also correlated with tumour grade [106,147–149].
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Figure 3. (a) Dynamic contrast-enhanced MR image in a 50-year-old woman with luminal-A type
breast cancer shows a spiculated mass. (b) Short-tau inversion recovery image shows a low signal
mass. (c) T1 map (window width/centre = 1400/2400 ms) shows an intermediate signal mass; Mean
T1 of the mass is 986 ms. (d) T2 map (window width/centre = 160/240 ms) shows a low signal mass;
mean T2 of the mass is 62 ms.

These studies involved subjective qualitative analyses, which makes it difficult to
apply their results in clinical practice to assess the HR status or subgroup categorisation
of ER-positive breast cancers. Seo et al. reported significantly longer T2 * relaxation times
in higher histological grades [122]. Recent advances in quantitative MRI have enabled
the acquisition of both MR images and quantitative MR data in a single scan [57,150].
Synthetic MRI enables us to appreciate subtle quantitative MRI value differences that are
invisible to radiologists’ eyes alone. Synthetic MRI can also measure T1 values and proton
density, which cannot be assessed using T2-weighted images [150–152]. Contrary to the
ADC, T2 values of highly proliferative tumours were higher than those of low proliferative
tumours [61,123]. Because these value assessments do not experience a paradoxical phe-
nomenon, they may be more useful than ADC. In a radiomics study, Liang et al. reported
that a T2-weighted image-based radiomics classifier was a significant predictor of Ki-67
status in patients with breast cancer, whereas contrast-enhanced image-based classifiers
failed to discriminate in the validation dataset [153].

4.4. Luminal-Type Breast Cancer

This section explains the MRI characteristics of the breast cancer subtypes. In general,
HR-positive tumours demonstrated stromal reaction, fibrosis, and perilesional spicula-
tions [139]. An irregular mass margin and a non-round shape were significantly associated
with luminal-A-type cancers [32,140,154]. Intratumoral iso/low T2-signal intensity may
reflect fibrosis and is also associated with the luminal subtypes [14,140–142]. Multifocal
or multicentric carcinoma is less common in the luminal-A type than in the luminal-B or
HER2 types [140,155]. Compared to the other subtypes, luminal-A-type breast cancers
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tended to show less strong enhancement [35]. Kato et al. reported that rim enhancement
occurred significantly less frequently in luminal-A-type breast cancers [85] (Figure 3).

Tumour roundness is positively correlated with Ki-67 index [154]. Luminal-B sub-
types are more often associated with multicentric/multifocal disease than are luminal-A
cancers [32,156,157] and are also enriched for fibroblast growth factor receptor gene amplifi-
cation, which has been implicated in angiogenesis [33,158]. This may lead to a higher ratio
of lesion enhancement on DCE-MRI and heterogeneous internal enhancement [32,33,41,159]
(Figure 4).

Life 2022, 12, x FOR PEER REVIEW 16 of 25 
 

 

Figure 3. (a) Dynamic contrast-enhanced MR image in a 50-year-old woman with luminal-A type 

breast cancer shows a spiculated mass. (b) Short-tau inversion recovery image shows a low signal 

mass. (c) T1 map (window width/centre = 1400/2400 ms) shows an intermediate signal mass; Mean 

T1 of the mass is 986 ms. (d) T2 map (window width/centre = 160/240 ms) shows a low signal mass; 

mean T2 of the mass is 62 ms. 

These studies involved subjective qualitative analyses, which makes it difficult to ap-

ply their results in clinical practice to assess the HR status or subgroup categorisation of 

ER-positive breast cancers. Seo et al. reported significantly longer T2 * relaxation times in 

higher histological grades [122]. Recent advances in quantitative MRI have enabled the 

acquisition of both MR images and quantitative MR data in a single scan [57,150]. Syn-

thetic MRI enables us to appreciate subtle quantitative MRI value differences that are in-

visible to radiologists’ eyes alone. Synthetic MRI can also measure T1 values and proton 

density, which cannot be assessed using T2-weighted images [150–152]. Contrary to the 

ADC, T2 values of highly proliferative tumours were higher than those of low prolifera-

tive tumours [61,123]. Because these value assessments do not experience a paradoxical 

phenomenon, they may be more useful than ADC. In a radiomics study, Liang et al. re-

ported that a T2-weighted image-based radiomics classifier was a significant predictor of 

Ki-67 status in patients with breast cancer, whereas contrast-enhanced image-based clas-

sifiers failed to discriminate in the validation dataset [153].  

4.4. Luminal-Type Breast Cancer 

This section explains the MRI characteristics of the breast cancer subtypes. In general, 

HR-positive tumours demonstrated stromal reaction, fibrosis, and perilesional spicula-

tions [139]. An irregular mass margin and a non-round shape were significantly associ-

ated with luminal-A-type cancers [32,140,154]. Intratumoral iso/low T2-signal intensity 

may reflect fibrosis and is also associated with the luminal subtypes [14,140–142]. Multi-

focal or multicentric carcinoma is less common in the luminal-A type than in the luminal-

B or HER2 types [140,155]. Compared to the other subtypes, luminal-A-type breast can-

cers tended to show less strong enhancement [35]. Kato et al. reported that rim enhance-

ment occurred significantly less frequently in luminal-A-type breast cancers [85] (Figure 

3). 

