PLOS COMPUTATIONAL BIOLOGY

Check for
updates

G OPEN ACCESS

Citation: Gilson M, Dahmen D, Moreno-Bote R,
Insabato A, Helias M (2020) The covariance
perceptron: A new paradigm for classification and
processing of time series in recurrent neuronal
networks. PLoS Comput Biol 16(10): 1008127.
https://doi.org/10.1371/journal.pcbhi.1008127

Editor: Blake A. Richards, University of Toronto at
Scarborough, CANADA

Received: February 17, 2020
Accepted: July 7, 2020
Published: October 12, 2020

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles. The
editorial history of this article is available here:
https://doi.org/10.1371/journal.pcbi.1008127

Copyright: © 2020 Gilson et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: Example Python
scripts with implementations of the learning rules
to reproduce some key figures are available at
https:/github.com/MatthieuGilson/covariance_

RESEARCH ARTICLE

The covariance perceptron: A new paradigm
for classification and processing of time series
in recurrent neuronal networks

Matthieu Gilson®'2**, David Dahmen3®, Rubén Moreno-Bote' 3, Andrea Insabato®*,

Moritz Helias®»?°

1 Center for Brain and Cognition, Department of Information and Telecommunication technologies,
Universitat Pompeu Fabra, Barcelona, Spain, 2 Institute of Neuroscience and Medicine (INM-6) and Institute
for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jilich
Research Centre, Julich, Germany, 3 ICREA, Barcelona, Spain, 4 IDIBAPS (Institut d’Investigacions
Biomediques August Pii Sunyer), Barcelona, Spain, 5 Department of Physics, Faculty 1, RWTH Aachen
University, Aachen, Germany

® These authors contributed equally to this work.
* matthieu.gilson@upf.edu

Abstract

Learning in neuronal networks has developed in many directions, in particular to reproduce
cognitive tasks like image recognition and speech processing. Implementations have been
inspired by stereotypical neuronal responses like tuning curves in the visual system, where,
for example, ON/OFF cells fire or not depending on the contrast in their receptive fields.
Classical models of neuronal networks therefore map a set of input signals to a set of activity
levels in the output of the network. Each category of inputs is thereby predominantly charac-
terized by its mean. In the case of time series, fluctuations around this mean constitute
noise in this view. For this paradigm, the high variability exhibited by the cortical activity may
thus imply limitations or constraints, which have been discussed for many years. For exam-
ple, the need for averaging neuronal activity over long periods or large groups of cells to
assess a robust mean and to diminish the effect of noise correlations. To reconcile robust
computations with variable neuronal activity, we here propose a conceptual change of per-
spective by employing variability of activity as the basis for stimulus-related information to
be learned by neurons, rather than merely being the noise that corrupts the mean signal. In
this new paradigm both afferent and recurrent weights in a network are tuned to shape the
input-output mapping for covariances, the second-order statistics of the fluctuating activity.
When including time lags, covariance patterns define a natural metric for time series that
capture their propagating nature. We develop the theory for classification of time series
based on their spatio-temporal covariances, which reflect dynamical properties. We demon-
strate that recurrent connectivity is able to transform information contained in the temporal
structure of the signal into spatial covariances. Finally, we use the MNIST database to show
how the covariance perceptron can capture specific second-order statistical patterns gener-
ated by moving digits.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020

1/38

https://orcid.org/0000-0002-6726-7207
https://orcid.org/0000-0002-7664-916X
https://orcid.org/0000-0003-1395-2724
https://orcid.org/0000-0002-0404-8656
https://doi.org/10.1371/journal.pcbi.1008127
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008127&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008127&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008127&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008127&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008127&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008127&domain=pdf&date_stamp=2020-10-29
https://doi.org/10.1371/journal.pcbi.1008127
https://doi.org/10.1371/journal.pcbi.1008127
http://creativecommons.org/licenses/by/4.0/
https://github.com/MatthieuGilson/covariance_perceptron

PLOS COMPUTATIONAL BIOLOGY

The covariance perceptron

perceptron. The original MNIST dataset underlying
the results presented in the study are available
from http://yann.lecun.com/exdb/mnist/. The
remainder of the results rely on synthetic data and
algorithms that can be implemented following the
information in the manuscript.

Funding: This work was partially supported by the
European Union’s Horizon 2020 research and
innovation programme under grant agreement No.
785907 (Human Brain Project SGA2). MG
acknowledges funding from the Marie
Sklodowska-Curie Action (Grant H2020-MSCA-
656547) of the European Commission. DD and MH
acknowledge the Helmholtz young investigator’s
group (VH-NG-1028), the Exploratory Research
Space (ERS) seed fund neurolC002 (EXS-SF-
neurolC002) of the RWTH university and the JARA
Center for Doctoral studies within the graduate
School for Simulation and Data Science (SSD). Al
acknowledges funding from the Marie
Sklodowska-Curie Action (Grant H2020-MSCA-
841684) of the European Commission. RMB
acknowledges funding from the Howard Hughes
Medical Institute (HHMI, ref 55008742), MINECO
(Spain; BFU2017-85936-P) and ICREA Academia
(2016). The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

Author summary

The dynamics in cortex is characterized by highly fluctuating activity: Even under the very
same experimental conditions the activity typically does not reproduce on the level of
individual spikes. Given this variability, how then does the brain realize its quasi-deter-
ministic function? One obvious solution is to compute averages over many cells, assuming
that the mean activity, or rate, is actually the decisive signal. Variability across trials of an
experiment is thus considered noise. We here explore the opposite view: Can fluctuations
be used to actually represent information? And if yes, is there a benefit over a representa-
tion using the mean rate? We find that a fluctuation-based scheme is not only powerful in
distinguishing signals into several classes, but also that networks can efficiently be trained
in the new paradigm. Moreover, we argue why such a scheme of representation is more
consistent with known forms of synaptic plasticity than rate-based network dynamics.

Introduction

A fundamental cognitive task that is commonly performed by humans and animals is the clas-
sification of time-dependent signals. For example, in the perception of auditory signals, the lis-
tener needs to distinguish the meaning of different sounds: The neuronal system receives a
series of pressure values, the stimulus, and needs to assign a category, for example whether the
sound indicates the presence of a predator or a prey. Neuronal information processing systems
are set apart from traditional paradigms of information processing by their ability to be
trained, rather than being algorithmically programmed. The same architecture, a network
composed of neurons connected by synapses, can be adapted to perform different classifica-
tion tasks. The physical implementation of learning predominantly consists of adapting the
connection strengths between neurons —a mechanism termed synaptic plasticity. Earlier
models of plasticity like the Hebbian rule [1, 2] focused on the notion of firing together, which
was interpreted in terms of firing rate. In parallel to such unsupervised learning rules, super-
vised learning and reinforcement learning have also been explored to explain how biological
systems can be trained to perform cognitive tasks, such as pattern recognition [3-5].

The representation of the stimulus identity by the mean firing activity alone is, however,
challenged by two observations in biological neuronal networks. First, synaptic plasticity, the
biophysical implementation of learning, has been shown to depend on the relative temporal
spiking activity of the presynaptic and the postsynaptic neurons [6, 7], which can be formal-
ized in terms of the covariance of the neuronal activity [8, 9]. Examples of second-order statis-
tics of the spiking activity that induce strong weight specialization not only include the
canonical example of spike patterns with reliable latencies, like spike volleys following visual
stimulation [10], but also a great variety of spiking statistics such as fast stereotypical co-fluctu-
ations even in the case of Poisson-like firing [11]. Nonetheless, the common feature to all
those input structures is the collective spiking behavior. Second, neuronal activity in cortex
shows a considerable amount of variability even if the very same experimental paradigm is
repeated multiple times [12], even though protocols with reliable responses were also observed
[13]. Rate-based representations and learning rules address the issue of noisy inputs by averag-
ing activity over time or across neurons, considering this variability as noise. Previous studies
have proposed that this noise may have a functional role related to probabilistic representa-
tions of the environment in a Bayesian framework [14, 15]. However, the spiking variability
has also been closely linked to behavior [16-18]. Experimental and theoretical evidence thus
points to a relation between the variability of neuronal activity and the representation of the

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020

2/38

https://doi.org/10.1371/journal.pcbi.1008127
https://github.com/MatthieuGilson/covariance_perceptron
http://yann.lecun.com/exdb/mnist/

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

stimulus. This is the basis for the present study, which aims to make a step toward an equiva-
lent of STDP for supervised learning; for simplicity we study the new concept with non-spik-
ing neurons.

These observations raise several questions: How can a neuronal system perform its function
not despite this large amount of variability, but using variability itself? Consequently, how to
train networks that employ representations based on variability such as covariances? Finally,
one may wonder if covariance-based learning is superior to technical solutions that employ a
mean-based representation, providing a reason why it may have evolved in neuronal circuits.
To address these questions, we consider the training of a neuronal system that has to learn
time series with structured variability in their activity.

Supervised learning in (artificial) neuronal networks is often formulated as a gradient
descent for an objective function that measures the mismatch between the desired and the
actual outputs [19]. The most prominent examples of such synaptic update rules are the delta
rule for the “classical” perceptron that is a neuronal network with an input layer and an output
layer [20-22] and error back-propagation for the multilayer perceptron [23]. These led to the
modern forms of deep learning and convolutional networks [24, 25]. Their success was only
unleashed rather recently by the increased computational power of modern computers and
large amounts of available training data, both required for successful training. A key for further
improvement of neuronal information processing lies on evolving the theory, for example by
devising new and efficient paradigms for training.

A central feature of the training design is how the physical stimulus is represented in terms
of neuronal activity. To see this, consider the classical perceptron whose task is to robustly clas-
sify patterns of input activities despite their variability within each category. For the case of
two categories (or classes), it seeks a plane within the vector space of input activities that best
separates the classes and the classification performance depends on the overlap between the
two clouds of sample data points. Applied to time series, this paradigm can be used relying on
the mean activity as the relevant feature of the input signals; the variances of the input signals
that measure departures from the respective means are then akin to noise that might negatively
affect the classification. For time-dependent signals, this scheme has been extended by consid-
ering as representative pattern for each category the mean trajectory over time (instead of the
average activity as before); the variability then corresponds to meaningless fluctuations around
the mean trajectory. This view has led to efficient technical solutions to train neuronal net-
works by recurrent back-propagation or by back-propagation through time [26-29].

We here present a novel paradigm that employs the covariances of cofluctuating activity to
represent stimulus information, at the intersection between neuroscience and machine learn-
ing. We show how the input-output mapping for covariances can be learned in a recurrent
network architecture by efficiently training the connectivity weights by a gradient-descent
learning rule. To do so, we use an objective (or cost) function that captures the time-series var-
iability via its second-order statistics, namely covariances. We derive the equivalent of the
delta rule for this new paradigm and test its classification performance using synthetic data as
well as moving digits in the visual field.

The remainder of the article is organized as follows: Section formalizes the concept behind
our learning paradigm based on the stochastic fluctuations and contrasts it with distinct con-
cepts studied previously like noise correlations. Section considers a network with feed-forward
connectivity that is trained —following each stimulus presentation— to implement a desired
mapping from the input covariance to the output covariance. To this end, we derive a gradi-
ent-descent learning rule that adapts the feed-forward connections and examine the network
training in theory, for infinite observation time, as well as for time series of limited duration.
Section extends the training of Section to a network with both afferent and recurrent

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 3/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

connections. We show how recurrent connections allow us to exploit the temporal structure of
input covariances as an additional dimension for stimulus representation that can be mapped
to output representations. Importantly, we demonstrate the specific role played by the recur-
rent network connectivity when the information to learn is in the temporal dimension of
covariances, but not in its spatial dimension. Last, Section applies the covariance perceptron to
moving digits, to illustrate its ability in capturing dynamic patterns in data closer to real-life
signals.

Time series and covariance patterns

Various types of correlations for time series have been studied in the literature, as illustrated in
Fig 1A. We denote by x}* and x,° two time series, where the superscript ¢ indicates time and
the superscript s the trial index. The situation in the left column of Fig 1A corresponds to a ste-
reotypical trajectory for x;° across trials, which translates to positive correlation for two trials s
and s":

corr, (x*, x) > 0, (1)

and similarly for x;°. Here the subscript ¢ indicates the ensemble over which correlations are
computed. We refer to this as ‘signal correlation’ because the “information” to learn is the ste-
reotypical trajectory that can be evaluated by averaging over trials. Such reliable trajectories
can be learned using back-propagation through time [29]. In contrast, the situation in the mid-
dle columns illustrates correlation within each trial between the two time series, either with
zero lag for the same ¢

corr,(x7*, x5°) > 0, (2)
or for distinct t and ¢’ with a fixed lag 7=1t" — ¢

corr, (x}*, x5°) > 0. (3)

Importantly, the middle plots illustrate that distinct trials may exhibit very different trajec-
tories, even though the within-trial correlations are the same; the latter can thus be the basis of
information conveyed by time series to be learned. This is the paradigm examined in the pres-
ent study, which can be thought as cofluctuations of fast-varying firing rates that strongly
interact with STDP [11]. It conceptually differs from another type of correlation that has been
much studied, referred to as noise correlations [30, 31]. For time series, noise correlations con-
cern the trial-to-trial correlation of the means of the time series, as represented by the horizon-
tal dashed lines in the right plot of Fig 1A, formally given by

corr, ((x1°);, (x3°),) > 0, (4)

where the angular brackets denote the average over time to compute the mean (it will be for-
mally defined later).

