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Abstract
Understanding the forces that shape patterns of genetic variation across the genome is a major aim in evolutionary
genetics. An emerging insight from analyses of genome-wide polymorphism and divergence data is that selection
on linked sites can have an important impact on neutral genetic variation. However, in contrast to Drosophila,
which exhibits a signature of recurrent hitchhiking, many plant genomes studied so far seem to mainly be affected
by background selection. Moreover, many plants do not exhibit classic signatures of linked selection, such as a cor-
relation between recombination rate and neutral diversity. In this review, I discuss the impact of genome architecture
and mating system on the expected signature of linked selection in plants and review empirical evidence for linked
selection, with a focus on plant model systems. Finally, I discuss the implications of linked selection for inference of
demographic history in plants.
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INTRODUCTION
Understanding the forces that shape genetic variation

is of great general as well as applied interest. As a

result of recent massive advances in sequencing tech-

nologies, we now have access to an unprecedented

amount of genomic data (e.g. [1–5]). However, des-

pite increasing data availability, many challenges

remain when it comes to understanding what evo-

lutionary forces dominate in shaping patterns of

polymorphism across genomes.

Since the seminal work of Begun and Aquadro [6]

it has been recognized that the interaction between

selection and recombination, or linked selection, can

have a profound impact on levels of genetic variation

across the genome. This is true for different forms of

selection: under a hitchhiking model, the increase in

frequency of a beneficial mutation results in a local

reduction of genetic variation as linked neutral vari-

ants are swept to fixation along with the beneficial

mutation [7, 8] (Table 1). Under a background se-

lection model, the continued removal of deleterious

alleles by purifying selection also results in locally

reduced variation at linked sites [9, 10] (Table 1).

Finally, interference between linked selected variants

reduces the efficacy of selection (Hill–Robertson

interference; [11]). A common feature of most

forms of linked selection is that they are expected

to result in a characteristic signature of reduced levels

of neutral variation in low-recombination regions of

the genome that are more effected by selection at

linked sites.

An emerging insight from analyses of genome-

wide polymorphism and divergence data is that ef-

fects of linked selection may be much more pervasive

than previously thought [12–14]. Indeed, it has been

suggested that in some organisms, such as e.g.

Drosophila simulans, most neutral sites in the genome

have been affected by linked selection in the form of

recurrent hitchhiking [13] (Box 1). However, while

the role of linked selection is well established for

Drosophila, the case is less clear when it comes to

plants, which in many cases have not exhibited clas-

sical signatures of linked selection, such as a correl-

ation between recombination rate and level of
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neutral diversity [15–17]. Here, I will discuss how

plant genome architecture and mating system affect

the signature of linked selection, review empirical

evidence for linked selection, with a focus on plant

model systems, and discuss the implications of linked

selection for the estimation of demographic history

in plants.

THE IMPACTOF LINKED
SELECTIONON PLANTGENOMIC
VARIATION
Models of linked selection predict a positive correl-

ation between recombination rates and levels of neu-

tral diversity; however, this prediction only holds if

the rate and intensity of selection are uniform across

the genome. If the density of selected sites varies, a

more general expectation is that neutral diversity will

depend on the density of selected sites per recombi-

national map unit [10, 18, 19]. Thus, in contrast to

neutral models, the specifics of genome architecture

(e.g. density of genes and other functional elements,

recombination rate variation, chromosome number

and length) are important for the distribution of neu-

tral variation under linked selection models.

A positive association between recombination rate

and neutral polymorphism was observed early on in

several plant species, including sea beets [20], Aegilops
[21] and tomatoes [22]. However, the strength of the

association between recombination rate and diversity

was often considerably weaker than that seen in

Drosophila (e.g. [23]). Moreover, in Arabidopsis thali-
ana, early studies found no correlation between re-

combination rate and neutral diversity [15, 24].

