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Highly sensitive atomic based MW 
interferometry
Dangka Shylla, Elijah Ogaro Nyakang’o & Kanhaiya Pandey

We theoretically study a scheme to develop an atomic based micro-wave (MW) interferometry using 
the Rydberg states in Rb. Unlike the traditional MW interferometry, this scheme is not based upon 
the electrical circuits, hence the sensitivity of the phase and the amplitude/strength of the MW field 
is not limited by the Nyquist thermal noise. Further, this system has great advantage due to its much 
higher frequency range in comparision to the electrical circuit, ranging from radio frequency (RF), 
MW to terahertz regime. In addition, this is two orders of magnitude more sensitive to field strength 
as compared to the prior demonstrations on the MW electrometry using the Rydberg atomic states. 
Further, previously studied atomic systems are only sensitive to the field strength but not to the phase 
and hence this scheme provides a great opportunity to characterize the MW completely including the 
propagation direction and the wavefront. The atomic based MW interferometry is based upon a six-level 
loopy ladder system involving the Rydberg states in which two sub-systems interfere constructively 
or destructively depending upon the phase between the MW electric fields closing the loop. This work 
opens up a new field i.e. atomic based MW interferometry replacing the conventional electrical circuit in 
much superior fashion.

Atomic based standards such as time and length is already adopted and established due to their high reproduc-
ibility, accuracy, resolution and stability1. Atoms have also been successfully used for DC and AC (MW and RF) 
magnetometry, reaching impressive sensitivity and spatial resolutions2–5. Inspired by these successes recently, the 
atom based MW and RF electrometry has been investigated using the Rydberg states of the atoms6–11. The suc-
cess of these experiments for high sensitive electrometry is due to property of the Rydberg states i.e. availability 
of closely spaced levels (in the range of MW and RF region) with very high electric polarizability. The strength 
sensitivity for MW field using the traditional antenna method is only upto 10 mV/cm12,13 which is limited by the 
thermal noise. The sensitivity is improved upto 30 μV/cm using the optical method for the electro-magnetic fields 
converted by the dipole antenna8,14. The atomic based MW sensor improves the sensitivity further upto 8 μV/
cm8 which is limited by the natural decay rate of the ground and the Rydberg states, lasers linewidth, the transit 
time broadening, and Doppler mismatch between probe and the control lasers. The transit time broadening can 
be removed completely using the cold atomic cloud, cold atomic beam15, or nano cell16. The Doppler mismatch 
between probe and the control laser can be removed using the cold atom, nano cell or collimated atomic beam. 
However, with very simple experimental set-up with Rb cell at room temperature, the strength sensitivity of 
experimentally demonstrated four level system8 is already three orders of magnitude better than the electrical 
circuit based MW sensor. Further the frequency range of the atomic based MW sensor is from radio frequency 
(RF), MW to terahertz regime. Next, the spatial resolution of the atomic based MW sensor is sub-wavelength 
(λMW/650)17 which is difficult to achieve with traditional antenna method as the dimension of the antenna itself 
happens to be λMW/2.

The atomic based electrometry is based upon the phenomenon of electromagnetically induced transparency 
(EIT) in which the absorption property of a probe laser is altered in the presence of control lasers and MW (or 
RF) field in a four level system. EIT is sensitive to the field’s strength, frequency and the polarization and so the 
electrometry.

An oscillating electro-magnetic field i.e. MW electric field is characterized by it’s strength/amplitude, fre-
quency, polarization and the phase. The previously studied atomic based MW electrometry is not phase sensitive 
as EIT in a simple multilevel system, happens to be insensitive to the absolute phase of probe and the control fields 
but only it’s robustness depends upon the phase stability18.

Phase of the MW fields is detected using traditional MW interferometry which is based upon the electri-
cal circuit, whose performance is greatly limited by its bandwidth and the Nyquist thermal noise19–21. Here, we 
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explore a six-level loopy ladder system which replaces the traditional electrical circuits based MW interferometry 
by the atomic MW interferometry, as the absorption property of the probe laser has phase dependency on the 
MW fields. This is based upon the interference between two sub-systems driven by the MW fields forming the 
loop. The limitation of the atomic based MW interferometry is again same as in case of the atomic based MW 
sensor studied with four-level system6,8 and is not limited by the thermal noise. But this system is two orders of 
magnitude more sensitive to field strength (upto 80 nV/cm) in comparison to the previously explored system6,8 
due to its loopy nature. There are loopy system which has been studied previously and has phase sensitivity but 
loop is completed using the weak magnetic dipole transition22. In contrast to the previous system this six-level 
loopy system involves allowed electric dipole transition.