In the context corresponding to the examples in the middle columns of Fig 1A, we consider
the classification problem of discriminating time series. Their within-trial correlations, as
defined in Eqs (2) and (3), which are the “information” to learn. It is worth noting that ‘signal
correlations’ in the left column of Fig 1A can also lead to reliable correlation patterns in the
sense of Egs (2) and (3) depending on their average trajectories for pairs of inputs and on the
time window used to calculate the correlations, as in the example that will be studied in Sec-
tion. The general situation corresponds to the middle plot in Fig 1B, where two groups (in red

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 4/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

A “Signal” correlations Within-trial correlations Noise correlations
zero-lag lagged
1 A 1 A
5 07 0-
S
=
_1 - _1 -
T
0 10 20 0
time
1 A 1 A
o
& 07 0 -
S
E
-1 4 -1 4
T 1
0 10 20 0
time
B Time series
X

X

Fig 1. Cofluctuations of time series as a basis for stimulus discrimination. A: Three types of correlations for two
time series (in light and dark brown). Signal correlations (left column) measure the similarity of individual trajectories
across trials up to some additional noise. Importantly, the light and dark time series may be uncorrelated within each
trial. Conversely, within-trial correlations (middle columns) correspond to the situation where trials may be distinct,
but the two time series within a trial are correlated (positively here, the left configuration with zero lag and the right
configuration with a lag of 3 for visual legibility). This is the subject of the present study. Last, noise correlations (right
column) concern the means of the time series, as represented by the dashed lines, that are either both positive or both
negative within each trial. B: For the discrimination of multivariate time series, as in panel A, we here consider two
categories (red and blue). The time series x| and x}, displayed in the (x;, x,)-plane in the left plot, show one example
for each category. From each category example, one can calculate the mean (here a vector of dimension 2),
corresponding to a single dot in the right plot. Learning for classification aims to find a separatrix between the red and
the blue point clouds. The presence of noise correlations between the means affects the overlap between the dot groups
(e.g. positive for the shown example), hence the classification performance. Alternatively, one can compute from the
same time series their (within-trial) variances and covariances, yielding points in a three-dimensional space here
(middle plot, where v, and v, are the respective variances, and c;, the cross-covariance). Here classification is based on
the within-trial covariances as features to learn, which conceptually differs from the mean-based learning and noise
correlations in the right panel.

https://doi.org/10.1371/journal.pcbi.1008127.9001

and blue, an example time series of each group being represented in the left plot) have distinct

(co)variances that can be used as features for classification. In comparison, the right plot in Fig
1B depicts the equivalent situation where the means of the time series are used for discrimina-

tion. In this case noise correlations measure the spread of each dot cloud.

To implement the classification of time series based on their within-trial correlations, we
examine the problem of the propagation of this signal in a neuronal network, as illustrated in
Fig 2A. To deal with representations of stimulus identity embedded in temporal (co)fluctua-
tions within trials, we move from the first-order statistics, the mean activity of each neuron
within a trial, to the second-order statistics, the covariance between the fluctuating activities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 5/38

https://doi.org/10.1371/journal.pcbi.1008127.g001
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

A Input time series Network Output time series

m=10 1
B Classification based on (co)variance mapping
input patterns output pattern

Y 10 4 ’ B
D 2 -
o =
= [1 "
; , ol :
@ 1 10 2 e
.© 1045 .l. 5
©
é — N

14
1 10 1 2

N

Classification based on mean mapping

> 10 10

=

>

S 1
& 1 1

v

€

"‘5 10 10

(%]

5 —) M
9] 1
v

= 1

Fig 2. From mean-based to covariance-based time-series classification. A: Network with # = 2 output nodes
generates a time series (in dark brown on the right) from the noisy time series of m = 10 input nodes (in light brown
on the left). The afferent (feed-forward) connections B (green links and green arrow) and, when existing, recurrent
connections A (purple dashed links and arrow) determine the input-output mapping. We observe the time series over
a window of duration d. B: Each set of time series in panel A corresponds to a covariance pattern, namely an m x m
matrix for the inputs on the left-hand side and an # x n matrix for the output on the right-hand side, where darker
pixels indicate higher values. See Eq (7) for the formal definition of the averaging over the observation window of
length d in panel A. As an example, we define two categories (or classes) that are represented by larger variance of
either of the two nodes, node 1 for the red category and node 2 for the blue category. The classification scheme is
implemented by tuning the connectivity weights A and B such that several input covariance patterns are mapped to the
single output covariance pattern of the corresponding category. C: As a comparison, considering the mean activities
instead of the within-trial covariances, corresponds to the mapping between input and output vectors in Eq (6), which
can be formalized in the context of the classical perceptron (linear or non-linear). There, the categories for the input
pattern (m-dimensional vectors on the left-hand side) are defined by the output pattern (n-dimensional vector on the
right-hand side), the red category with neuron 1 highly active and the blue category with neuron 2 highly active.

https://doi.org/10.1371/journal.pcbi.1008127.9002

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 6/38

https://doi.org/10.1371/journal.pcbi.1008127.g002
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

for pairs of neurons. To fix ideas, we consider a discrete-time network dynamics as defined by
a multivariate autoregressive (MAR) process [32]. This linearization of neuron dynamics is to
explore principles. The activity of the m inputs x| _, _,, is described by a stochastic process in
discrete time t € Z. The inputs drive the activity y;_,_, of the n output neurons via connec-
tions B € R"*", which form the afferent connectivity. The outputs also depend on their own
immediate past activity (i.e. with a unit time shift) through the connections A € R™", the

recurrent connectivity, as

V=D Ay D B (5)

1<j<n 1<k<m

illustrated in Fig 2A. We define the mean activities
Xk = <x1[c>t

Y, o= 0, ©

where the angular brackets (---), = d ' 3¢ -- - indicate the average over the period of dura-
tion d in Fig 2A. Likewise, the input and output covariances, with T € Z being the time lag, are
defined as

Py (")), = () (),

Q = 0 - B, v

Here we implicitly assume stationarity of the statistics over the observation window.

As a first step, we consider the case of vanishing means for covariance-based classification,
so the second terms on the right-hand sides disappear in Eq (7); considerations about a mixed
scenario based on both means and covariances will be discussed at the end of the article. In
this setting, the goal of learning is to shape the mapping from the input covariance P to the
output covariance Q in the network in Fig 2A in order to perform the task, here classification.
The most general case would consider the mapping of the entire probability distributions. For
the ensemble of Gaussian processes used here and the linear dynamics in Eq (5), the first two
moments, however, uniquely determine the entire statistics. In the classification example, cor-
related fluctuations across neurons —as defined by covariances in Eq (7)— convey informa-
tion that can be used to train the network weights and then classify input time series into
categories. The desired outcome is illustrated in Fig 2B, where the ‘red category’ of input
covariance matrices P is mapped by the network to an output, where neuron 1 has larger vari-
ance than neuron 2. Conversely, for the ‘blue category’ of input covariances matrices, the vari-
ance of neuron 2 exceeds that of neuron 1. This example thus maps a bipartite set of patterns
to either of the two stereotypical output patterns, each representing one class. In doing so, we
focus on the mapping between input and output, on which a threshold is then applied to make
the decision. This corresponds to the conditional probabilities relating input and output
covariance patterns given by

Pr (P|Q; > 0) o Pr(Q; > 0[P°) Pr(P") . (8)

We thus need to derive a learning scheme that tunes the connectivity weights, A and B, to
shape the output covariance when a given input covariance pattern is presented, since the
input-output mapping governs Pr (Q} > 0|P*). We term this paradigm the ‘covariance per-
ceptron’, since it can be seen as an extension of the classical perceptron in Fig 2C. In the
covariance perceptron, the objective or cost function is changed to manipulate the covariance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 7/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

of time series rather than the mean. Note that there is no non-linearity considered in the neu-
ronal response here unlike what is typically used in the classical perceptron [21], which will be
discussed later.

Importantly, our approach feeds the entire time series into the network, which outputs time
series according to Eq (5). This embodies a mapping from the input covariances to the output
covariances, which are defined in Eq (7) and evaluated in practice using an observation win-
dow. The discrimination of the time series based on their covariances thus results from the
network dynamics itself. The parameters to tune are the n* + nm synaptic weights A and B.
This is fundamentally different from a preprocessing of the data in the context of machine
learning, where a set of features like covariances is extracted first and then fed to an (artificial)
neuronal network that operates in this feature space (see Fig 1B). In the latter approach, each
feature (m(m + 1)/2 for a zero-lag covariance matrix) would come with an individual weight to
be tuned, then multiplied by the number 7 of outputs. For classification where the input
dimensionality m is typically much larger that the number n of categories, the use of resources
(weights) is much lighter in our scheme. Another difference worth noting is that the measures
on the input and output activities is of the same type in our scheme, so “information” is repre-
sented and processed in a consistent manner by the network. This opens the way to successive
processing stages as in multilayer perceptrons.

Last, we stress again that our viewpoint on signal variability radically differs from that in
Fig 2C, where the information is conveyed by the mean signal and fluctuations are noise. Con-
ceptually, taking the second statistical order as the basis of information is an intermediate
description between the detailed signal waveform and the (oversimple) mean signal. The
switch from means to covariances implies that richer representations can be realized with the
same number of nodes, thereby implementing a kernel trick [19] applied to time series using
the network dynamics themselves.

Learning input-output covariance mappings in feedforward
networks

This section presents the concepts underlying the covariance perceptron with afferent connec-
tions B only (meaning absent recurrent connectivity A = 0). For the classical perceptron in Fig
2C, the observed output mean vector Y for the classification of the input mean vector X
defined in Eq (6) is given by the input-output mapping

X—Y =BX. (9)

For time series, the derivation of this consistency equation —with A = 01in Eq (5)—
assumes stationary statistics for the input signals. Under the similar assumption of second-
order stationarity, the novel proposed scheme in Fig 2B relies on the mapping between the
input and output covariance matrices, P’ and Q° in Eq (7), namely

PU — Ql) — BPUBT , (10)

where T denotes the matrix transpose, and the superscript 0 denotes the zero time lag. Details
can be found with the derivation of the consistency equation Eq (23) in Network dynamics
(Methods). The common property of Egs (9) and (10) is that both mappings are linear in the
respective inputs (X and P°). However, the second is bilinear in the weight B while the first

is simply linear. Note also that this section ignores temporal correlations (i.e. we consider that
P' = P'T = 0); time-lagged covariances, in fact, do not play any role in Eq (23) when A = 0.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 8/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

Theory for tuning afferent connectivity based on spatial covariance
structure

To theoretically examine covariance-based learning, we start with the abstraction of the MAR
dynamics P’ — Q°in Eq (10). As depicted in Fig 3A, each training step consists in presenting
an input pattern P° to the network and the resulting output pattern Q° is compared to the
objective Q" in Fig 3B. For illustration, we use two categories (red and blue) of 5 input patterns
each, as represented in Fig 3C and 3D. To properly test the learning procedure, noise is artifi-
cially added to the presented covariance pattern, namely an additional uniformly-distributed
random variable with a magnitude of 30% compared to the range of the noiseless patterns P,
independently for each matrix element while preserving the symmetry of zero-lag covariances;
compare the noisy pattern in Fig 3A (left matrix) to its noiseless version in Fig 3C (top left
matrix). The purpose is to mimic the variability of covariances estimated from a (simulated)
time series of finite duration (see Fig 2), without taking into account the details of the sampling
noise. The update ABy for each afferent weight By is obtained by minimizing the distance (see
Eq (25) in Methods) between the actual and the desired output covariance

_ oQ’
AB, = C—Q) o
ik My (Q Q)GBB,k (11)

P (QO _ QU) ® (UikPOBT + BPOUikT) ,

where U is an m x m matrix with 0s everywhere except for element (i, k) that is equal to 1;
this update rule is obtained from the chain rule in Eq (26), combining Eqs (27) and (30) with
P! =0and A = 0 (see Theory for learning rules in Methods). Here 7 denotes the learning
rate and the symbol © indicates the element-wise multiplication of matrices followed by the
summation of the resulting elements —or alternatively the scalar product of the vectorized
matrices. Note that, although this operation is linear, the update for each matrix entry involves
U™ that selects a single non-zero row for U*P’B" and a single non-zero column for BP°U*",
Therefore, the whole-matrix expression corresponding to Eq (11) is different from

(Q" — Q")P'BT 4+ BP’(Q" — Q")", as could be naively thought.

Before training, the output covariances are rather homogeneous as in the examples of Fig
3C and 3D (initial Q%) because the weights are initialized with similar random values. During
training, the afferent weights By in Fig 3E become specialized and tend to stabilize at the end
of the optimization. Accordingly, Fig 3F shows the decrease of the error E° between Q° and Q"
defined in Eq (25). After training, the output covariances (final Q" in Fig 3C and 3D) follow
the desired objective patterns with differentiated variances, as well as small cross-covariances.

As a consequence, the network responds to the red input patterns with higher variance in
the first output node, and to the blue inputs with higher variance in the second output (top
plot in Fig 4B). We use the difference between the output variances in order to make a binary
classification. The classification accuracy corresponds to the percentage of output variances
with the desired ordering. The evolution of the accuracy during the optimization is shown in
Fig 4C. Initially around chance level at 50%, the accuracy increases on average due to the grad-
ual shaping of the output by the gradient descent. The jagged evolution is due to the noise arti-
ficially added to the input covariance patterns (see the left matrix in Fig 3A), but it eventually
stabilizes around 90%. The network can also be trained by changing the objective matrices to
obtain positive cross-covariances for red inputs, but not for blue inputs (Fig 4D); in that case
variances are identical for the two categories. The output cross-covariances have separated dis-
tributions for the two input categories after training (bottom plot in Fig 4E), yielding the good
classification accuracy in Fig 4F.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 9/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

A Learning paradigm for covariances B Objectives Q°
1 1
Input P° 1 o Output Q°® g1
10 e
° B PY 2 2 24
o
S
o ® 1
1 S 1 14
1 100 ° 1 2 0
2 0 1 2 0

Initial Q° Final Q°

Initial Q° Final Q°

L

n
n

|
[]
m
E F
_ 0.4
0.4 £
@ ' v 0.2
]
S 0.2 0.0
2 =
S
.S 0.0 E 1.0
ke £
© —0.2 S 0.5
c
o
o
-0.4 1 T T T T T c 0.0 T T T T T
0 200 400 600 800 1000 & 0 200 400 600 800 1000

optimization steps optimization steps

Fig 3. Learning variances in a feed-forward network. A: Schematic representation of the input-output mapping for covariances
defined by the afferent weight matrix B, linking m = 10 input nodes to n = 2 output nodes. B: Objective output covariance matrices Q°
for two categories of inputs. C: Matrix for the 5 input covariance patterns P° (left column) for the first category, with their images under
the original connectivity (middle column) and the final images after learning (right column). The training leads to a larger variance
(darker pixel) for output 1 (bottom left pixel of matrices in the right column) than for output 2 (top right pixel). D: Same as C for the
second category. The training leads to a larger variance for output 2 than for output 1 except for the last pattern. E: Evolution of
individual weights of matrix B during ongoing learning. F: The top panel displays the evolution of the error between Q° and Q" at each
step. The total error taken as the matrix distance E° in Eq (25) is displayed as a thick black curve, while individual matrix entries are
represented by gray traces. In the bottom panel the Pearson correlation coefficient between the vectorized Q° and Q° describes how
they are “aligned”, 1 corresponding to a perfect linear match.

https://doi.org/10.1371/journal.pcbi.1008127.9003

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 10/38

https://doi.org/10.1371/journal.pcbi.1008127.g003
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

A Variance-based testing D Cross-covariance-based testing
1 1 1 1
2 2 2 2
1 1. Al 1
1 2 0 1 2 1 2

o M

Bl—l —
Olr 0.5 ? 0.5
o3 ;|-: o3
S 0.0 f-——ommmmm - S 0.0 <|> i|?
£ £
© ©
< —0.5-1 « —0.51
@© T T © T T
> >
o8 o3
o7 (o7
5 05 5 05102
> > == ——————— g1
(o) (o)
< v {]}
200 <JI> <P 2 0.0
o °
(6] 9