Likewise, an early study in Arabidopsis lyrata found

no general reduction of non-coding polymorphism

in low-recombination regions close to centromeres

[16]. However, when recombination rates and gene

densities are correlated, as they are in Arabidopsis [25],

linked selection can result in a negative correlation

between functional density and neutral diversity

rather than the typical pattern of reduced diversity

in low-recombination regions. Such a negative cor-

relation between gene density and neutral diversity

has indeed been observed in A. thaliana [15, 26]. A

similar pattern was recently observed in Oryza rufipo-
gon, where it was shown to be consistent with the

action of background selection [17]. In the model

legume Medicago truncatula, there is both a positive

correlation between recombination rate and silent

diversity, and a negative correlation between gene

density and silent diversity [27]. In contrast, a nega-

tive correlation between gene density and neutral

diversity has so far not been observed in A. lyrata
[16], although this remains to be revisited using

genome-wide data, now that the A. lyrata genome

sequence is available [28].

When can we expect linked selection to result in

a negative correlation between gene density and

neutral diversity? This will depend on details of

genome architecture, as well as on plant life history

traits. In plants, a potentially important factor under-

lying variation in linked selection is variation in the

mating system. Because self-fertilization (selfing) re-

sults in a lower degree of effective recombination,

the extent of linkage disequilibrium is expected to be

longer in selfers (Box 2), and linked selection is

therefore expected to have an impact over larger

genomic distances in highly, but not exclusively, self-

ing species [29]. However, aspects of genome archi-

tecture, such as correlations between the density of

sites under selection and the recombination rate can

obscure the signature of linked selection.

Box1:Types of selective sweeps
‘Soft sweeps’ occur when positive selection acts to increase

the frequency of several equally beneficial alleles on different

genetic backgrounds, in contrast to ‘hard sweeps’, which in-

volve selective fixation of a new beneficial mutation. ‘Partial

sweeps’ occur when selection acts on multiple loci that are

involved in adaptation, but does not necessarily lead to fix-

ation of beneficial alleles at any of them. Finally, ‘recurrent

hitchhiking’ occurs when selective sweeps happen repeatedly

over evolutionary time. Hard sweeps and recurrent hitchhik-

ing often lead to a distinguishable signature of elevated di-

vergence at sites under selection coupled with reduced silent

diversity and skewed allele frequency distributions in the

vicinity of those sites. In contrast, the signature of partial

and soft sweeps can be considerably more difficult to detect.

Table 1: Glossary of linked selection

Term Explanation

Linked selection When positive or purifying selection
affects linked genetic variation.

Selective sweep When positive selection on a beneficial
allele leads to a rapid increase in its frequency.
This process generally leads to reduced
polymorphism at linked sites.

Background
selection

When purifying selection on deleterious alleles
leads to reduced diversity at linked sites.
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To investigate when a signature of linked selec-

tion would be expected to be evident in species

with a genome architecture similar to those of A.
thaliana and A. lyrata, I modelled the expected re-

duction of neutral diversity under the background

selection model of Hudson and Kaplan [10], clo-

sely following the approach used in Rockman

et al. [30] and Flowers et al. [17]. Briefly, the

method of Hudson and Kaplan ([10]; Equation

(15)) allows one to estimate the expected reduc-

tion of neutral diversity in discrete intervals across

a chromosome, with the effect of background se-

lection on neutral diversity expressed as a function

of the recombination rate and the proportion of

sites subject to deleterious mutations in linked

intervals. The modification of Rockman et al.
[30] incorporates the effects of partial selfing or

other deviations from panmixia on effective re-

combination rates through a scaling factor, the

index of panmixia (P). Calculations were per-

formed over a grid of values of P and a combined

parameter incorporating both the intensity of se-

lection and the dominance coefficient (sh). The

dominance coefficient is included because domin-

ant mutations are expected to be more efficiently

selected against than recessive alleles, especially

when rare. The considered values of P were

equally spaced on a log scale between 0.002 and

1, and those for sh were equally spaced on a log

scale between 5� 10�5 and 0.5.