This paper is organized as follows. In the section namely “Method”, we describe the method of realizing the 
six-level loopy ladder system in Rb and possible experimental set-up. In subsequent sub-section we present the 
semi-classical model and solution for the relevant density matrix element. Further we provide the physical inter-
pretation of the obtained mathematical solution in terms of the interference between the two sub-systems and in 
terms of the dressed state picture. In the next section namely “Results” we present various results including the 
lineshape of the probe absorption, the phase dependency of it, the comparison of the amplitude/strength sensi-
tivity of this system with the previously studied four-level system and the frequency range. Finally in the section 
namely “Discussion” we give our conclusion for this study.

Method
Realization of the system.  The considered six-level loopy ladder system is shown in Fig. 1a. The probe 
laser at 780 nm is at the D2 line i.e. driving the 5 S1/2 → 5 P3/2 transition in the Rb. The control laser at 480 nm is 
driving the →5P n S3/2 ryd

1  and the three reference MW fields are driving the transition, →n S n Pryd
1

ryd
2 , 

→n P n Sryd
2

ryd
3  and →n S n Pryd

3
ryd
4 . The unknown MW field is driving the →n S n Pryd

1
ryd
4 . The nryd

1 , nryd
2 , nryd

3  and 
nryd

4  are rydberg states which are chosen according to the frequency range of the MW field.
The typical experimental setup for phase dependent MW electrometry is shown in Fig. 1(c) in which a probe 

laser at 780 nm and a control laser at 480 nm are counter-propagating inside the Rb cell. The four MW con-
trol fields are generated by a single frequency synthesizer having arrangements of controlling the frequency, 
phase and the amplitude or the four different MW field frequencies combined using a frequency combiner (e.g. 
ZN4PD-02183-S+ from minicircuit company can be operated between 2–18 GHz). The output of the frequency 

Figure 1.  (a) The energy level diagram for loopy ladder system. (b) Transitions shown by the red and green 
arrow lines are the two sub-system to close the loop. The probe laser (dotted red arrow line) and the control 
laser (solid blue arrow line) are part of both the sub-system. (c) The typical experimental set up for the phase 
dependent MW electrometry.
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synthesizer or combiner is amplified and fed to MW horn. All four MW fields are propagating perpendicular to 
the probe and the control lasers with a uniform phase inside the Rb cell.

Semi-classical analysis.  The electric field, associated with the transition |i〉 → |j〉 is ω φ+E eij
i t( )ij ij , where Eij is 

amplitude, ωij is the frequency and φij is the phase. We define Rabi frequency Ω = φd E e /ij ij ij
i ij  for the transition 

|i〉 → |j〉 having the dipole moment matrix element dij. Please note that Ωij is a complex quantity which can be 
written as |Ωij| 

φei ij, where φij is due to the phase of the electric field associated with it. The Rabi frequencies of the 
probe and the control lasers are Ω12 and Ω23 respectively, whereas Ω34

ref , Ω45
ref , Ω56

ref  and Ω36
unk are the Rabi frequencies 

of the MW fields. It is important to note here that the phase of Ω36
unk is to be characterized w.r.t to the reference 

MW fields Ω34
ref , Ω45

ref  and Ω56
ref . The superscript ref or unk denotes the reference and unknown MW field 

respectively.
The total Hamiltonian for this system is given as
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If the energy of the state |i〉 is ℏωi then the general quantum mechanical state of the system is

∑|Ψ〉 = | 〉 ω

−

−c t i e( )
(2)i

i
i t

1

6
i

We define δ12 = ω12 − (ω2 − ω1) and δ23 = ω23 − (ω3 − ω2) i.e. the detunings of the probe and control lasers from 
their respective resonance. Similarly δ34 = ω34 − (ω3 − ω4), δ45 = ω45 − (ω5 − ω4), δ56 = ω56 − (ω6 − ω5) and 
δ36 = ω36 − (ω6 − ω3) are the detunings for the MW fields for the respective transitions. In the rotating frame (i.e 
w i t h  a  u n i t a r y  t r a n s f o r m a t i o n  ′ =c c1 1 ;  ′ = δc c ei t