N
T

- 1.0 c

2 > 2 >

5§ 08 5 g

=3 06- =3

FERs FE

= 0-4 T T T T T © 0.4 T T T T T

0 250 500 750 1000 0 250 500 750 1000
optimization steps optimization steps

Fig 4. Comparison between learning output patterns for variance and cross-covariance. A: The top matrices
represent the two objective covariance patterns of Fig 3B, which differ by the variances for the two nodes. B: The plots
display two measures based on the output covariance: the difference between the variances of the two nodes (top) and
the cross-covariance (bottom). Each violin plot shows the distributions for the output covariance in response to 100
noisy versions of the 5 input patterns in the corresponding category. Artificial noise applied to the input covariances
(see the main text about Fig 3 for details) contributes to the spread. The separability between the red and blue
distributions of the variances indicates a good classification. The dashed line is the tentative implicit boundary
enforced by learning using Eq (30) with the objective patterns in panel A: Its value is the average of the differences
between the variances of the two categories. C: Evolution of the classification accuracy based on the difference of
variances between the output nodes during the optimization. Here the binary classifier uses the difference in output
variances, predicting red if the variance of the output node 1 is larger than 2, and blue otherwise. The accuracy
eventually stabilizes above the dashed line that indicates 80% accuracy. D-F: Same as panels A-C for two objective
covariance patterns that differ by the cross-covariance level, strong for red and zero for blue. The classification in panel
F results from the implicit boundary enforced by learning for the cross-covariances (dashed line in panel E), here equal
to 0.4 that is the midpoint between the target cross-covariance values (0.8 for read and 0 for blue).

https://doi.org/10.1371/journal.pcbi.1008127.9004

As a sanity check, the variance does not show a significant difference when training for
cross-covariances (top plot in Fig 4E). Conversely, the output cross-covariances are similar
and very low for the variance training (bottom plot in Fig 4B). These results demonstrate that
the afferent connections can be efficiently trained to learn categories based on input (co)vari-
ances, just as with input vectors of mean activity in the classical perceptron.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 11/38

https://doi.org/10.1371/journal.pcbi.1008127.g004
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

Discriminating time series observed using a finite time window

Now we turn back to the configuration in Fig 2A and verify that the learning procedure based
on the theoretical consistency equations also works for simulated time series. This means that
the sampled activity of the network dynamics itself is presented, rather than their statistics
embodied in the matrices P’ and Q°, as done in Figs 3 and 4 and as a classical machine-learn-
ing scheme would do with a preprocessing step that converts time series using kernels. Again,
the weight update is applied for each presentation of a pattern such that the output variance
discriminates the two categories of input patterns. The setting is shown in Fig 5A, where only
three input patterns per category are displayed.

To generate the input time series, we use a superposition of independent Gaussian random
variables z; with unit variance (akin to white noise), which are mixed by a coupling matrix W:

X, = Z Wuz (12)

1<I<m

We randomly draw 10 distinct matrices W with a density of f= 10% of non-zero entries, so
the input time series differ by their spatial covariance structure P° = WW?. At each presenta-
tion, one of the 10 matrices W is chosen to generate the input time series using Eq (12). Their
covariances are then computed using an observation window of duration d. The window dura-
tion d affects how the empirical covariances differ from their respective theoretical counterpart
P°, as shown in Fig 5C. This raises the issue of the precision of the empirical estimates required
in practice for effective learning.

As expected, a longer observation duration d helps to stabilize the learning, which can be
seen in the evolution of the error in Fig 5D: the darker curves for d = 20 and 30 have fewer
upside jumps than the lighter curve for d = 10. To assess the quality of the training, we repeat
the simulations for 20 network and input configurations (W and z, resp.), then calculate the
difference in variance between the two output nodes as in Fig 4B and 4C. Training for win-
dows with d > 20 achieve very good classification accuracy in Fig 5E. This indicates that the
covariance estimate can be evaluated with sufficient precision from only a few tens of time
points. Moreover, the performance only slightly decreases for denser input patterns (Fig 5F).
Similar results can be obtained while training the cross-covariance instead of the variances.

Discrimination capacity of covariance perceptron for time series

The efficiency of the binary classification in Fig 4 relies on tuning the weights to obtain a linear
separation between the input covariance patterns. Now we consider the capacity of the covari-
ance perceptron, evaluated by the number p of input patterns (or pattern load) that can be dis-
criminated in a binary classification. For the classical perceptron and for randomly-chosen
binary patterns that must be separated in two categories, the capacity is 2m, twice the number
m of inputs [33, 34]. An analytical study of the capacity of the covariance perceptron using
Gardner’s theory of connections from statistical mechanics is performed in a sister article [35].
That study shows that a single readout cross-covariance can in theory discriminate twice as
many patterns per synapse as the classical perceptron, but that this capacity does not linearly
scale with the number of outputs. Finding such optimal solutions is an NP-hard problem in
general and optimization methods like the gradient descent employed here may only achieve
suboptimal capacities in practice. In addition, an important difference compared to that study,
which focused on “static” patterns, concerns the time series used for training and testing here,
which involves empirical noise (see Fig 5C). Thus, we here employ numerical simulation to get
a first insight on the capacity of the covariance perceptron with “noisy inputs”, varying in the
same manner the number of input neurons and patterns to learn.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 12/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

A Input covariance matrices P° Output objectives Q°
10 1 ...l 10 1 10 A !
- “n ’
L (o] 1
1- 148 1- °
1 10 i 10 1 10 o B * = & 70
(o] Q
10 10 10 o L
! S °
|| o 21
N
||
1 -l T 1 -l T 1 -l T
1 10 1 10 1 10 La ==
B D
14 observation window 0.4 —
iy — d=20
% 04 OO — d=30
" 5 0.2
2 5
g 1
0-0 T T T T T T
T r - 0 200 400 600 800 1000

. optimization steps
time P P

N
m
T

0 1.0
S -+ 0
C
I | > >
w 0.01 A § E Y VAR VA 4
© = =)
X S S
] © ©
@©
E 0.5
0.00 = . . ' ' ' j
10 20 30 . 0..1 0.15 . 0.2
observation input density f

observation duration d duration d

Fig 5. Learning input covariances by tuning afferent connectivity. A: The same network as in Fig 3A is trained to learn the input spatial
covariance structure P° of time series governed by the dynamics in Eq (12). Only 3 matrices P° = WW? out of the 5 for each category are
displayed. Each entry in each matrix W has a probability f= 10% of being non-zero, so the actual fis heterogeneous across the different
matrices W. The objective matrices (right) correspond to a specific variance pattern for the output nodes. B: Example of simulation of the
time series for the inputs (light brown traces) and outputs (dark brown). An observation window (gray area) is used to calculate the
covariances from simulated time series. C: Sampling error as measured by the matrix distance between the covariance estimated from the
time series (see panel B) and the corresponding theoretical value when varying the duration d of the observation window. The error bars
indicate the standard error of the mean over 100 repetitions of randomly drawn W and afferent connectivity B. D: Evolution of the error for 3
example optimizations with various observation durations d as indicated in the legend. E: Classification accuracy at the end of training (cf. Fig
4C) as a function of d, pooled for 20 network and input configurations. For d > 20, the accuracy is close to 90% on average, mostly above the
dashed line indicating 80%. F: Similar plot to panel E when varying the input density of W from f= 10 to 20%, with d = 20.

https://doi.org/10.1371/journal.pchi.1008127.g005

Here we consider the same optimization of output variances on which the discrimination is
based as in Fig 5, instead of the cross-covariances studied using Gardner’s theory [35]. The
evolution of the classification accuracy averaged over 10 configurations is displayed in Fig 6A,
where darker gray levels correspond to larger network sizes as indicated in the legend. For
each configuration, the mean accuracy of the last three epochs is plotted in Fig 6B where the
observation duration is d = 20. At the load p = m, the performance decreases with the network
size: for instance, it remains in the case of m = 100 inputs (darker curve) around 75% for a

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 13/38

https://doi.org/10.1371/journal.pcbi.1008127.g005
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

A Evolution of accuracy B Scaling with number of inputs
1.0 m=10 1.0 4
—— m=30 >
> —— m=50 ©
© — m=100 S
(O] @©
® 5
0.5 e
 § T T T T 0.5 T T T T T T T
0 50 100 150 200 0.5 1 1.5 2
optimization epochs relative pattern load p/m
C Effect of empirical noise
load of m patterns load of 2m patterns
1.0 1 1.0 1
> >
19) (9]
S //—‘ =]
(9] (6]
9 / o '/.//
@© @©
e p /
@© ©
()] [J]
1S 1S
0.5) T T 0.5 T T T
20 40 60 20 40 60
observation duration d observation duration d

Fig 6. Numerical evaluation of capacity. A: Evolution of the classification accuracy over the optimization epochs.
During each epoch, all p = m patterns are presented in a random order. We use the same network as in Fig 5, but with
distinct input numbers m as indicated in the legend. The observation duration is d = 20. The error bars correspond to
the standard error of the mean accuracy over 10 configurations. B: Comparison of the classification accuracies as a
function of the relative pattern load p/m (x-axis). Note that 2 corresponds to the theoretical capacity p = 2m of the
classical perceptron with a single output, but the architecture considered here has 2 outputs; for an in-depth study of
the capacity and its scaling with the number of output nodes, please refer to our sister paper [35] whose results are
discussed in the main text. The plotted values are the mean accuracies for each configuration, averaged over the last
three epochs in panel A. The error bars indicate the standard error of the mean accuracy over 10 repetitions for each
configuration. C: Similar plot to panel B when varying the observation duration d for two cases p = m and p = 2m.

https://doi.org/10.1371/journal.pcbi.1008127.9006

load of m patterns and way above 50% for 2m patterns. Interestingly, the performance signifi-
cantly increases when using larger d, for example improving by roughly 10% for m = 50 and
100 in each of the two plots of Fig 6C. This means that the empirical noise related to the covari-
ance estimation over the observation window (see Fig 5B) becomes larger when the number m
of inputs increases, but it can nonetheless be compensated by using a larger window.

Learning spatio-temporal covariance mapping with both afferent
and recurrent connectivities

We now extend the learning scheme of Section to the tuning of both afferent and recurrent
connectivities in Eq (5) with the same application to classification. We also switch from spatial
to spatio-temporal covariance structures, corresponding to a non-zero lag 7in Eq (7). Asa
model of input, we simulate time series that differ by their hidden dynamics. By “hidden
dynamics” we simply mean that time series obey a dynamical equation, which determines
their spatio-temporal structure that can be used for classification. Concretely, we use

x, = Zwklel +z, (13)
1

with z; being independent Gaussian random variables of unit variance. This dynamical

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 14/38

https://doi.org/10.1371/journal.pcbi.1008127.g006
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

equation replaces the superposition of Gaussians in Eq (12) for generating temporally corre-
lated input signals, where P° satisfies the discrete Lyapunov equation P° = WP°W' + 1,,,. Here,
1,, is the identity matrix, and P' = WP° denotes the 1-lag covariances. In this context, a cate-
gory consists of a set of such processes, each with a given matrix W in Eq (13) as before with P
in Fig 3. Note that the matrix W itself is not known to the classifier, only the resulting statistics
of x that obeys Eq (13); thus we call this setting “classification of hidden dynamics”.

Stability of ongoing learning

Before examining classification, we consider the problem of stability of ongoing learning (or
plasticity). Unsupervised Hebbian learning applied to recurrent connections is notoriously
unstable and adequate means to prevent ongoing plasticity from leading to activity explosion
are still under debate [36, 37] —note that, if those studies concern especially spiking networks,
their conclusions also apply to non-spiking networks as considered here. Supervised learning,
however, can lead to stable weight dynamics [38, 39]. Stability can be directly enforced in the
objective function, but can also be a consequence of the interplay between the learning and
network dynamics. Because our objective functions are based on the output covariances, we
test whether they also yield stability for the weights and network activity.

The learning procedure is tested with simulated time series as in Fig 5. The weight updates
are given by equivalent equations to Eq (11) that determine the weight updates for the afferent
and recurrent connectivities, B and A respectively; see Eqs (30), (32), (33) and (34) in Theory
for learning rules in Methods. We recall that they rely on the consistency equations (23) and
(24), which are obtained in Network dynamics (Methods) under the assumption of stationary
statistics. Fig 7 illustrates the stability of the learning procedure, while the error decreases to
the best possible minimum. As a first example, we want to map 10 input patterns —corre-
sponding to 10 distinct matrices W in Eq (13), each giving a specific pair of input covariance
matrices (P’, P')— to the same objective covariance matrix Q", thereby dealing with a single
category as illustrated in Fig 7A. Note that with the choice of W with small weights here, all
input covariance matrices P° are close to the identity and the optimized connectivity must gen-
erate cross-correlations between the outputs. Adapting Eqs (26) and (27) in Methods to the
current configuration, the weight updates are given by

_ Q"
AA; = 1, (Q"-Q) @871”)
8Q; (14)
_ A _ oM o
AB; = 1;(Q"-Q") ®8Bik)

where the derivatives are given by the matrix versions of Eqs (30) and (32) in Theory for learn-
ing rules (Methods):

aQD aQO T 0 AT 0 7iT ij —1pT —1T RT 1 74T
i i
oQ oQ’ . . . _ 15
a% — Aa%AT_i_ UszOBT+BPOU1kT _|_AU1kpleT +ABP71kaT ()
ik ik

_|_Uikp—1TBTAT + BP—lTUikTAT .