Figures 1 and 2 show the expected effect of back-

ground selection on neutral diversity in A. thaliana
and A.lyrata, respectively, over a range of outcrossing

rates and varying strengths of selection, and with

estimates of recombination rates and densities of se-

lected sites based on empirical data. In these figures,

the diploid genome-wide deleterious mutation rate

U is assumed to be 0.33 and 0.32 for A. thaliana and

A. lyrata, respectively. These values for U are based

on estimates of on the proportion of sites under

constraint of 0.177 for A. thaliana and 0.113 for A.
lyrata [31], a genome size of 135 Mb for A. thaliana
and 206.7 Mb for A. lyrata, and a mutation rate of

7.0� 10�9 for both species [32]. Recombination rate

estimates for A. thaliana are based on the P66 cross in

Salomé et al. [33] and for A. lyrata they are based on

Aalto et al. [34]. The proportion of sites subject to

deleterious mutation in each interval is based on

conserved regions identified in Haudry et al. [31].

In both species, the genomic impact of back-

ground selection is expected to result in a negative

correlation between gene density and neutral diver-

sity, as long as there is not complete selfing (and/or

other strong deviations from panmixia) and as long as

purifying selection is not very strong (Figures 1 and

2). Furthermore, the model predicts higher levels of

neutral diversity in pericentromeric regions, which

harbor a lower density of sites subject to deleterious

mutations. This is not strongly dependent on as-

sumptions regarding U, as results are qualitatively

similar for values of U of 0.15 and 0.60

(Supplementary Figures S1–S4).

In A. thaliana and A. lyrata, analyses of the distri-

bution of fitness effects for non-synonymous muta-

tions suggest that weak purifying selection is the

predominant mode of selection and there is little

evidence for high rates of adaptive non-synonymous

fixations [35–37]. Furthermore, outcrossing rates

have been estimated to be �3% in A. thaliana [38].

Under this level of outcrossing and with weak selec-

tion, a clear signature of background selection is a

negative relationship between gene density and neu-

tral diversity. This pattern has indeed been observed

in A. thaliana [15]. Similar results have also been ob-

tained for M.truncatula [39], suggesting that the nega-

tive correlation between gene density and silent

diversity in this species [27] could also be explained

by background selection. The model also predicts

that the signature of background selection should

be weaker in outcrossers, such as A. lyrata, in line

with empirical observations [16]. However, elevated

neutral diversity in low-recombination pericentro-

meric regions, which has been observed in A. lyrata
[16], is consistent with the action of weak back-

ground selection (Figure 2). Qualitatively, therefore,

population genetic patterns in A. thaliana and

A. lyrata seem to fit a simple model of background

selection quite well.

The patterns observed in many plant species so

far seem to be consistent with a major role for

weak purifying selection in shaping patterns of

Box 2: Effects ofmating systemoneffective recombi-
nation rates and linkage disequilibrium
‘Linkage disequilibrium’ is defined as the non-random asso-

ciation of alleles among loci. Recombination breaks down

allelic associations in double heterozygotes. Because self-fer-

tilization reduces heterozygosity, recombination is less effi-

cient at breaking up allelic associations in self-fertilizing

species. Linkage disequilibrium can therefore be more exten-

sive in self-fertilizers.
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polymorphism, with linked selection mainly having

an impact on the genomic distribution of neutral

variation in selfing taxa. It is currently not clear

why plants should be experiencing less recurrent

hitchhiking than for instance Drosophila. Possible

explanations include factors that reduce the efficacy

of natural selection relative to drift, such as low

effective population sizes, strong population struc-

ture[36, 40], or effects of mating system on adap-

tation [41, 42]. These effects have recently been

reviewed thoroughly [43, 44] and hence will not

be covered in more detail here. However, it

should be noted that evidence for recurrent hitch-

hiking has recently been found in a plant species;

the outcrossing species Capsella grandiflora [45]. This

species has relatively weak population structure, a

large effective population size and low levels of

linkage disequilibrium, factors that are expected

to render natural selection more effective [36].

To further elucidate when we can expect to ob-

serve recurrent hitchhiking in plants, genomic data

for more species with a range of outcrossing rates

and effective population sizes are required.