2 2
12 ;  ′ = δ δ+c c ei t
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′ = δ δ δ δ+ − +c c ei t
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( )12 23 34 45 ; ′ = δ δ δ δ δ+ − + +c c ei t
6 6

( )12 23 34 45 56 ) and using the rotating wave approximation, (where the 
terms with ω ω ω+ −ei[ ( )]ij j i  is dropped out for the transition |i〉 → |j〉 if ωj > ωi) we get following Hamiltonian
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In general, the Hamilitonian H is time dependent except for a particular condition when δ34 − δ45 − δ56 + δ36 = 0.
The time evolution of the density matrix, ρ is given by Linblad master equation as


ρ ρ ρ= − +


i H L t[ , ] [ ( )] (4)

where, L[ρ(t)] is Linblad matrix and defined as below. L[ρ(t)] =
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Where, Γij is the decay of the population from state |i〉 (i = 1, 2, .. to 6) to state |j〉 (j = 1, 2, .. 6) and Γi is the total 
population decay rate of state |i〉. In the case of the weak probe, the population transfer does not take place and it 
is completely irrelevant to know the population dynamics between different levels. The only important parameter 
is Γi and Γj, i.e. the total decay rate of states, which governs the decoherence rate (γij

dec) between the two levels |i〉 
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and |j〉 as γ =
Γ + Γ

ij
dec

2
i j . In addition to the total decay rate of states, the linewidth of lasers driving the transition 

has to be also included for γij
dec. For example, in this study we take the value of γ π= × .2 3 05 MHzdec

12 , which 
includes natural radiative decay of excited state, Γ2 = 2π × 6 MHz and the 780 nm laser linewidth of 2π × 50 kHz. 
We also take γ γ γ γ γ π= = = = = ×2 100 kHzdec dec dec dec dec

13 14 15 16  mainly dominated by the laser linewidths of 
780 nm and the 480 nm as compared to the radiative decay rate (=2π × 1 kHz) of the Rydberg states |3〉, |4〉, |5〉 
and |6〉7. We also take γdec = 2π × 500 kHz in some cases in order to check it’s stringency.

From Eqs 3, 4 and 5 we get 36 coupled differential equations with the property ρ ρ= ⁎
ij ji . In order to solve these 

set of coupled equation we adapt similar method as in the case of previously studied multi-level systems23.
In the case of weak probe approximation, there will be no population transfer and hence the time evolution 

of the population i.e. the diagonal terms of the density matrix such as ρ11, ρ22, ρ33, ρ44, ρ55, and ρ66 can be ignored. 
Similarly the time evolution of the off-diagonal terms ρij for i = 2; j = 3, 4, 5, 6 and i = 3; j = 4, 5, 6 and i = 4; j = 5, 
6 and i = 5; j = 6 can be also ignored. The time evolution of the relevant density matrix element is given below.
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Where, γ γ δ= + i[ ]dec
12 12 12 ,

Figure 2.  The normalized absorption, ρ12Γ2/Ω12 vs Time for Ω = Ω = Ω = Ω = Γ23 34
ref

45
ref

56
ref

2, Ω = . Γ0 536
ukn

2 and 
δ12 = δ23 = δ34 = δ45 = δ56 = δ36 = 0.

Figure 3.  Comparison of complete numerical solution with the analytical solution for the normalized 
absorption (Im(ρ12)Γ2/Ω12) vs δ12/Γ2 of the probe laser with Ω = Ω = Ω = Ω = Γ23 34

ref
45
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ref

2, 
Ω = . Γ0 536

unk
2, φ = 0 and δ23 = δ34 = δ45 = δ56 = δ36 = 0.
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Now, we apply the four-photon resonance condition for the MW fields i.e. δ34 − δ45 − δ56 + δ36 = 0. In this case 
the system will reach steady state i.e. ρ =