Both formulas have the form of a discrete Lyapunov equation that can be solved at each
optimization step to evaluate the weight updates for A and B. Also recall that the derivation of
the consistency equations in Network dynamics (Methods) assumes P> = 0 and is thus an

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 15/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

A i Input covariances
Input coupling N 1 o Output
matrix W 9 objective Q°
0.5 PO 10 b4 1
20 A
s o A 5
1y : ; 5]
1 10 2040 9 B ° 4
10 - L S) ¢ 3
20 A 8 [2
1 r T T P‘I 10 8 . !
1 10 20--0.0 o 1 2 3 45 0
0
14 : ; o
1 10 20--0 o
B Weight evolution C Evolution of output tuning
i 1.0 1.0
55 '
e > o
5 ;
o 0.5 c 0.5
s | mbdlitsatanlin |
e) 5 gy 5 o
22 = WPARG ARV e e 5
5%
E
_0.5 T T T T 0.0 T T T T T 0.0 T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
optimization steps optimization steps optimization steps
D E
& o
=< o 1.0 C 1.0
g2 S Mttt | 5 ,/"‘ PV
55 5 05 c 0.5
22 £ B
S 0.0+ - §00+ .
= S 1.0 O10
(OB — =
S< 0.0 S WMNW S
-2 5 0.5 c 0.5
© = E 8
—0.5 1 . = =
0.0 T 0.0 T
0 o 5000 € 0 500 & 0 500
optimization steps optimization steps optimization steps

Fig 7. Stability of ongoing learning for both afferent and recurrent connectivities. A: Network configuration with m = 20 inputs and n = 5 outputs.
Each input pattern corresponds to a randomly chosen m x m matrix W with 10% density of non-zero connections that determines the input covariance
matrices (P°, P') of the time series generated from Eq 13. The objective Q" is a randomly-drawn m x m symmetric matrix (also ensuring its definite
positivity). Here we consider a single category (in red) to test whether the weight learning rule can achieve a desired input-output mapping, leaving aside
classification for a moment. B: Example evolution of the afferent and recurrent weights (green and purple traces, respectively). Simulation of the time
series as in Fig 5, observed for a duration d = 50. The network has to map 10 input pattern pairs (P’, P') similar to the example in panel A to a single
output Q. C: Evolution of the tuning of the network output. The learning procedure aims to reduce the normalized error between the output covariance
Q" and its objective Q° (left plot, similar to Fig 3F), here calculated as || Q° — Q° || / || Q" || where ||- - -|| is the matrix norm. We also compute the
Pearson correlation coefficient between the vectorized matrices Q° and Q° (right plot). The thick black traces correspond to the mean over 10 repetitions
of similar optimizations to panel A, each gray curve corresponding to a repetition. D-E: Similar plots to panels A-B for the tuning of both (Q°, Q!) for a
single repetition. The input time series are generated in the same manner as before. Contrary to panel A, the output objective pair (Q°, Q') is chosen as
two homogeneous diagonal matrices with larger values for Q° than Q', corresponding to outputs with autocorrelation and no cross-correlation —this
example is inspired by previous work on whitening input signals [40]. The observation duration is d = 100.

https://doi.org/10.1371/journal.pcbi.1008127.9007

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 16/38

https://doi.org/10.1371/journal.pcbi.1008127.g007
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

approximation because we have P> = W? P” here. As the input matrix W must have eigenvalues
smaller than 1 in modulus to ensure stable dynamics, our approximation corresponds to

|P?|| = | WP'|| < ||P"||. The purpose of this example is thus to test the robustness of the pro-
posed learning in that respect. The weight traces appear to evolve smoothly in Fig 7B. In the
left plot of Fig 7C, the corresponding error between the output Q” and the objective Q" firstly
decreases and then stabilizes. The evolution of the Pearson correlation (right plot of Fig 7C)
further indicates that the matrix structure of the output Q° remains very close to that of Q’,
once it reached saturation, even though the network may not perfectly converge towards the
objectives as indicated by the residual error.

A second and more difficult example is explored in Fig 7D and 7E, where the objective is a
pair of matrices Q" and Q'. The weight optimization then involves the equivalent of Eq (15)
for Q'. The issue of whether there exists a solution for the weights A and B to implement the
desired mapping is more problematic because the defined objectives imply many constraints,
namely Eqs (23) and (24) must be satisfied for all ten pairs (P°, P') with (Q’, Q") = (Q°, Q")
with the same weight matrices. This results in less smooth traces for the weights (Fig 7D) and a
weak decrease for the normalized error (left plot in Fig 7E), suggesting that there is not even
an approximate solution for the weights A and B. Nonetheless, the weight structure does not
explode and the Pearson correlation between the output covariances and their respective
objectives indicate that the objective structure is captured to some extent (right plot in Fig 7E).

Computational and graph-local approximations of the covariance-based
learning

First, we consider an approximation in the calculation of the weight updates that does not
require solving the Lyapunov equation. An important question is which role the elements that
quantify the non-linearity due to the recurrent connectivity A play in determining the weight
updates. As explained around Eq (36) in Methods, we consider the approximation of Eq (15)
that ignores second-order terms in the recurrent connectivity matrix A in the Lyapunov equa-

tion
aQO ii(Y0AT 07T ij —1 pT —1T RT 1 7iT
— = VIQ'A" + AQ"V" + VIBP—'B" +BP"'B'VV" |
0A;
oQ° . , , , 16
61(32 — UtkPOBT+BPOUsz+AU1kP—lBT +ABP—1Usz ()
ik

+UikP—1TBTAT + BP—]T UikTAT .

Now the calculation of the weight updates is much simpler, involving only a few matrix
multiplications and additions. To test the validity of this approximation, we repeat the same
optimization as in Fig 7A with 10 input patterns to map to a single output pattern with objec-
tive Q°. As illustrated for an example in Fig 8A, the comparison of Eq (16) (red trace) with Eq
(15) (black trace) hardly show any difference in the performance. This is confirmed in Fig 8B
for 10 repetitions of the same training with randomly chosen input and output patterns.
Although the approximation for the solution of the Lyapunov equation may seem coarse, it
yields a very similar trajectory for the gradient descent. This gives the intuition that this
computational approximation gives the correct general direction in the high-dimensional
space and, since the weight updates are computed at each optimization step and these steps are
small, the gradient descent does not deviate from the “correct” direction. Even though this
example involves non-full connectivity where only about 30% of the weights are trained (oth-
ers being kept equal to zero), the same simulation with full connectivity (not shown) gives

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 17/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

A Evolutionoferror B Comparison of weight updates € Network neighbors

- L0 - 1.0

o — full o

6 = approx B

= = |oCc+approx =

(0] ()

T 0.5 S 0.5

N N

© ©

£ £ 4

o o

< 0.0+ . S 0.0 . .

0 o 500 full apprOX appro)(
optimization steps + \oC
D Covariance error Masks of existing connections
1.0

53 o 3 3.

g * g g4 |
— 3 00 .E .E 3

+—))

[2 (] (]

2 05 2 22

g1 8 8

-1.0 1
12345
source index j 1 2 3 4 5 1 10 20

source index j source index k

Fig 8. Approximations of the gradient descent. A: Comparison of the evolution of the error in optimizing Q° for three flavors of the
gradient descent: the “full” solution (in black) using Eq (15), the computational approximation (in red) using Eq (16) and the local
approximation (in purple) using Eq (17). Network and pattern configuration similar to Fig 7A, involving 10 input patterns to map to a
single output pattern by training both afferent and recurrent connections in a network of m = 20 inputs and n = 5 outputs. Here the
network has sparse connectivity, corresponding to a probability of existence for each connection equal to 30%; weights for absent
connections are not trained and kept equal to 0 at all times. B: Asymptotic error estimated from the last 10 optimization steps in panel A
for 10 repetitions of similar configurations to panel A. C: Schematic representation of the local approximation in Eq (17) to compute the
weight updates of afferent connections and recurrent connections targeting neuron i (here with two examples By and A;): only
covariances from network neurons with a connection to neuron i (like the “parent” neuron ' via the dashed blue arrow) are taken into
account. D: Example of network connectivity (binary matrices in black on the right) that determine which elements of the covariance
error matrix (in color on the left) are used to calculate the weight update in Eq (17). Crosses in the left matrix indicate discarded elements,
that correspond to absent recurrent connections. Note that variances are never discarded.

https://doi.org/10.1371/journal.pcbi.1008127.9008

similar results with no distinguishable difference between the full computation and the
computational approximation.
Second, we consider a local approximation where the information necessary to compute

the weight updates is only accessible from presynaptic neighbor neurons in the network as
illustrated in Fig 8C:

= 8Q2/
Ad; = ”AZ(i ?"/)87’

i'es; ij

A0 _ O aQ?i’
”BZ(il ii’) OB,)

i'eS;

(17)
AB,

where §; is the subset of “parent” neurons with a connection to neuron i. The rationale here is
that information related to the activities of a neuron pair can be evaluated at the point of con-
tact that are recurrent synapses. Of course, this only makes a difference in the case of non-full
connectivity (around 30% density in Fig 8) and this local approximation requires the computa-
tional approximation since solving the Lyapunov equation in the full calculation of Eq (15)
requires the knowledge of all connections within the network. Using the expressions in

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 18/38

https://doi.org/10.1371/journal.pcbi.1008127.g008
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

Eq (16) for recurrent connections while ignoring afferent connections, we have

AA; =y Z(Q?ﬂ - Qi) <2ZQ2"AV]">)
i

i'es;

_ mz@z—agw@ > A >

i'esS; J€Sy

This means that the necessary information for computing the weight update is the summed
activity received by each parents neuron i € S;, which has to be centralized by the downstream
i. The same observation is valid for the summed activity received by each neuron i’ from the
input neurons. This approximation is local in the graph in the sense that it only uses informa-
tion from neighbor (parent) neurons. An example of the matrix elements in the covariance
error that contribute to the weight update is displayed in Fig 8D. Although the performance
decreases compared to the computational approximation as illustrated in Fig 8A and 8B, this
local optimization still performs reasonably well.

Classification of time series with hidden dynamics

From the dynamics described in Eq (5), a natural use for A is the transformation of input spa-
tial covariances (P’ # 0 and P' = 0) to output spatio-temporal covariances (Q° # 0 and Q' #
0), or vice-versa (P’ # 0, P' # 0, Q" # 0 and Q" = 0). S1 Appendix provides examples for these
two cases that demonstrate the ability to tune the recurrent connectivity together with the
afferent connectivity (from now on with 100% density), which we further examine now.

We consider input time series that are temporally correlated and spatially decorrelated,
meaning that P' conveys information about the input category (i.e. reflecting the hidden
dynamics), but not P°. The theory predicts that recurrent connectivity is necessary to extract
the relevant information to separate the input patterns. To our knowledge this is the first study
that tunes recurrent connectivity in a supervised manner to specifically extract temporal infor-
mation from lagged covariances when spatial covariances are not informative about the input
categories. Concretely, we here use 6 matrices W (3 for each category) to generate the input
time series that the network has to classify based on the output variances, illustrated in Fig 9A.
Importantly, we choose W = exp(ul,, + V) with exp being the matrix exponential, V an anti-
symmetric matrix and y < 0 for stability. As a result, the zero-lag covariance of the input sig-
nals P* = —5- 1, is exactly the same for all patterns of either category, proportional to the
identity matrix as illustrated in Fig 9B. This can be seen using the discrete Lyapunov equation
P’ = WPWT + 1,,, which is satisfied because WW' = exp(2ul,, + V + V1) = ¢*1,,. In contrast,
the time-lagged covariances P' = WP° differ across patterns, which is the basis for distinguish-
ing the two categories.

The output is trained only using Q° according to Eq (15), meaning that the input spatio-
temporal structure is mapped to an output spatial structure —also following the above consid-
erations about the existence of adequate weights to implement the desired input-output
covariance mapping. The covariances from the time series are computed using an observation
window of duration d in the same manner as before in Fig 5B. Note that it is important to dis-
card an initial transient period to remove the influence of initial conditions on both x* and y'.
In practice, we use a larger window duration d compared to Fig 5, as it turns out that the out-
put covariances are much noisier here. The influence of d can also be seen in Fig 9C, where the
evolution of the error for the darkest curves with d > 60 remain lower on average than the
lighter curve with d = 20. To assess the quality of the training, we repeat the simulations for 20

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 19/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY

The covariance perceptron

A Input coupling matrices W Output objectives Q°
10 A 10 A =] 10 !
- 2
-l
[]
2 L " : A
T T T T T T 0 B) 1 5 0
1 10 1 10 1 10 ¢ D
S .
10 104 =] 10 T 9 P
O 2 -
N | o
| T 1
m
1 B T T 1 - T T 1 L T T
1 10 1 10 1 10 L
B Input zero-lag covariance P° C
0.3 d=20
10 10 o 0
© 0.2
e
T 0.1
1 1 0-0 T T T T T T
1 10 1 10 0 200 400 600 800 1000
optimization steps
D With A E WithoutA F Fixed A G Comput approx
1.0 1.0 1.0 1.0
> > > >
(9] (9] (9] L)
c " = 1 © S TTTTTYT T T A] o - T - 1
(O] (9] (O] 9]
[} [} [} O
© © © m © @
05 T T T 05 = 05 T T T 05 T T T
20 60 100 20 60 100 20 60 100 20 60 100
observation observation observation observation
duration d duration d duration d duration d

Fig 9. Learning input spatio-temporal covariances with both afferent and recurrent connectivities. A: Network architecture with m = 10
input nodes and #n = 3 output nodes, the latter being connected together by the recurrent weights A (purple arrow). The network learns the
input spatio-temporal covariance structure, which is determined here by a coupling matrix W between the inputs as in Eq (13). Here we have
3 input patterns per category. The objective matrices (right) correspond to a specific variance for the output nodes. B: The matrices W are
constructed such that they all obey the constraint P° 1,,,. C: Evolution of the error for 3 example optimizations with various observation
durations d as indicated in the legend. D: Classification accuracy after training averaged over 20 network and input configurations. For the
largest d = 100, the accuracy is above 80% on average (dashed line). The color contrast corresponds to the three values for d as in panel C. E:
Accuracy similar to panel D with no recurrent connectivity (A = 0). F: Same as panel D with a random fixed matrix A and switching off its
learning. G: Same as panel D with the computational approximation in Eq (16) that does not require solving the Lyapunov equation.

https://doi.org/10.1371/journal.pchi.1008127.9009

network and input configurations and then calculate the difference in variance between the
two output nodes for the red and blue input patterns. The accuracy gradually improves from

d =20to 100 in Fig 9D. When enforcing A = 0 in Fig 9E, classification stays at chance level.
This is expected and confirms our theory, because the learning for B only captures differences
in P°, which is the same for all patterns here. When A is sufficiently large (but fixed), it contrib-
utes to some extent to Q” such that the weight update for B can extract relevant information as
can be seen in Eq (15), raising the performance above chance level in Fig 9F. Nonetheless, the
performance remains much worse than when the recurrent connections are optimized. These

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 20/38

https://doi.org/10.1371/journal.pcbi.1008127.g009
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

results demonstrate the importance of training recurrent connections in transforming input
spatio-temporal covariances into output spatial covariances. Last, Fig 9G shows that the
computational approximation in Eq (16) performs as well as the full gradient in Eq (15) that
involves solving the Lyapunov equation for this task.