Another explanation for the relative dearth of

evidence for recurrent hitchhiking in plants could

be that forms of adaptation that do not necessarily

lead to a signature of species-wide sweeps are

common in plants. Local adaptation is one such

form of selection that is not expected to lead to

species-wide sweep signatures. There is increasing

evidence for local adaptation in A. thaliana, both

from reciprocal transplant studies [46] and from

Figure 1: Expected impact of background selection on neutral diversity in A. thaliana. (A) The predicted reduction
in neutral diversity (ratio of neutral diversity with versus without background selection) is plotted over a grid of
two parameters which measure the strength of selection (sh, a combined parameter incorporating the selection in-
tensity and the dominance coefficient) and the deviation from panmixia (P). Dots indicate the parameter combin-
ations plotted in panels (B) and (C). The three different values of P correspond to outcrossing rates of 0.06%, 3.9%
and 29.9%, assuming all deviation from panmixia is a result of self-fertilization, and the sh values are 5�10�5,
3�10�3 and 0.1. (B) Relative proportions of neutral diversity across A. thaliana chromosome1 for the nine parameter
combinations indicated in A. Grey boxes mark the centromeric region on chromosome 1. (C) Conditions under
which background selection is expected to lead to a negative correlation between gene density and neutral diversity.
The predicted reduction of neutral diversity under background selection is shown for four quartiles of gene density,
ranging from those with the lowest gene density (Q1) to those with the highest gene density (Q4).
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studies that have quantified fitness components in

mapping populations grown in the field [47].

Evidence for local adaptation has also been found

using genomic approaches that search for correl-

ations between allele frequencies and environmen-

tal variables (e.g. [48, 49]) and by combining

genomic analyses with common garden experi-

ments [50] to identify locally adaptive alleles.

However, the extent to which local adaptation

affects patterns of polymorphism genome-wide is

still an open question in A. thaliana as well as in

most other plant species.

While recurrent hitchhiking may be rare in

plants, this does not preclude an important role

for selective sweeps in plant adaptation. For in-

stance, a recent study that analysed genome se-

quences from 180 lines of A. thaliana from

Sweden found many signatures of selective

sweeps, including a massive sweep on chromosome

1 involving a 700-kb transposition [51]. There is

also evidence for partial selective sweeps in A.
thaliana [52], but the general importance of differ-

ent forms of sweeps, such as partial and soft sweeps

(Box 1) remains unclear.

Linked selection is also expected to have a major

impact on levels of population differentiation. If

there is diversifying selection, with positive selection

driving alleles to high frequencies in some but not all

populations under study, increased differentiation is

expected at loci under selection, as well as at closely

linked loci [53]. Similarly, background selection can

lead to elevated FST, particularly in regions of low

recombination, because it decreases the effective

population size experienced by linked loci [54], al-

though the locus under selection itself is expected to

exhibit reduced FST. Thus, both forms of selection

are expected to result in a negative correlation

between recombination rate and FST [55].

Distinguishing between these hypotheses requires

examining additional measures of differentiation

Figure 2: Expected impact of background selection on neutral diversity in A. lyrata. (A) Predicted reduction in
neutral diversity over the same grid of the index of panmixia and the compound selection parameter as in Figure
1A. (B) Relative proportions of neutral diversity across A. lyrata chromosome1 for the nine parameter combinations
indicated in A. Grey boxes mark the approximate location of the centromere. (C) Conditions under which back-
ground selection should lead to a negative correlation between gene density and neutral diversity. Expected reduc-
tions in neutral diversity under background selection are shown separately for four gene density quartiles labelled
Q1 to Q4, ranging from lowest to highest gene density.
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that do not rely on within-population diversity;

under background selection no elevation of absolute

divergence is expected [53, 54]. This contrast was

recently used to demonstrate that elevated values of

FST on Silene latifolia Y-chromosomes are not a result

of local adaptation, but instead caused by other pro-

cesses reducing variability on Y-chromosomes [56].