0ij , for all the elements on the time scale of few tens of 1/Γ2 as shown in 

Fig. 2. In the weak probe condition and in the steady state, ρ11 ≈ 1, ρ22 ≈ ρ33 ≈ ρ44 ≈ ρ55 ≈ ρ66 ≈ 0 and ρij = ρji ≈ 0 
for i = 2; j = 3, 4, 5, 6 and i = 3; j = 4, 5, 6 and i = 4; j = 5, 6 and i = 5; j = 6. Finally, we get the following set of 
equations
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The refractive index, n of the probe laser is related with the density matrix element, ρ12 as 
π ρ= + λ Γ Ωn N1 3 /(2 )( / )p

2
2 12 12, where λp(=780 nm) is the wavelength of the probe laser and N is atomic number 

density24,25. The imaginary part of n is related with the absorption and real part with dispersion. We define the 
normalized absorption [(Γ2/Ω12) Im(ρ12)] i.e. for the stationary atoms, the absorption of the probe laser at reso-
nance in the absence of all the control lasers is 1.

In order to verify the approximation made above, we have checked the analytical solution of ρ12 given by the 
Eq. 8 and the complete numerical solution in the steady state for various values of control fields and detunings. 
It has excellent agreement between complete numerical and approximated analytical solution as shown in Fig. 3. 
The solution for ρ12 in Eq. 8 has the following interpretation.

Interpretation.  Interference between two sub-system.  Equation 8 looks very complicated but it can be inter-
preted in the following simple way. The closed loop system can be realized by two open loop sub-systems 
|3〉 → |4〉 → |5〉 → |6〉 and |3〉 → |6〉 → |5〉 → |4〉 shown with red and green arrows respectively as shown in Fig. 1b. 
These two sub-system shares a common |1〉 → |2〉 → |3〉 ladder system. In order to understand the absorption 
property of the probe laser Ω12, we switch on the control fields one by one and in the sequence for the two 



www.nature.com/scientificreports/

6Scientific REPOrTS |  (2018) 8:8692  | DOI:10.1038/s41598-018-27011-1

sub-systems. Firstly, the control laser Ω23 causes transparency for the probe laser Ω12 and known as EIT. For path 
shown with the red color, the control field Ω34

ref  recovers the absorption against the EIT created by Ω23 and known 
as EITA. Again the control fields Ω45

ref  causes transparency against the EITA created by the Ω23 and Ω34
ref , and 

known as EITAT. Finally the Ω56
ref  causes absorption against the EITAT created by the Ω23, Ω34

ref  and Ω45
ref , and 

known as EITATA23 and expressed by EITATA1 in Eq. 8. (In order to understand the transparency and absorption 
in the sequence, we strongly advice the readers to see the paper23). The other path shown with green color will also 
cause EITATA by sequence of the control fields Ω36

unk, Ω56
ref  and Ω45

ref  which is expressed by EITATA2. Further, these 
two sub-system causing EITATA1 and EITATA2, interferes with each other and expressed by the Int term in the 
Eq. 8, which is phase(φ) dependent.

In the other words, the closed loop |3〉 → |4〉 → |5〉 → |6〉 → |3〉 causes absorption against EIT created by the 
control laser Ω23. The closed loop has two-open loop sub-systems which interfere destructively (for φ = 0) and 
constructively (for φ = π) with each other. As shown in Fig. 4a, for γΩ = Ω = Ω = Ω = Γ ( )dec

34
ref

45
ref

56
ref

36
unk

2 , 
there is a complete transparency at the line center for φ = 0. This is due to perfect destructive interference between 
the two-subsystems as the strength is same for both, i.e. EITATA1 = EITATA2. There is maxi-mum absorption at 
t he  l ine  center  for  φ  =  π  a s  t he  two sub-systems  are  inter fer ing  const r uc t ive ly.  For 

γΩ = Ω = Ω ≠ Ω 

dec
34
ref

45
ref

56
ref

36
unk , there is a absorption peak at the line center for φ = 0, as shown in 

Fig. 4b. This is due to unequal strength of the individual system (EITATA1 > EITATA2), hence the destructive 
interference between them is not perfect.