Application to the recognition of moving digits

Finally, we examine the robustness of the covariance perceptron applied to the recognition of
objects that move in the visual field by a network of sensory (input) and downstream (output)
neurons. To this end, we use the MNIST database of handwritten digits 0 to 4 [41]. As illus-
trated with the digit 0 in Fig 10, each digit moves horizontally in the visual field either to the
right or the left. The goal is to train readout neurons to detect both the digit identity and the
motion direction. The digits pass through the receptor fields of two “vertical columns” of
input neurons (m = 18), which results in delayed activity between the columns (light and dark
brown in Fig 10B). For each digit, the traces “viewed” by an input neuron exhibit large vari-
ability across presentations, see Fig 10C for digits 0 and 2 moving right. The goal of this dem-
onstration is not so much to find the best classification tool, but to see how our proposed
learning and classification scheme performs with “real-life” data, in particular when the Gauss-
ian assumption for inputs is violated. Note that we use in this section the non-centered
moments instead of the centered moments that are the rigorous definition of the covariances.
The image of the digit is swept over a two-dimensional receptor array. As a result, information
about both motion direction and digit identity is transformed into only spatial covariances
between the inputs. In the example of Fig 10D, we see distinct mean patterns for the left and
right moving digit 0 (see the upper left and lower right quadrants), as well as yet another pat-
tern for digit 2. In other words, both variances and cross-covariances are required for correct
classification, the former being strongly related to the digit identity and the latter to the motion
direction. We now test whether the covariance perceptron can efficiently extract the relevant
information from the second-order statistics of those patterns, while comparing it to other
classification networks.

The confusion matrices in Fig 10E represent the predictions for the training set throughout
the optimization procedure using Eq (11). For each moving digit (a category for each row), the
diagonal matrix element increases over epochs, corresponding to the improvement of the clas-
sification performance. Conversely, off-diagonal elements become smaller, indicating a reduc-
tion of the prediction errors. Importantly, the same is true for the test set in Fig 10F. The
similarity between the confusion matrices underlines that the covariance perceptron general-
izes very well to unseen samples of the same category, which is crucial for practical
applications.

We vary the number of samples in the training and in the test set and repeat the procedure
in Fig 10 to further evaluate the robustness of our covariance-based classification. The evolu-
tion of the classification performance is displayed in Fig 11A for 500 to 50000 training samples
(light to dark gray curves). The classification performance improves faster with more samples,
but appears to saturate for 5000 and 50000 training samples at the same value, around 71%.
Importantly, the test accuracy is equal to the training accuracy when sufficiently many samples
are used, indicating an absence of overfitting and a good generalization to unseen data.

A technical point here is discarding output cross-covariances in the training to only tune
the output variances that are used for the classification. This improves the classification perfor-
mance by more than 10% in the example of Fig 11B (gray versus green traces). The result can
be intuitively understood by the fact that cross-covariances add further constraints on the
weights. In particular, enforcing zero cross-covariances between the output means

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 21/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

A moving 18 input 10 output B C
digit neurons neurons - 18 {——=——= o 2right
2 o= - O —N— A~ o A
.. . = e~ =
= . B —_— T 4 0 left
.. . O = T | RN N
- > 5 N 5
= —) 2 M/g_ _ 0right
. = —_—— c
- o= _ = | SR,
L : 1 -I T T T
) - - - 0 10 0 10
time time
Pn 0 moving right 0 moving left 2 moving right
(]
V] 181, 18 4 18 4
S x - < - < = T ®
= © n l.. © u @ l-. © n
‘g L= 9 £ 9 = 9
o - 7 - 7 B - 7
S 2 "3 2 8 2 BN
S - l.. - = - l-. - - =
8- 1 -I T T 1 -I T T 1 -l T T
— 1 9 18 1 9 18 1 9 18
input index input index input index
E Initial After 2 epochs After 20 epochs
4] | 4] | 4] 1
E — — —
s 8 3 2
< Egl— E‘(l)l- Et(l)l_ .
E g r g r o g r ..
|_ - - . -~
O ||
Or 4 Or 1, - i or
or 410l 4 or 410l 41 or 410l
F
4] 1 4] 1 . 4] 1
=5 3 u 3
o 3 a a
2 =0l T 0l l. T 0l ||
a o 4r A v 4r o v 4r
> > >
= b5 b= b=
| ||
Or —'V—V_V_I_V' Or ! LI T Or
or 410l 4 or 410l 4| or 410l 4|
predicted label predicted label predicted label

Fig 10. Learning moving digits. A: Moving digit in the visual field, where the input neurons are represented at the
center of their respective receptor fields (vertical lines of dark and light brown dots). Each input neuron has a receptor
field of 3 x 3 pixels, which amounts to downscaling the MNIST dataset from its original size 28 x 28 to 9 x 9. The 10
output neurons (one per category, the largest output variance indicates the predicted category) only have afferent
connections (in green), which are trained using Eq (11) as in Fig 3. B: Responses of the input to the digit 0 in panel A
moving to the right. The activity of the neurons in the left column (indexed from 1 to 9, in light brown) increases
before that for the neurons of the right column (from 10 to 18, in dark brown). C: Mean activity traces for input
neuron 5 (see arrow in panel B) for 10 samples of digits 0 and 2, both moving left or right as indicated above. The
colored areas correspond to the standard deviation of the time-varying activity over all patterns of each category. D:
The information relative to the moving stimulus is reflected by specific patterns in the input covariance matrices P°
(averaged over all patterns of each category), left for moving from the left and right for moving from the right for digit
0. Differences are located in the cross-covariances between neurons from different columns (upper left and lower right
quadrants). The covariance structure is also digit specific, as illustrated by the comparison with digit 2. E: Confusion
matrices of the covariance perceptron for the train set (5000 samples with digits 0 to 4, balanced over the categories)
before learning, after 2 epochs and after 20 epochs. The category labels indicate the digit and the direction (r’ for right
and T for left). As before, the classification is based on the higher variance among two outputs, one per category (digit
and motion). Diagonal matrix elements correspond to correct classification, others to errors. F: Same as panel E for the
test set (500 samples with different digits from the train set).

https://doi.org/10.1371/journal.pcbi.1008127.g010

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 22/38

https://doi.org/10.1371/journal.pcbi.1008127.g010
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

A Covariance perceptron B Training only output variances

1.0 1.0
train
test
> >
[} [}
© @©
5 0.5 - 5 0.5
(0] |9
(O] 19)
@ ©
— full
el T e el et —— masking -
0.0 T T T T 0.0 T T T T T
0 5 10 15 20 0 5 10 15 20
optimization epoch optimization epoch
C Comparison rate vs covariance D Time MLR
1.0 — J
4|
@ - "l
z - - 2 | |
I o 0l
S 0.5 o 4r |
° u m
____________________________ Or 1
0.0 I\I I\I I\’ T n T n T e ‘\I“\l ‘\IlN Or 4r0|
coV coV. coV meafmeal fimeé R R i
perc MR MLR perc MLR MLR 1=6 =10 predicted label
sub
E Comparison of resources
covariance perceptron RNN MLR
mn mh + hh +hn m(m+1)n/2
I ®] o}
— N ® ¢ o
—— ® g o
il S @ G || (0]
_ . S :
=] ® 3 o
== o < o
— T e s =
— e b4
— ® : e o
| @® (@] o
d J m h n -

Fig 11. Comparison with machine learning techniques like the classical perceptron. As in Fig 10, five digits from 0
to 4 are considered with left or right motion, yielding 10 categories. A: Evolution of the performance of the covariance
perceptron during training for various sizes for train and test sets: the light to dark gray curves correspond to 500,
5000, and 50000 patterns, respectively. The test set has 10 times fewer samples (50, 500 and 5000, resp.). During each
epoch, all respective patterns are used for training and testing. The curves indicate the mean over 10 repetitions and
the surrounding area the corresponding standard error of the mean (which is in fact small); the solid and dotted curves
correspond to the train and test sets (see legend). The dashed horizontal line indicates chance-level accuracy. B:
Comparison between the accuracy of the covariance perceptron when training the full output covariance matrix (‘full’)
or only the variances on the diagonal (‘masking’) that are used for the classification of categories. The traces
correspond to an example with 5000 training samples and the accuracies for the train and test sets are represented as in
panel A. C: Comparison of classification accuracy between the covariance perceptron (‘cov perc’), mean-based
perceptron processing time series (‘mean perc’), the multinomial logistic regression (MLR) that corresponds to the
classical perceptron with a sigmoidal function to implement its non-linearity and the recurrent neural network (RNN).
The mean perceptron and the covariance perceptron have the same architecture with 18 inputs and 10 outputs. The
RNN has 18 inputs, 10 outputs and either & = 6 or 10 hidden neurons, the first version involving roughly as many
weights as the covariance perceptron. The RNN-based classification relies on the mean activity of the output neurons
calculated over an observation window (see main text for details). The MLR is trained in three configurations: using
the mean patterns over the observation window for train and test (‘mean MLR’); covariance patterns for train and test
(‘cov MLR’); time samples that are passed to the non-linear sigmoid before being averaged over the observation period
in order to capture second-order statistics as described in the main text (time MLR’). D: Confusion matrix for for the
time MLR, corresponding to the test set at the end of learning. Note the errors on the secondary diagonal within the
upper left and lower right quadrants, corresponding to error in classifying the direction. E: Schematic diagrams of the
networks’ configuration for the covariance perceptron (left), the RNN (middle) and the MLR applied to covariance
patterns (right). The total numbers of weights (or optimized parameters) to tune for each classifier is indicated above
the connections, in terms of number m = 18 of inputs in the time series and #n = 10 outputs for each category, plus h =6
or 10 hidden neurons for the RNN.

https://doi.org/10.1371/journal.pcbi.1008127.g011

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 23/38

https://doi.org/10.1371/journal.pcbi.1008127.g011
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

decorrelating them “spatially”, which is not primarily useful for classification. Therefore, we
use some masking here to only retain information about the output variances in Q" — Q"
when calculating the weight updates.

The performance for 50000 test samples is summarized in Fig 11C (‘cov perc’) and com-
pared with a classical machine-learning tool, multinomial logistic regression (MLR) that corre-
sponds to the classical non-linear perceptron with a sigmoidal function, applied to the same
covariance input patterns (cov MLR’). The MLR for patterns of covariances is quasi perfect at
98%, confirming the expected outcome that the covariances provide all the necessary informa-
tion to classify the digits with their motion direction. Beside the non-linearity, a main reason
for the difference in the performances between the covariance perceptron and the MLR is that
the MLR uses many more resources: a regression coefficient (equivalent to a weight to opti-
mize, we ignore the bias here) per element of the input covariance matrix P°, as illustrated in
Fig 11E, totaling m(m + 1)n/2 = 1530 weights to train since m = 18 and #n = 10 here after taking
into account the symmetry of P°. In contrast, the covariance perceptron only uses mn = 180
afferent weights per output for the classification. To match the number of resources, we repeat
the MLR classification by randomly subsampling 180 distinct matrix elements of P°, reducing
the performance to 81%. The performance of the covariance perceptron is thus about 10%
lower than that of the MLR with matched resources, which presumably comes from the non-
linearity of the MLR. To further check the importance of the non-linearity, we repeat the
experiment with a linear regressor instead of the MLR and the performance becomes 84%
using the full covariance matrix and 1530 weights to train, but drops to 48% for matched
resources with 180 weights. This indicates that the covariance perceptron makes efficient use
of resources for the classification based on a linear mapping between the input and output
covariances.

We then compare the previous results to classification procedures based on mean output
activity. The linear version of the classical perceptron corresponds to the network architecture
in Fig 10A where the learning rule is based on patterns corresponding to mean activity of each
input over the observation window, as described around Eq (39) in Methods, gives a perfor-
mance of 33%. In contrast, the performance of the MLR, corresponding to the classical percep-
tron with a non-linear sigmoidal function, applied to the same patterns is 42% (supposedly
thanks to the non-linearity). For both classifiers, the left and the right directions are not distin-
guished. This is expected because the two directions give the same mean for the input over the
observation period, see the two examples for digit 0 in Fig 10C. However, the results may be
different when considering the output activity of the network in Fig 10A at each time point of
the observation window with the classical perceptron with a non-linearity determined by a
function ¢. Considering the general situation of a MLR with given coefficients w (equivalent to
the weights B), the response at each time point of the presented stimulus x' is given by y' = ¢
(w' x"). If the data x' € R" are distributed with some distribution p(x"), the output of the net-
work also depends on potentially all moments of this distribution, which can be seen in the
Taylor expansion of the non-linearity. This leads to the mean output over the observation
window (') = [p(x') p(w'x') dx' >~ $(0) + ¢'(0)w' (x') +1¢"(0) W' (x'x") w+ ... fora
Taylor expansion around the value 0, where the angular brackets correspond to the general
averaging over the distribution of x'. Then, the last term is related to the covariance matrix
P’ = (x'xT), — (x'),(x'), where the angular brackets are defined as in Eqs (6) and (7); the rele-
vant information here corresponds to the mean trajectories in Fig 10C and the noise is to be
understood as the variability over the samples of the same categories (note that this can be
related to the ‘signal correlations’ in the left column of Fig 1A). The difference between this
application of the MLR and our paradigm is, though, that the mean and the covariance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 24/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

additively contribute to the mean of the output activity. Our setup allows us to consider these
two terms in isolation. Regarding the mapping by the network activity pointwise in time, non-
linearities can thus also be regarded as a mechanism that transforms information contained in
the covariance into information in the mean. Applied to the present case of time series, the
information needed for the classification is in the covariances (x.x]), > [xix!dt where the
input product is integrated over the observation window. We can thus train a MLR to perform
the classification based on the mean output activity, averaged over the observation period

(), = [y'dt. If the input covariances can be significantly captured thanks to the non-linear-
ity, then the MLR should be able to discriminate between the two directions. We find, how-
ever, a similar performance for the MLR trained using Eq (42) with category-specific
objectives that correspond to constant activity over the window (see ‘time MRL’ in Fig 11C),
where the motion direction is not well captured as indicated by the the confusion matrix in Fig
11D. This suggests that the first-order statistics override the second-order statistics in the
learning procedure. This confirms that the qualitative difference of our approach from a direct
application of classical machine-learning tools also has practical implications in terms of classi-
fication performance.

Last, we compare the same classification with a recurrent neural network (RNN) trained by
basic back-propagation through time (BPTT) to test in a different manner whether the mean
trajectories as those in Fig 10C can be used for prediction. The learning rules apply with L =5
steps backward in time and the network comprises additional output neurons from the recur-
rently connected hidden neurons, as described in Fig 11E. The objective of the training is for
the RNN to have a larger activity in the output neuron corresponding to the stimulus category.
Details are given in Methods, see Eqs (44) to (47). Among the two implementations of the
RNN, the version with / = 6 involves roughly the same number of weights to optimize than
the covariance perceptron, namely mh + hh + hn = 204 as illustrated in Fig 11E, and yields a
poorer performance of 64% compared to the covariance perceptron. The other version with
h =10 corresponding to mh + hh + hn = 380 weights yields 73%, only slightly better than that
of the covariance perceptron. Further comparison with refinements of RNN like long-short-
term memory units is left for future work, in particular to explore with these moving digits
which measure applied to the input time series yield the best discrimination.