Many studies have conducted genome scans in plants

with the purpose of identifying candidate loci for

local adaptation (reviewed in Strasburg et al. [57]),

but these do not usually examine correlations be-

tween population differentiation and recombination

rates, perhaps because estimates of recombination

rates have previously not been available for many

non-model species. With the recent rapid advances

in genome sequencing and genotyping methods, this

area seems ripe for further investigation.

EFFECTS OF PLANTGENOME SIZE
VARIATIONON LINKED
SELECTION
Plants vary over 1000-fold in genome size, due to

polyploidy and variation in the content of repetitive

elements [58]. This might have consequences for the

impact of linked selection. In background selection

models, a key parameter is the genome-wide dele-

terious mutation rate, U, a rough estimate of which

can be obtained as a product of the mutation rate,

the genome size, and the proportion of sites under

constraint [59]. If plant genome-size variation affects

U, it should also affect the impact of background

selection. For instance, if polyploidization leads to

relaxed selection on duplicate genes genome-wide,

as theory predicts [60], background selection may be

relaxed in polyploid genomes. Studies of paleopoly-

ploid genomes, such as that of A. thaliana, suggest

that duplicate gene loss is indeed the most frequent

outcome of whole-genome duplication [61]. On the

other hand, duplicate genes that are retained experi-

ence elevated levels of purifying selection [62].

Genome size increases due to expansion of repetitive

elements may also be associated with reduced re-

combination rates, as the rate of crossovers is gener-

ally reduced in heterochromatic regions [58, 63].

Exploring the effects on linked selection when

there are concomitant changes in genome size, re-

combination rates and levels of constraint will thus

be important for interpretation of broad comparative

genomic studies of the effects of linked selection in

plants.

CONSEQUENCESOF LINKED
SELECTION FORDEMOGRAPHIC
INFERENCE IN PLANTS
If linked selection is pervasive, patterns of variation

at neutral sites linked to selected sites may largely

reflect the rate and strength of selection (i.e. gen-

etic draft; [64]), rather than demographic history.

In a recent simulation study using realistic param-

eter estimates for human data, Messer and Petrov

[65] demonstrated that linked selection can lead to

significant skews in synonymous site frequency

spectra, to the extent that demographic expansions

were falsely inferred. The skew was exacerbated

under higher levels of adaptive fixations, but was

present at rates of adaptation as low as 0.1. The

proportion of adaptive fixations at non-synonym-

ous sites have been estimated to be higher than

this in several plant species (e.g. Populus [66], C.
grandiflora [36], and Helianthus [40, 67]). Indeed, a

recent study of genomic patterns of variation in C.
grandiflora found evidence for recurrent hitchhiking,

as well as a skew towards rare alleles at synonym-

ous sites [45], consistent with the results of Messer

and Petrov [65]. While the exact effects of linked

selection should be examined using simulations

with realistic settings for the study species in ques-

tion as well as with empirical data, these results

suggest that care should be taken when choosing

what sites for use for demographic inference. In

the human literature, studies are already starting

to appear that take this consideration seriously

and consequently analyse demographic history

using non-coding regions far from sites under se-

lection (e.g. [68]). Such approaches may be more

difficult in plants, as plant non-coding regions can

be difficult to align reliably due to their dynamic

nature and often high content of repetitive elem-

ents. However, with an improved understanding of

the impact of linked selection in plant genomes, it

is likely that considerations of the effects of linked

selection will also become important for demo-

graphic inference in plants.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Plant genomic variation 273

http://bfgp.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/elu009/-/DC1
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


Key Points

� Signatures of linked selection in plants often differ from those in
animals, and taking accountof variation in the densityof selected
sites is important.

� There is accumulating evidence for an important role for back-
ground selection inmanyplants studied so far, whereas evidence
for recurrent hitchhiking is scarce.

� More work on the effects of plant genome size variation on
linked selection is needed.

� Linked selection can have a marked impact on inference of
demographic history, and this shouldbe consideredwhen choos-
ing sites for demographic inference in plants.
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