Dressed state approach.  At high Rabi frequencies (much greater than the absorption peaks linewidths) of the 
control lasers and MW fields, the linewidth of the absorption peak can be explained using dressed state picture. 
In this condition there is no interference between the absorption peaks as they are well separated from each other. 
The position of the absorption peak is determined by the eigenvalues of the Hamiltonian associated to the control 
fields as given below
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For general control fields detunings and Rabi frequencies, the position of the absorption peaks will be compli-
cated. However, the expression becomes simpler for zero detuning of control fields and with 
Ω = Ω = Ω = Ω = Ω23 34

ref
45
ref

56
ref , but with arbitrary values of Ω36

unk . In this condition the positions of the 

absorption peaks (i.e. eigenvalues of the Hc) are − 1
8 φΩ + |Ω | + Ω + |Ω | + Ω |Ω |cos4 (2 ) 82

36
unk 2 2

36
unk 2 2 3

36
unk , 

Figure 4.  Normalized absorption (Im(ρ12)Γ2/Ω12) vs δ12/Γ2 of the probe laser with Ω = Ω = Ω =23 34
ref

45
ref

Ω = Γ56
ref

2, δ23 = δ34 = δ45 = δ56 = δ36 = 0 and (a) Ω = Γ36
unk

2 (b) Ω = . Γ0 536
unk

2.



www.nature.com/scientificreports/

7Scientific REPOrTS |  (2018) 8:8692  | DOI:10.1038/s41598-018-27011-1

− 1
8

φΩ + |Ω | − Ω + |Ω | + Ω |Ω |cos4 (2 ) 82
36
unk 2 2

36
unk 2 2 3

36
unk , 0, 1

8
φΩ + |Ω | − Ω + |Ω | + Ω |Ω |cos4 (2 ) 82

36
unk 2 2

36
unk 2 2 3

36
unk , 

and 1
8 φΩ + |Ω | + Ω + |Ω | + Ω |Ω |cos4 (2 ) 82

36
unk 2 2

36
unk 2 2 3

36
unk .

The eigenvectors determines the dressed state in terms of the bare atomic states. For example the normalized 
eigenvector corresponding to eigenvalue 0 is
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This is the central dressed state (or the central absorption peak) and is expressed as 
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. The linewidth of the dressed state or the absorption peak is 

given in terms of the bare atomic states decay rate. For example, if dressed state is written as 
C2|2〉 + C3|3〉 + C4|4〉 + C5|5〉 then the linewidth of it will be |C2|2Γ2 + |C3|2Γ3 + |C4|2Γ4 + |C5|2Γ5 Hence the linewidth 

of the cenetral absorption peak is given by φ













+ −




Γ + Γ + Γ









Ω

Ω

Ω
Ω

cos1 2 2 4 6
36
unk 2

2
36
unk

/ φ









+ −


 +







Ω

Ω

Ω
Ω

cos1 2 236
unk

2
36
unk

 

which is phase dependent. In order to crosscheck the expression for the linewidth, we fit (shown with black solid 
line) the central peak of the normalized absorption obtained by Eq. 8 with Lorentzian profile to find the linewidth 
for three different phases as shown in Fig. 4. The fitted linewidths for φ = 0, φ = π/2 and φ = π are 0.13Γ2, 0.47Γ2 and 
0.64Γ2 respectively, while the calculated linewidths are 0.13Γ2, 0.39Γ2 and 0.54Γ2 respectively. There is a small mis-
match between the fitted and the calculated linewidths by the dressed state approach for φ = π/2 and φ = π. This is 
because, as we see in Fig. 4, the central absorption peak is broadened for φ = π/2 and φ = π and the interference 
between peaks starts playing a role in the modification of the linewidth similar to three level system26.

Results
Probe laser absorption.  The normalized absorption (Im(ρ12)Γ2/Ω12) vs probe detuning (δ12) for three dif-
ferent phases, φ = 0,π/2 and π is shown in Fig. 4. For the central absorption peak i.e. at δ12 = 0, only the linew-
idth depends upon the phase but not the position, while both the position and the linewidth depends upon the 
phase(φ) for the other four absorption peaks. This has been explained in the previous section.