Discussion

This paper presents a new learning theory for the tuning of input-output mappings of a
dynamic linear network model by training its afferent and recurrent connections in a super-
vised manner. The proposed method extracts regularities in the spatio-temporal fluctuations
of input time series, as quantified by their covariances. As an application, we showed how this
can be used to categorize time series: networks can be trained to map several input time series
to a stereotypical output time series that represents the respective category, thus implementing
a ‘covariance perceptron’. We stress that, beyond the application to classification, our results
can be regarded as information compression for the input patterns and our theory could also
be used for other supervised learning schemes like autoencoders.

The conceptual change of perspective compared to many previous studies is that variability
in the time series is here the basis for the information to be learned, namely the second-order
statistics of the co-fluctuating inputs. This view, which is based on dynamical features, thus
contrasts with classical and more “static” approaches that consider the variability as noise,
potentially compromising the information conveyed in the mean activity of the time series.
Beyond asking whether time series can be robustly classified despite their variability, we
instead provide a positive answer to the question if variability can even be employed to

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 25/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

represent information in its covariance structure. Importantly, covariance patterns can involve
time lags and are a genuine metric for time series, describing the propagation of activity
between nodes. In contrast to the application of a measure to time series as a preprocessing
step for machine-learning algorithms like the perceptron, our scheme opens the door to a self-
consistent formulation of information processing of time series in recurrent networks, where
the source signal and the classifier output have the same structure.

A main result is that the covariance perceptron can be trained to robustly classify time series
with various covariance patterns, while observing a few time points only (Fig 5). For practical
applications, the transformation of dynamical information about stimuli into spatial covari-
ances that can be learned turns out to be powerful, as illustrated for the detection of both digit
identity and motion direction with the MNIST digits (Figs 10 and 11). Importantly, our
covariance-based detection can be robustly implemented by networks with limited resources
(number of weights to train, see Fig 11). The other main result is the demonstration that the
covariance perceptron can classify time series with respect to their hidden dynamics, based on
temporal covariance structure only (Fig 9). Taken together, these results demonstrate that the
covariance perceptron can distinguish the statistical dependencies in signals that obey different
dynamical equations.

Covariance-based decoding and representations

The perceptron is a central concept for classification based on artificial neuronal networks,
from logistic regression [19] to deep learning [24, 25]. The mechanism underlying classifica-
tion is the linear separability of the input covariance patterns performed by a threshold on the
output activity, in the same manner as in the classical perceptron for vectors. All “dimensions”
of the output covariance can be used as objectives for the training, cross-covariances and vari-
ances in Q°, as well as time-shifted covariances in matrix Q'. As with the classical perceptron,
classification relies on shaping the input-output mapping, for example by potentiating afferent
weights from an input with high variance to two outputs to generate correlated activity
between the outputs. Note that, in general, the existence of an achievable mapping between the
input patterns and the objective patterns is not guaranteed, even when tuning only afferent
connections with Q°. Nonetheless, the weight optimization aims to find the best solution as
measured by the matrix distance with respect to the objectives (Fig 7). Nonetheless, our results
lay the foundation for covariance perceptrons with multiple layers, including linear feedback
by recurrent connectivity in each layer. The important feature in its design is the consistency
of covariance-based information from inputs to outputs, which enables the use of our covari-
ance-based equivalent of the delta rule for error back-propagation [23]. The generalization to
higher statistical orders seems a natural extension for the proposed mathematical formalism,
but requires dedicated input structures and is thus left for future work.

Although our study is not the first one to train the recurrent connectivity in a supervised
manner, our approach differs from previous extensions of the delta rule [21] or the back-prop-
agation algorithm [23], such as recurrent back-propagation [26] and back-propagation
through time [27-29]. Those algorithms focus on the mean activity based on first-order statis-
tics and, even though they do take temporal information into account (related to the successive
time points in the trajectories over time), they consider the inputs as statistically independent
variables. Moreover, unfolding time corresponds to the adaptation of techniques for feedfor-
ward networks to recurrent networks, but it does not take the effect of the recurrent connectiv-
ity as in the steady-state dynamics considered here. We have shown that this stationary
assumption is not an issue for practical applications, even though signals may strongly deviate
from Gaussian distributions like the MNIST dataset. Further study about finding the best

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 26/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

regularities in input signals for classification, like comparing covariances and profiles of the
average trajectories for MNIST digits, is left for future work. In the context of unsupervised
learning, several rules were proposed to extract information from the spatial correlations of
inputs [42] or their temporal variance [43]. Because the classification of time-warped patterns
can be based on the second-order statistics of the input signals [43], we foresee a potential
application of our supervised learning scheme, as the time-warping transformation preserves
the relative structure of covariances between the input signals (albeit not their absolute
values).

The reduction of dimensionality of covariance patterns —from many input nodes to a
few output nodes— implements an “information compression”. For the same number of
input-output nodes in the network, the use of covariances instead of means makes a higher-
dimensional space accessible to represent input and output, which may help in finding a
suitable projection for a classification problem. It is worth noting that applying a classical
machine-learning algorithm, like the multinomial linear regressor [19], to the vectorized
covariance matrices corresponds to nm(m — 1)/2 weights to tune, to be compared with only
nm weights in our study (with m inputs and » outputs). We have made here a preliminary
exploration of the “capacity” of our covariance perceptron by numerically evaluating its per-
formance in a binary classification when varying the number of input patterns to learn (Fig
6). The capacity for the classical perceptron has been the subject of many theoretical studies
[34, 44, 45]. For the binary classification of noiseless patterns based on a single readout, the
capacity of the classical perceptron is equal to 2m, twice as much as its number of inputs. In
contrast, we have used a network with two outputs that classifies based on the covariance or
the variance difference in Fig 4. A formal comparison between the capacities of the covari-
ance and classical perceptrons has been made in a separate paper [35]. Note that a theory
for the capacity in the “error regime” was also developed for the classical perceptron [46],
which may be relevant here to deal with non-perfect classification and noisy time series
(Figs 5 and 6).

Learning and functional role for recurrent connectivity

Our theory shows that recurrent connections are crucial to transform information contained
in time-lagged covariances into covariances without time lag (Fig 9). Simulations confirm that
recurrent connections can indeed be learned successfully to perform robust binary classifica-
tion in this setting. The corresponding learning equations clearly expose the necessity of train-
ing the recurrent connections. For objectives involving both covariance matrices, Q° and Q',
there must exist an accessible mapping (P°, PY—(Q° Q") determined by A and B. The use for
A may also bring an extra flexibility that broadens the domain of solutions or improve the sta-
bility of learning, even though this was not clearly observed so far in our simulations. A similar
training of afferent and recurrent connectivity was used to decorrelate signals and perform
blind-source separation [40]. This suggests another possible role for A in the global organiza-
tion of output nodes, like forming communities that are independent of each other (irrespec-
tive of the patterns).

The learning equations for A in Theory for learning rules (Methods) can be seen as an
extension of the optimization for recurrent connectivity recently proposed [47] for the multi-
variate Ornstein-Uhlenbeck (MOU) process, which is the continuous-time version of the
MAR studied here. Such update rules fall in the group of natural gradient descents [48] as they
take into account the non-linearity between the weights and the output covariances. We have
shown that a much simpler approximation of the solution of the Lyapunov equation for the
weight updates gives a quasi identical performance (Fig (8)). This approximation greatly

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 27/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

reduces the computational cost of the covariance-based learning rule. It is expected that it may
be insufficient when the recurrent connectivity grows and results in strong network feedback,
in which case Eq (35) may be expanded to incorporate higher orders in A.

Another positive feature of our supervised learning scheme is the stability of the recurrent
weights A for ongoing learning, even when there is no mapping that satisfies all input-output
pairings (Fig 7). This is in line with previous findings [39, 49] and in contrast with unsuper-
vised learning like STDP that requires stabilization or regularization terms, in biology known
as “homeostasis”, to prevent the problematic growth of recurrent weights that often leads to an
explosion of the network activity [36, 37, 50]. It also remains to be explored in more depth
whether such regularizations can be functionally useful in our framework, for example to
improve classification performance.

Extensions to non-linear neuronal dynamics and continuous time

In Section the capacity has been evaluated only for the case of linear dynamics. Including a
non-linearity, as used for classification with the classical perceptron [21], remains to be
explored. Note that for the classical perceptron a non-linearity applied to the dynamics is in
fact the same as applied to the output; this is, however, not so for the covariance perceptron.
The MAR network dynamics in discrete time used here leads to a simple description for the
propagation of temporally-correlated activity. Several types of non-linearities can be envisaged
in recurrently connected networks of the form

et = (x) + ¢<Z%x§> L 1

Here the local dynamics is determined by y and interactions are transformed by the func-
tion ¢. Such non-linearities are expected to vastly affect the covariance mapping in general,
but special cases, like the rectified linear function, preserve the validity of the derivation for the
linear system in Network dynamics (Methods) in a range of parameters. Another point is that
non-linearities cause a cross-talk between statistical orders, meaning that the mean of the
input may strongly affect output covariances and, conversely, input covariances may affect the
mean of the output. This opens the way to mixed decoding paradigms where the relevant
information is distributed in both, means and covariances. Extension of the learning equations
to continuous time MOU processes requires the derivation of consistency equations for the
time-lagged covariances. The inputs to the process, for consistency, themselves need to have
the statistics of a MOU process [51]. This is doable, but yields more complicated expressions
than for the MAR process.

Learning and (de)coding in biological spiking neuronal networks

An interesting application for the present theory is its adaptation to spiking neuronal net-
works. In fact, the biologically-inspired model of spike-timing-dependent plasticity (STDP)
can be expressed in terms of covariances between spike trains [8, 9], which was an inspira-
tion of the present study. The weight structure that emerges because of STDP is determined
by and reflects the the spatio-temporal structure of the input spike trains [11, 52]. STDP-
like learning rules were used for object recognition [53] and related to the expectation-max-
imization algorithm [54]. Although genuine STDP relates to unsupervised learning, exten-
sions were developed to implement supervised learning with a focus on spike patterns [4,
49, 55-58]. A common trait of those approaches is that they mostly apply to feedforward

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 28/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

connectivity only, even though recently also recurrently-connected networks have been
considered.

Instead of focusing on the detailed timing in spike trains in output, our supervised
approach could be transposed to shape the input-output mapping between spike-time
covariances, which are an intermediate description between the full probability distribution
of spike patterns (too complex) and firing rate (too simple). As such, our approach allows
for some flexibility concerning the spike timing (e.g. jittering) and characterization of
input-output patterns, as was explored before for STDP [11]. An important implications of
basing information on covariance-based patterns is that they do not require a reference start
time, because the coding is embedded in relative time lags. The robustness of such represen-
tations in spiking activity is also compatible with the large variability of spiking activity
observed in experiments. This contrasts with supervised learning schemes of spike trains
with detailed timing that have attracted a lot of recent interest [4, 49, 55]. Our theory thus
opens a novel and promising perspective to learn temporal structure of spike trains and pro-
vides a theoretical ground to genuinely investigate learning in recurrently connected neuro-
nal networks.

In addition to the computational approximation of the covariance-based learning rule,
another key question for biological plausibility is whether our scheme can be implemented in
alocal rule, meaning that the weight updates should be calculated from quantities available by
the pre- and post-synaptic neurons. Moreover, the empirical covariances should ideally be
computed online. In the learning equations such as Eq (11), the matrix U*P°B” involved in the
update of weight B can be reinterpreted as a product of input and output, since its matrix ele-

. g .
ment indexed by (7, j') is simply (U P“BT)i,].,

according to Eq (5) with A = 0. Such average quantities can be obtained in an online manner
by smoothing the product of activities x;y; over several time steps. In the presence of recurrent

= 5i’i<xlt<(th>]-1;> = 0,,(xiy;) after using y' = Bx'

connectivity, the learning rule for a given connection can be approximated to use only infor-
mation from “parent” neurons that connect to the target neuron of the tuned connection, as
detailed in Eq (18). Although this leads to a decrease in training performance (Fig (8)), the out-
put covariance pattern can still be shaped toward an objective. One can also note that there is
no reason for separating afferent and recurrent connections in the biology, hence the calcula-
tions in Eq (18) that ignore afferent connections. It remains to further explore how to approxi-
mate more efficiently the covariance-based learning rule in a local manner in the network.

Here we have used arbitrary covariances for the definition of input patterns, but they could
be made closer to examples observed in spiking data, as was proposed earlier for probabilistic
representations of the environment [14]. It is important noting that the observed activity struc-
ture in data (i.e. covariances) can not only be related to neuronal representations, but also to
computations that can be learned (here classification). Studies of noise correlation, which is
akin to the variability of spike counts (i.e. mean firing activity), showed that variability is not
always a hindrance for decoding [30, 31]. Our study instead makes active use of activity vari-
ability and is in line with recent results about stimulus-dependent correlations observed in
data [59]. It thus moves variability into a central position in the quest to understand biological
neuronal information processing.

Methods

Example Python scripts to reproduce some key figures are available at https://github.com/
MatthieuGilson/covariance_perceptron.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 29/38

https://github.com/MatthieuGilson/covariance_perceptron
https://github.com/MatthieuGilson/covariance_perceptron
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

Network dynamics

Here we recapitulate well-known calculations [32] that describe the statistics of the activity in
discrete time in a MAR process in Eq (5), which we recall here:

V=2 A D B (20)
; 3

Our focus are the self-consistency equations when the multivariate outputs y! are driven by
the multivariate inputs x!, whose activity is characterized by the 0-lag covariances P’ and 1-lag
covariances P! = (P’I)T, where T denotes the matrix transpose. We assume stationary statistics
(over the observation period) and require that the recurrent connectivity matrix A has eigen-
values in the unit circle (modulus strictly smaller than 1) to ensure stability. To keep the calcu-
lations as simple as possible, we make the additional hypothesis that P*"" = 0 for n > 2,
meaning that the memory of x only concerns one time lag. Therefore, the following calcula-
tions are only approximations of the general case for x;, which is discussed in the main text
about Fig 9. Note that this approximation is reasonable when the lagged covariances P"
decrease exponentially with the time lag #, as is the case when inputs are a MAR process.

Under those conditions, we define R, = (y!*"x}) and express these matrices in terms of the
inputs as a preliminary step. They obey

R* = AR"! 4+ BP" . (21)

Because we assume P = 0 for n > 2, we have the following expressions

R"™ = 0 forn>2,
R = BP', (22)
R = ABP !4+ BP°.