Tumour roundness is positively correlated with Ki-67 index [154]. Luminal-B sub-

types are more often associated with multicentric/multifocal disease than are luminal-A 

cancers [32,156,157] and are also enriched for fibroblast growth factor receptor gene am-

plification, which has been implicated in angiogenesis [33,158]. This may lead to a higher 

ratio of lesion enhancement on DCE-MRI and heterogeneous internal enhancement 

[32,33,41,159] (Figure 4).  

 

Figure 4. (a) Dynamic contrast-enhanced MR image in a 32-year-old woman with luminal-
B type breast cancer shows a heterogeneously enhanced oval mass with rim enhancement.
(b) Short-tau inversion recovery image shows an intermediate signal mass. (c) T1 map (window
width/centre = 1400/2400 ms) shows an intermediate signal mass; Mean T1 of the mass is 1174 ms
on T1 map. (d) T2 map (window width/centre = 160/240 ms) shows an intermediate signal mass;
mean T2 of the mass is 97 ms on T2 map.

4.5. HER2-Enriched Subtype

HER2, a transmembrane receptor tyrosine kinase in the epidermal growth factor
receptor family, is amplified or overexpressed in approximately 20% of breast cancers and is
associated with poor prognosis, although it responds well to HER2-targeted therapies [4,6].
The cellular-level effects of HER2 overexpression include increased cell proliferation, cell
survival, mobility, and invasiveness, as well as neo-angiogenesis by increasing VEGF
production [6–8]. On gross pathology, a smooth mass margin was associated with the
HER2-enriched subtype [32] (Figure 5). The presence of microcalcifications, especially
branching or fine linear morphology, was associated with mammography [6]. HER2-
enriched subtypes are more often associated with multicentric/multifocal disease than
luminal-A cancers [32,156,157,160]. Increased angiogenesis in the HER2-enriched subtype
leads to rapid early contrast uptake and a higher proportion of wash-out curves on DCE-
MRI (Figure 2) [36].
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Figure 5. (a) Dynamic contrast-enhanced MR image in a 56-year-old woman with human epidermal
growth factor receptor 2-enriched breast cancer shows a round mass. (b) Short-tau inversion recovery
image shows a high signal mass. (c) T1 map (window width/centre = 1400/2400 ms) shows a high
signal mass; mean T1 of the mass is 1256 ms, (d) T2 map (window width/centre = 160/240 ms) shows
an intermediate signal mass; and mean T2 of the mass is 88 ms.

4.6. TN Breast Cancer

TN breast cancer is highly associated with the presence of a central scar, tumour
necrosis, the presence of spindle cells or squamous metaplasia, high total mitotic count, and
high nuclear-cytoplasmic ratio [9,10,145]. These cancers are also more likely to show round,
oval, or lobulated masses and are more likely to be unifocal compared to ER+/PR+/HER2
tumours [29,145,146,161,162]. MRI often shows areas of intratumoral high T2 signal inten-
sity, lobulated shape, rim enhancement, and smooth margins (Figure 6) [29,144–146,162].
The rim enhancement can be explained by high angiogenesis in the periphery of the tu-
mour. Very high intratumoral signal intensity on T2-weighted MR images and an elongated
T2 relaxation time may be associated with intratumoral necrosis [29,123,145]. When the
necrotic areas are included, the ADCs of TN cancers are higher than of luminal-type breast
cancers [29,51,78,96].
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Figure 6. (a) Dynamic contrast-enhanced MR image in a 73-year-old woman with triple-negative breast
cancer shows an irregular mass with rim enhancement. (b) Short-tau inversion recovery image shows
focal areas of very high signal within the mass. (c) T1 map (window width/centre = 1400/2400 ms) shows
focal very high signals; Mean T1 of the mass is 1533 ms. (d) T2 map (window width/centre = 160/240 ms)
shows focal very high signals within the mass; and mean T2 of the mass is 113 ms.

4.7. Limitations

A major limitation of this review was the exclusion of complex radiomics studies. Forty
studies reporting radiomics in breast MRI and breast cancer subtypes were excluded from
this analysis (Figure 1). Several radiomics methods have been proposed, with promising
results. Further studies, including systemic reviews in this field, are warranted. This
meta-analysis only included studies published in English, resulting in selection bias, as the
data might not be representative of the non-native English-speaking regions of the world.

5. Conclusions

Conventional quantitative MRI features, such as the time-intensity curve and mean
ADC, might play a limited role in the prediction of breast cancer subtypes. While ROI
placement is essential for quantitative analysis, it currently depends on the radiologists.
Aggressive breast cancers, especially the TN subtype, contain necrosis, which causes
heterogeneity within the tumour. Sophisticated evaluation of tumour heterogeneity, further
research of recently introduced techniques, and standardised interpretation of MR images
may improve non-invasive breast cancer subtype classification and personalised treatment
for patients with breast cancer.

Author Contributions: Conceptualization, T.K. and T.T.; methodology, T.K.; validation, T.K., T.T.
and J.H.; formal analysis, T.K.; investigation, T.K.; resources, T.K. and T.T.; data curation, T.K.;
writing—original draft preparation, T.K.; writing—review and editing, T.T.; visualization, T.K. and
T.T.; supervision, J.H.; funding acquisition, T.T. All authors have read and agreed to the published
version of the manuscript.
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