Now, we consider the effect of the temperature as lineshape of EIT is significantly changed by the thermal 
averaging27–32. The thermal averaging of ρ12 is done numerically for the room temperature (T = 300 K) for the 
counter-propagating configuration of the probe (Ω12) and the control laser (Ω23) with wave-vectors k780 and k480 
respectively by replacing δ12 with δ12 + k780v and δ23 with δ23 − k480v for moving atoms with velocity v, while the 
Doppler shift for the MW fields are ignored. Further the ρ12 is weighted by the Maxwell Boltzman velocity distri-
bution function and integrated over the velocity as ∫ρ ρ=

π
−v e dv( )m

k T12
Thermal

2 12B

mv
kBT

2
2 , where kB is Boltzman con-

stant and m is atomic mass of Rb. The integration is done over velocity range which is three times of k T
m
B . The 

Doppler averaging changes the absorption profile significantly as shown in Fig. 5. One of the interesting modifi-
cation is the phase dependency of the probe laser absorption at the zero detunings of the probe. The probe laser 
absorption is minimum for φ = 0 and maximum for φ = π as shown with red and blue curve respectively in Fig. 5. 
This modification is due to mismatch of Doppler shift for probe at 780 nm and the control at 480 nm for moving 
atom. Please note that without thermal averaging at zero detunings of the probe, control laser and MW fields, 
probe laser absorption has no significant difference between φ = π/2 and π.

Phase sensitivity.  Sinusoidal behavior.  As seen in the previous section that the absorption profile of the probe 
laser depends upon the phase, φ. Please note that the previously studied (i.e. four-level) system6–11 were insensitive 
to the phase of the MW field. This is also clear from Eq. 8 in the special case with Ω = Ω = Ω = 034

ref
45
ref

56
ref , which 

reduces the six-level loopy ladder system to four-level system and will have no phase dependency.
The probe absorption at room temperature vs the phase φ with all the detunings to be zero is shown in Fig. 6. 

From the plot shown with red open circle in Fig. 6a we observe more than 15% change in the probe absorption for 
the change of the phase from 0 to π for the chosen combinations of the control Rabi frequencies. In particular, we 
have chosen low value of Ω = . Γ0 136

unk
2 and the optimized control fields Rabi frequencies i.e. |Ω23| = 2Γ2, 

Ω = . Γ1 534
ref

2, and Ω = Ω = Γ445
ref

56
ref

2. The numerical data points (red open circle) are fitted by a function 
A + Bsin(f φ + θ), where A, B, f and θ are kept as free parameters that yields f = 1 and the fitting is shown with 
black curve in Fig. 6a. Now, choosing a high value of Ω = . Γ2 536

unk
2 and keeping the other parameters unchanged, 

we observe more than 80% change in the probe absorption for the change of the phase from 0 to π as shown 
crossed red points, but there is a deviation from sinusoidal behavior. This deviation is compared with the fitted 
black curve as shown in Fig. 6b. On increasing the value of Ω34

ref  to 3Γ2 and keeping the other parameters 
unchanged, there is a splitting of the absorption at φ = π as shown by the solid circled points in this figure.
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Optimization of sensitivity.  Now, we maximize the phase sensitivity for this system for given value of Ω36
unk  by 

using the parameters, Ω23, Ω34
ref , Ω45

ref , and Ω56
ref . In order to do this we define a quantity called sensitivity as 

ρ φ ρ φ π ρ φ ρ φ π= = − = = + =S Im[ ( 0) ( )]/Im[ ( 0) ( )]12
Thermal

12
Thermal

12
Thermal

12
Thermal , which is a measure of the 

phase/strength sensitivity of the system and is to be maximized. For given value of Ω36
unk , we maximize the S by 

minimizing 1/S or -S using matlab inbuilt function “fmincon” treating Ω23, Ω34
ref , Ω45

ref , and Ω56
ref  as free parame-

ters but bounded in the region from 0 to 5 Γ2. Please note that the values 5Γ2 for Ω23 Ω34
ref , Ω45

ref , and Ω56
ref  is well 

in the experimental reach.
We first consider the case without thermal averaging i.e. T = 0. The maximized sensitivity, Smax vs Ω36

unk  is 
plotted in Fig. 7(a). The Smax increases with Ω36

unk  and starts saturating around 0.05Γ2. The corresponding maxi-
mizing values of Ω23, Ω34

ref , Ω45
ref , and Ω56

ref  are also plotted in Fig. 7(b). The optimum value of the Ω23 is as high as 
possible which is 5Γ2 in this case as it is bounded by this limit. This is more clear from the Fig. 8, where Smax 
increases with Ω23 and then saturates around Γ2 for any given values of Ω34

ref , Ω45
ref , Ω56

ref , and Ω36
unk .