Using the expression for R, we see that the general expression for the zero-lagged covari-
ance of y; depends on both zero-lagged and lagged covariances of x;:
Q" = AQA" +BP'B" + AR'B" + BR AT

23
AQCA" + BP°B" + ABP~'B" + BP"'TBTAT . 23)

The usual (or simplest) Lyapunov equation [32] in discrete time corresponds to pl=piT=
0 and the afferent connectivity matrix B being the identity with #n = m independent inputs that
are each sent to a single output. Likewise, we obtain the lagged covariance for yi:

Q' AQ'A" + BP'B" + AR'B" + BR"A"
= AQA" + BP'B' + ABP’B" + AABP'B" .

(24)

Note that the latter equation is not symmetric because of our assumption of ignoring P*"* =
0 forn > 2.

Theory for learning rules

We now look into the gradient descent to reduce the error E?, defined for 7 € {0, 1}, between
the network covariance Q" and the desired covariance QF, which we take here as the matrix

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 30/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

distance:
T 1 T T _ 1 T AT \2
E :§”Q -Q HQZQZ(z'liz_QiliQ) : (25)
i io

The following calculations assume the tuning of B or A, or both.

Starting with afferent weights, the derivation of their updates AB; to reduce the error E” at
each optimization step is based on the usual chain rule, here adapted to the case of covari-
ances:

AB

_ @__ Z OE’ anm_— @@an
&« — M 8Bik7 My aQ: . 0B, = M aQ "~ 9B,)

ip,in ipiy

(26)

where 75 is the learning rate for the afferent connectivity and the symbol © defined in Eq (11)
corresponds to the sum after the element-wise product of the two matrices. Note that we use

distinct indices for B and Q". Once again, this expression implies the sum over all indices (7, j')

OE*

oQt .
iy iy

of the covariance matrix Q. The first terms can be seen as an n x n matrix with indices

(ila i2):

OF° L=
o2 -Q @)

The second terms in Eq (26) correspond to a tensor with 4 indices, but we now show that it
can be obtained from the above consistency equations in a compact manner. Fixing j and k
and using Eq (23), the “derivative” of Q° with respect to B can be expressed as

oQ° Q" OB OB OB OB"
= = A—A+—PB"+BP— + A—P'B'+ ABP'—
OB, 0B, ' 0B, 0B, " 0B, OB,
OB OB" 28)
+—— P BIAT 4 BpIT AT |
3B, % B,

Note that the first term on the right-hand side of Eq (23) does not involve B, so it vanishes.
Each of the other terms in Eq (23) involves B twice, so they each give two terms in the above
expression —as when deriving a product. The trick lies in seeing that

aB i/ k!
9B,

= 3,0, (29)

where & denotes the Kronecker delta. In this way we can rewrite the above expression using
the basis # x m matrices U™ that have 0 everywhere except for element (i, k) that is equal to 1.
It follows that the n* tensor element for each (i, k) can be obtained by solving the following
equation:

oQ° oQ° _ _ _ _
o = A£A + U*P'BT + BPU*" + AU*P'B" + ABP~'U*"
0B, OBy, (30)

+ Uikp—lTBTAT + BP—]T UikTAT
which has the form of a discrete Lyapunov equation:

X=AXA"+ % (31)

with the solution X = g—g and X being the sum of 6 terms involving matrix multiplications.
ij

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 31/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

The last step to obtain the desired update for AB;;. in Eq (26) is to multiply the two n x n matri-
ces in Egs (30) and (27) element-by-element and sum over all pairs (i, i,) —or alternatively
vectorize the two matrices and calculate the scalar product of the two resulting vectors.

Now turning to the case of the recurrent weights, we use the same general procedure as
above. We simply substitute each occurrence of A in the consistency equations by a basis
matrix (as we did with U for each occurrence of B), once at a time in the case of matrix prod-
ucts as with the usual derivation. The derivative of Q° in Eq (23) with respect to A gives

o _ 00

% — 81414'1“ + VijQ[)AT +AQOvijT + ViijleT _|_BP71TBTvijT , (32)
y y

where V7 is the basis 7 x n matrix with 0 everywhere except for (i, j) that is equal to 1. This has
the same form as Eq (31) and, once the solution for the discrete Lyapunov equation is calcu-
lated for each pair (i, j), the same element-wise matrix multiplication can be made with Eq (27)
to obtain the weight update AA;;.

Likewise, we compute from Eq (24) the following expressions to reduce the error related to

Q:
an an ik pl pT 17 7ikT ik D0 T 0 7 7ikT
op, = Agp AtUPE +BPUT L AU B4 ABPU)
FAAUPBT 4 AABP'UMT |
and
aQ" aQ") o
9 _ 49 41y yigiaT 4 AQVIT 4+ VIBPBT
04, 04, (34)

+VYABP~'B" + AVYBP'B" .

These expressions are also discrete Lyapunov equations and can be solved as explained
before.

In numerical simulation, the learning rates are fixed to 0.01.

Computational approximation of covariance-based learning rule. The weight updates
are given by solutions of the Lyapunov Eq (31), which can be expressed in terms of power of
the recurrent connectivity A. We consider the drastic approximation that only retains the
zeroth order and ignores all powers of A in the solution:

X = ZAPZAPT ~3.

p>0

(35)

It follows that the weight updates thus computed are simply given by matrix products,

which dramatically reduces the computational cost of their calculation. Practically, this
approximation consists in discarding the terms A % AT, A %AT, A % ATand A %AT in
i ij i)

Egs (30), (32), (33) and (34), respectively. For the case where P° 0, P' # 0 and Q° # 0 (while

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 32/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

Q' =0), Eqs (30) and (32) simply become after using the approximation in Eq (35)

oQ°
6% — UszOBT+BPOUtkT +AUtkP—lBT +ABP—1U1kT
ik
+UikP—ITBTAT +BP—1TUikTAT (36)
% = VIQUA" + AQ'VI" 4 ViBP~'B' + BPIB"VV"

y

Eq (36) can thus be seen as a cut at the second order in A. It is worth noting that the approx-
imation for the weight update of A still involves the terms VIQYAT + AQ°VYT that come from
AQ° AT in Eq (23) following the stationarity assumption.

Classical perceptron rule for mean patterns. As a comparison, we now provide the
equivalent calculations for the weight update for the tuning of the mean activity of the network
by considering Eq (20) without recurrent connections (A;; = 0). We thus define for each output
neuron the mean activity Y, = > ! in the observation window (1 < t < T). Optimizing the
output mean vector Y to match a desired objective Y corresponds to the linear version of the
classical perceptron [19], which can be achieved relying on a gradient descent to reduce the
error E™

1 - 1 _
B =l Y= TP =530 - 1) 37)

J

We restrict our calculations to a feedforward network with only afferent connections, B. In
this case the network dynamics simply correspond to Y = BX, see Eq (9) in the main text. The
derivation of their updates AB;; to reduce the error E™ at each optimization step is based on
the usual chain rule:

AB. — OE™ OE" 0Y; OE" Y, (Y, — V)X
ik = M aBik = M - 8}/} 6Bik = M 8Y1 8Bik = —nlY; i)Yk (38)
for the learning rate 7. It turns out that, in the case of feedforward networks (afferent connec-
tivity only), only the output Y; depends on B and % = X,. This leads to the simplification

OE*

above, after also using % = Y — Y. We obtain an update rule for B that can be expressed in

matrix form:
AB =n,(Y — Y)X" . (39)

This corresponds to the (linear) mean perceptron in Fig 11C. Note that this is different
OE"
oy

from rewriting the sum over jin Eq (38) as 4= ® %’ with the symbol ® corresponding to the

sum after the element-wise product of the two vectors here —as with matrices in Eq (11).
Now we consider a non-linear function ¢ as typically involved in the classical perceptron
[19]:

yi=¢ <2Bikxlt<> : (40)

We can tune the weights By to reduce the error in Eq (37) based on the mean activity over
the observation window, but we can alternatively define an error that considers the output
activities as time-dependent trajectories, that is, in a time resolved manner. In practice, we fix
an observation window defined by 1 < t < T and a desired objective y* that is a multivariate

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 33/38

https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

time series, then define the error E® of the output y' as the sum of vector difference between
the actual and desired trajectories:

1 ¢ = 1 ¢ —t
E=o 1y =7IP=53 0 0, -7) - (41)
t

j
To take into account the non-linearity related to ¢, we adapt the weight update in Eq (39)

. R . . oyt N .
since the derivative of the output with respect to the weight becomes ﬁ = ¢'(3!) x;, with

¥yt =", B,x, being the input argument of the nonlinear function (commonly referred to as
‘net’):

AB; = HBZO_/; _)’5) ¢7,()A’:) xltc) (42)

which is simply the summation of the weight updates for the corresponding errors over time.
This learning rule can also be used with a constant objective y; = y,, in which case the goal of
training is to tune the output mean, see the classical perceptron for time samples ('time MLR’)
in Fig 11C. Note that the non-linearity may capture correlations present in the inputs, as
explained in the main text. In numerical simulation, we use the the logistic function for ¢.

The MLR corresponds to the expression in Eq (40) when ignoring the time superscript. In
that case, the weights B;; can be trained according to Eq (42) for “static” vectors of either mean
activity calculated over the observation window ('mean MLR’) of the vectorized covariance
matrix (cov MLR’). In numerical simulation, we use the scikit-learn library (https://scikit-
learn.org).

Back-propagation through time (BPTT) in recurrent neural network (RNN). Goinga
step further, we consider the same non-linearity applied to the recurrent dynamics in Eq (20)
to build a recurrent neural network (RNN), which also typically involves readout neurons with
connections from the recurrently connected neurons:

yi= ¢(ZJ Aijyjfil + 2k Baxi)

(43)
z; = (b(zj Cijy;) :

Following the literature [27, 28], we refer for this RNN to the neurons with activity y; and z;
as hidden and output neurons, respectively. Back-propagation through time (BPTT) applies
the same type of learning rule as Eq (42) to reduce the error E* = 3. (2f — 5}?)2. For the

“feedforward” connections B and Cjj, it simply yields:

ACi;’ = %Z(Zf _er) ¢I(2;)y;)
it
5 (44)
AB; = ”BZEEQZS()’:)X;?
it

where the error related to the activity of the hidden neuron y; is the back-propagation from
the output error, € = > ,C;(z} — z), and the arguments of the nonlinear functions are
yi =2 A0+ 2 Byx and 2f = 3 .Cyt, respectively. For the recurrent connections A;;

between the hidden neurons, the weight update involves the past activity of yi:

AA; = WAZGf- ¢/()A’f-))’;_l : (45)
Jit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 34/38

https://scikit-learn.org
https://scikit-learn.org
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

Here the learning rule can be repeated a number L of steps backward in time to take into
account temporal effects in how the recurrent connectivity shapes the network activity:

AAz'j = ;/IAZ Z 6:'“ d)/(j/:—u)y}‘—u—l)

j L<t<T
0<u<lL
6lt_,() — 6: , (46)
e;’“ = ZAije;‘“’l for1<u<lL,

where the error €' = ;" is back-propagated via the recurrent connectivity at each step 1 < u <
L. Likewise, the afferent connections By are updated to reduce the error using

AB; = WBZ Z VAR Ev
i L<t<T (47)
0<u<lL

In numerical simulation (Fig 11C), we use the hyperbolic tangent for ¢ in the RNN. The
learning rates are all equal 774 = 175 = 17¢ = 0.01 and the depth for BPTT is L = 5. We define the
desired objective for each category as a constant time series with 1 for the output neuron corre-
sponding to the category and to 0 for all others. Moreover, we discard the L first time points
that depend on initial conditions, meaning that we only use ¢ € [L, T] in Eq (41).

Supporting information

S1 Appendix. Supplementary results. Simulations based on the analytical input-output map-
ping for network with trained afferent and recurrent connectivities and spatio-temporal
covariances.

(PDF)

Author Contributions

Conceptualization: Matthieu Gilson, David Dahmen, Rubén Moreno-Bote, Andrea Insabato,
Moritz Helias.

Methodology: Matthieu Gilson, David Dahmen, Rubén Moreno-Bote, Andrea Insabato,
Moritz Helias.

Writing - original draft: Matthieu Gilson, David Dahmen, Rubén Moreno-Bote, Andrea
Insabato, Moritz Helias.

References
1. Hebb DO. Organization of Behavior; 1949.

2. Hertz J, Krogh A, Palmer RG. Introduction to the theory of neural computation. Addison-Wesley Long-
man; 1991.

3. Swinehart CD, Abbott LF. Supervised learning through neuronal response modulation. Neural Comput.
2005; 17:609-631. https://doi.org/10.1162/0899766053019980 PMID: 15802008

4. Gutig R, Sompolinsky H. The tempotron: a neuron that learns spike timing-based decisions. Nat Neu-
rosci. 2006; 9:420—-428. https://doi.org/10.1038/nn1643 PMID: 16474393

5. Izhikevich EM. Solving the distal reward problem through linkage of STDP and dopamine signaling.
Cereb Cortex. 2007; 17:2443-2452. https://doi.org/10.1093/cercor/bhl152 PMID: 17220510

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 35/38

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008127.s001
https://doi.org/10.1162/0899766053019980
http://www.ncbi.nlm.nih.gov/pubmed/15802008
https://doi.org/10.1038/nn1643
http://www.ncbi.nlm.nih.gov/pubmed/16474393
https://doi.org/10.1093/cercor/bhl152
http://www.ncbi.nlm.nih.gov/pubmed/17220510
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

6. Markram H, Libke J, Frotscher M, Sakmann B. Regulation of Synaptic Efficacy by Coincidence of Post-
synaptic APs and EPSPs. 1997; 275:213-215.

7. Bi G, Poo M. Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing,
Synaptic Strength, and Postsynaptic Cell Type. 1998; 18:10464—10472.

8. Kempter R, Gerstner W, Van Hemmen J. Hebbian learning and spiking neurons. Physical Review E.
1999; 59(4):4498-4514. https://doi.org/10.1103/PhysRevE.59.4498

9. Gilson M, Burkitt A, van Hemmen LJ. STDP in Recurrent Neuronal Networks. Front Comput Neurosci.
2010; 4:28. https://doi.org/10.3389/fncom.2010.00023 PMID: 20890448

10. Masquelier T, Guyonneau R, Thorpe SJ. Spike timing dependent plasticity finds the start of repeating
patterns in continuous spike trains. PLoS One. 2008; 3:e1377. https://doi.org/10.1371/journal.pone.
0001377 PMID: 18167538

11. Gilson M, Masquelier T, Hugues E. STDP allows fast rate-modulated coding with Poisson-like spike
trains. PLoS Comput Biol. 2011; 7:e1002231. https://doi.org/10.1371/journal.pcbi.1002231 PMID:
22046113

12. Arieli A, Sterkin A, Grinvald A, Aertsen A. Dynamics of ongoing activity: explanation of the large variabil-
ity in evoked cortical responses. 1996; 273(5283):1868-1871.

13. Mainen ZF, Sejnowski TJ. Reliability of Spike Timing in Neocortical Neurons. 1995; 268:1503—1506.

14. Berkes P, Orban G, Lengyel M, Fiser J. Spontaneous cortical activity reveals hallmarks of an optimal
internal model of the environment. Science. 2011; 331:83-87. https://doi.org/10.1126/science.1195870
PMID: 21212356

15. Orbéan G, Berkes P, Fiser J, Lengyel M. Neural Variability and Sampling-Based Probabilistic Represen-
tations in the Visual Cortex. Neuron. 2016; 92:530-543. https://doi.org/10.1016/j.neuron.2016.09.038
PMID: 27764674

16. Riehle A, Griin S, Diesmann M, Aertsen A. Spike synchronization and rate modulation differentially
involved in motor cortical function. Science. 1997; 278:1950-1953. https://doi.org/10.1126/science.
278.5345.1950 PMID: 9395398

17. Kilavik BE, Roux S, Ponce-Alvarez A, Confais J, Grin S, Riehle A. Long-term modifications in motor
cortical dynamics induced by intensive practice. J Neurosci. 2009; 29:12653-12663. https://doi.org/10.
1523/JNEUROSCI.1554-09.2009 PMID: 19812340

18. ShahidiN, Andrei AR, Hu M, Dragoi V. High-order coordination of cortical spiking activity modulates per-
ceptual accuracy. Nat Neurosci. 2019; 22:1148-1158. https://doi.org/10.1038/s41593-019-0406-3
PMID: 31110324

19. Bishop CM. Pattern Recognition and Machine Learning. 978-0-387-31073-2. Springer; 2006.

20. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the
brain. Psychol Rev. 1958; 65:386—408. https://doi.org/10.1037/h0042519 PMID: 13602029

21. Minsky ML, Papert SA. Perceptrons. Cambridge MIT Press; 1969.

22, Widrow B, Hoff ME. Adaptive switching circuits. In: IRE, editor. 1960 IRE WESCON Convention Record
(Part 4); 1960. p. 96-104.

23. Rumelhart David E, Hinton Geoffrey E, Williams Ronald J. Learning representations by back-propagat-
ing errors. 1986; 323:533-536.

24. LeCunY, BengioY, Hinton G. Deep learning. Nature. 2015; 521:436—444. https://doi.org/10.1038/
nature14539 PMID: 26017442

25. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015; 61:85-117. https:/
doi.org/10.1016/j.neunet.2014.09.003 PMID: 25462637

26. Pineda FJ. Generalization of back-propagation to recurrent neural networks. Phys Rev Lett. 1987;
59:2229-2232. https://doi.org/10.1103/PhysRevLett.59.2229 PMID: 10035458

27. Wiliams RJ, Zipser D. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks.
Neural Comput. 1989; 1:270-280. https://doi.org/10.1162/neco.1989.1.2.270

28. Werbos PJ. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE.
1990; 78:1550—-1560. https://doi.org/10.1109/5.58337

29. Pearlmutter BA. Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Trans
Neural Netw. 1995; 6:1212—1228. https://doi.org/10.1109/72.410363 PMID: 18263409

30. Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nat Rev
Neurosci. 2006; 7:358—366. https://doi.org/10.1038/nr 1888 PMID: 16760916

31. Moreno-Bote R, Beck J, Kanitscheider I, Pitkow X, Latham P, Pouget A. Information-limiting correla-
tions. Nat Neurosci. 2014; 17:1410-1417. https://doi.org/10.1038/nn.3807 PMID: 25195105

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 36/38

https://doi.org/10.1103/PhysRevE.59.4498
https://doi.org/10.3389/fncom.2010.00023
http://www.ncbi.nlm.nih.gov/pubmed/20890448
https://doi.org/10.1371/journal.pone.0001377
https://doi.org/10.1371/journal.pone.0001377
http://www.ncbi.nlm.nih.gov/pubmed/18167538
https://doi.org/10.1371/journal.pcbi.1002231
http://www.ncbi.nlm.nih.gov/pubmed/22046113
https://doi.org/10.1126/science.1195870
http://www.ncbi.nlm.nih.gov/pubmed/21212356
https://doi.org/10.1016/j.neuron.2016.09.038
http://www.ncbi.nlm.nih.gov/pubmed/27764674
https://doi.org/10.1126/science.278.5345.1950
https://doi.org/10.1126/science.278.5345.1950
http://www.ncbi.nlm.nih.gov/pubmed/9395398
https://doi.org/10.1523/JNEUROSCI.1554-09.2009
https://doi.org/10.1523/JNEUROSCI.1554-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19812340
https://doi.org/10.1038/s41593-019-0406-3
http://www.ncbi.nlm.nih.gov/pubmed/31110324
https://doi.org/10.1037/h0042519
http://www.ncbi.nlm.nih.gov/pubmed/13602029
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
https://doi.org/10.1103/PhysRevLett.59.2229
http://www.ncbi.nlm.nih.gov/pubmed/10035458
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/72.410363
http://www.ncbi.nlm.nih.gov/pubmed/18263409
https://doi.org/10.1038/nrn1888
http://www.ncbi.nlm.nih.gov/pubmed/16760916
https://doi.org/10.1038/nn.3807
http://www.ncbi.nlm.nih.gov/pubmed/25195105
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

32. Lutkepohl H. New introduction to multiple time series analysis. Springer Science & Business Media;
2005.

33. Cover TM. Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in
Pattern Recognition. IEEE Transactions on Electronic Computers. 1965; EC-14:326—-334. https://doi.
org/10.1109/PGEC.1965.264137

34. Gardner E. The space of interactions in neural network models. Journal of Physics A: Mathematical and
General. 1988; 21:257.

35. Dahmen D, Gilson M, M H. Capacity of the covariance perceptron. J Phys A. in press; p. https://doi.org/
10.1088/1751-8121/ab82dd.

36. Zenke F, Hennequin G, Gerstner W. Synaptic plasticity in neural networks needs homeostasis with a
fast rate detector. PLoS Comput Biol. 2013; 9:e1003330. https://doi.org/10.1371/journal.pcbi. 1003330
PMID: 24244138

37. Sprekeler H. Functional consequences of inhibitory plasticity: homeostasis, the excitation-inhibition bal-
ance and beyond. Curr Opin Neurobiol. 2017; 43:198-203. https://doi.org/10.1016/j.conb.2017.03.014
PMID: 28500933

38. Sussillo D, Abbott LF. Generating coherent patterns of activity from chaotic neural networks. Neuron.
2009; 63:544-557. https://doi.org/10.1016/j.neuron.2009.07.018 PMID: 19709635

39. Gilra A, Gerstner W. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural
network. Elife. 2017; 6:28295. https://doi.org/10.7554/eLife.28295

40. Choi S, Cichocki A, Amari S. Equivariant nonstationary source separation. Neural Netw. 2002; 15:121—
130. https://doi.org/10.1016/S0893-6080(01)00137-X PMID: 11958485

41. LecunY, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE. 1998; 86:2278-2324. https://doi.org/10.1109/5.726791

42. OjaE. A simplified neuron model as a principal component analyzer. J Math Biol. 1982; 15:267-273.
https://doi.org/10.1007/BF00275687 PMID: 7153672

43. Barak O, Tsodyks M. Recognition by variance: learning rules for spatiotemporal patterns. Neural Com-
put. 2006; 18:2343-2358. https://doi.org/10.1162/neco.2006.18.10.2343 PMID: 16907629

44. Barak O, Rigotti M. A Simple Derivation of a Bound on the Perceptron Margin Using Singular Value
Decomposition. Neural Computation. 2011; 23:1935-1943. https://doi.org/10.1162/NECO_a_00152

45. Shinzato T, Kabashima Y. Perceptron capacity revisited: classification ability for correlated patterns.
Journal of Physics A: Mathematical and Theoretical. 2008; 41(32):324013. https://doi.org/10.1088/
1751-8113/41/32/324013

46. Brunel N, Nadal JP, Toulouse G. Information capacity of a perceptron. Journal of Physics A: Mathemati-
cal and General. 1992; 25:5017-5038. https://doi.org/10.1088/0305-4470/25/19/015

47. Gilson M, Moreno-Bote R, Ponce-Alvarez A, Ritter P, Deco G. Estimation of Directed Effective Connec-
tivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome. PLoS Comput
Biol. 2016; 12:1004762. https://doi.org/10.1371/journal.pcbi.1004762 PMID: 26982185

48. Amari Si. Natural Gradient Works Efficiently in Learning. Neural Computation. 1998; 10:251-276.
https://doi.org/10.1162/089976698300017746

49. Shrestha SB, Song Q. Robust spike-train learning in spike-event based weight update. Neural Netw.
2017; 96:33—46. https://doi.org/10.1016/j.neunet.2017.08.010 PMID: 28957730

50. Zheng P, Dimitrakakis C, Triesch J. Network self-organization explains the statistics and dynamics of
synaptic connection strengths in cortex. PLoS Comput Biol. 2013; 9:e1002848. https://doi.org/10.1371/
journal.pcbi.1002848 PMID: 23300431

51. Bercu B, Proia F, Savy N. On Ornstein—Uhlenbeck driven by Ornstein—Uhlenbeck processes. Statistics
and Probability Letters. 2014; 85:36—44. https://doi.org/10.1016/j.spl.2013.11.002

52. Gilson M, Fukai T, Burkitt AN. Spectral analysis of input spike trains by spike-timing-dependent plastic-
ity. PLoS Comput Biol. 2012; 8:e1002584. https://doi.org/10.1371/journal.pcbi. 1002584 PMID:
22792056

53. Kheradpisheh SR, Ganjtabesh M, Thorpe SJ, Masquelier T. STDP-based spiking deep convolutional
neural networks for object recognition. Neural Netw. 2018; 99:56—67. https://doi.org/10.1016/j.neunet.
2017.12.005 PMID: 29328958

54. Nessler B, Pfeiffer M, Buesing L, Maass W. Bayesian computation emerges in generic cortical microcir-
cuits through spike-timing-dependent plasticity. PLoS Comput Biol. 2013; 9:e1003037. https://doi.org/
10.1371/journal.pcbi.1003037 PMID: 23633941

55. Ponulak F, Kasinski A. Supervised learning in spiking neural networks with ReSuMe: sequence learn-
ing, classification, and spike shifting. Neural Comput. 2010; 22:467-510. https://doi.org/10.1162/neco.
2009.11-08-901 PMID: 19842989

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 37/38

https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1088/1751-8121/ab82dd
https://doi.org/10.1088/1751-8121/ab82dd
https://doi.org/10.1371/journal.pcbi.1003330
http://www.ncbi.nlm.nih.gov/pubmed/24244138
https://doi.org/10.1016/j.conb.2017.03.014
http://www.ncbi.nlm.nih.gov/pubmed/28500933
https://doi.org/10.1016/j.neuron.2009.07.018
http://www.ncbi.nlm.nih.gov/pubmed/19709635
https://doi.org/10.7554/eLife.28295
https://doi.org/10.1016/S0893-6080(01)00137-X
http://www.ncbi.nlm.nih.gov/pubmed/11958485
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/BF00275687
http://www.ncbi.nlm.nih.gov/pubmed/7153672
https://doi.org/10.1162/neco.2006.18.10.2343
http://www.ncbi.nlm.nih.gov/pubmed/16907629
https://doi.org/10.1162/NECO_a_00152
https://doi.org/10.1088/1751-8113/41/32/324013
https://doi.org/10.1088/1751-8113/41/32/324013
https://doi.org/10.1088/0305-4470/25/19/015
https://doi.org/10.1371/journal.pcbi.1004762
http://www.ncbi.nlm.nih.gov/pubmed/26982185
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1016/j.neunet.2017.08.010
http://www.ncbi.nlm.nih.gov/pubmed/28957730
https://doi.org/10.1371/journal.pcbi.1002848
https://doi.org/10.1371/journal.pcbi.1002848
http://www.ncbi.nlm.nih.gov/pubmed/23300431
https://doi.org/10.1016/j.spl.2013.11.002
https://doi.org/10.1371/journal.pcbi.1002584
http://www.ncbi.nlm.nih.gov/pubmed/22792056
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1016/j.neunet.2017.12.005
http://www.ncbi.nlm.nih.gov/pubmed/29328958
https://doi.org/10.1371/journal.pcbi.1003037
https://doi.org/10.1371/journal.pcbi.1003037
http://www.ncbi.nlm.nih.gov/pubmed/23633941
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1162/neco.2009.11-08-901
http://www.ncbi.nlm.nih.gov/pubmed/19842989
https://doi.org/10.1371/journal.pcbi.1008127

PLOS COMPUTATIONAL BIOLOGY The covariance perceptron

56. Gutig R, Gollisch T, Sompolinsky H, Meister M. Computing complex visual features with retinal spike
times. PLoS One. 2013; 8:e53063. https://doi.org/10.1371/journal.pone.0053063 PMID: 23301021

57. Gardner B, Griining A. Supervised Learning in Spiking Neural Networks for Precise Temporal Encod-
ing. PLoS One. 2016; 11:e0161335. https://doi.org/10.1371/journal.pone.0161335 PMID: 27532262

58. Zenke F, Ganguli S. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks. Neural
Comput. 2018; 30:1514—1541. https://doi.org/10.1162/neco_a_01086 PMID: 29652587

59. Posanil, Cocco S, Jezek K, Monasson R. Functional connectivity models for decoding of spatial repre-
sentations from hippocampal CA1 recordings. J Comput Neurosci. 2017; 43:17-33. https://doi.org/10.
1007/s10827-017-0645-9 PMID: 28484899

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008127 October 12, 2020 38/38

https://doi.org/10.1371/journal.pone.0053063
http://www.ncbi.nlm.nih.gov/pubmed/23301021
https://doi.org/10.1371/journal.pone.0161335
http://www.ncbi.nlm.nih.gov/pubmed/27532262
https://doi.org/10.1162/neco_a_01086
http://www.ncbi.nlm.nih.gov/pubmed/29652587
https://doi.org/10.1007/s10827-017-0645-9
https://doi.org/10.1007/s10827-017-0645-9
http://www.ncbi.nlm.nih.gov/pubmed/28484899
https://doi.org/10.1371/journal.pcbi.1008127