Next, we consider the room temperature case (T = 300 K), which makes the problem a bit more complicated, 
as the lineshape of the absorption gets modified significantly as described previously. The maximum sensitivity 
(Smax) vs Ω36

unk  is plotted in the Fig. 9(a). The Smax at T = 300 K is much lower than the case at T = 0 as the satura-
tion point is around Ω36

unk  = 1.5 Γ2 as compared to 0.05Γ2 and hence at T = 0 the system can detect the phase of 
lower values of Ω36

unk . Unlike the case of T = 0, in this case for Smax the value of Ω23 ≠ 5Γ2 but has optimum values 
as shown in Fig. 9(b).

Strength sensitivity.  The quantity, S defined above can also be used as a measure of the strength/amplitude 
sensitivity for Ω36

unk  for the six-level loopy ladder system. Now we compare the strength sensitivity of the six-level 
loopy ladder system with the previously studied four-level system6–11. The solution of ρ12 for the four-level system 

Figure 5.  Normalized absorption of the probe laser with thermal averaging (Im(ρ12
Thermal)Γ2/Ω12) vs δ12/Γ2 with 

Ω = Ω = Ω = Ω = Γ23 34
ref

45
ref

56
ref

2, Ω = . Γ0 536
unk

2 and δ23 = δ34 = δ45 = δ56 = δ36 = 0.

Figure 6.  Absorption of the probe laser after thermal averaging in arbitrary scale obtained as (Im(ρ12
Thermal))/

max(Im(ρ12
Thermal)) vs phase φ with δ12 = δ23 = δ34 = δ45 = δ56 = δ36 = 0 and (a) Ω = . Γ0 136

unk
2, |Ω23| = 2Γ2, 

Ω = . Γ1 534
ref

2, and Ω = Ω = Γ445
ref

56
ref

2. (b) crossed points Ω = . Γ2 536
unk

2, |Ω23| = 3Γ2, Ω = Γ234
ref

2, and 
Ω = Ω = Γ445

ref
56
ref

2, solid circled points Ω = . Γ2 536
unk

2, |Ω23| = 3Γ2, Ω = Γ334
ref

2, and Ω = Ω = Γ445
ref

56
ref

2.
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Figure 7.  (a) The maximum sensitivity Smax (%) vs Ω36
unk /Γ2 (b) The optimum value of Ω34

ref /Γ2 and Ω56
ref /Γ2 for 

Smax (shown by left scale), Ω23/Γ2 and Ω45
ref /Γ2 (shown by right scale) vs Ω36

unk  for δ12 = δ23 = δ34 = δ45 = δ56 = δ36 = 0 
and T = 0.

Figure 8.  Smax (%) = Im[ρ12(φ = 0) − ρ12(φ = π)]/Im[ρ12(φ = 0) + ρ12(φ = π)] × 100 vs Ω23/Γ2 for 
δ12 = δ23 = δ34 = δ45 = δ56 = δ36 = 0, Ω = . Γ0 00536

unk
2 and T = 0.

Figure 9.  (a) Smax (%) vs Ω36
unk /Γ2 (b) The optimum value of Ω23/Γ2, Ω34

ref /Γ2, and Ω56
ref /Γ2 shown by left scale 

and Ω45
ref /Γ2 shown by right scale vs Ω36

unk /Γ2 for δ12 = δ23 = δ34 = δ45 = δ56 = δ36 = 0 and T = 300 K.
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can be obtained from the six-level loopy ladder system by setting Ω = Ω = Ω = 034
ref

45
ref

56
ref  in Eq. 8 and is given 

by Eq. 11.

ρ =

+

γ
Ω

+

γ γ

γ γ

|Ω |

|Ω |
1

(11)

l

i

12(4 )
2

1

12

12

1
4

23
2

12 13

1
4

36
unk 2

13 16

The subscript (4l) indicates for four-level system. Further the thermal averaging can be done in a similar fash-
ion as in the case of the six-level system i.e. ∫ρ ρ=

π
−v e dv( )l

m
k T l12(4 )

Thermal
2 12(4 )B

mv
kBT

2
2 . We define the strength sensitiv-

ity for the four-level system for unknown Ω36
unk  as change in the absorption in the presence and the absence of the 

Ω36
unk  normalized by the sum of the two conditions which is mathematically expressed as 

S =  ρ ρ|Ω | ≠ − |Ω | =[ ( 0) ( 0)]l l12(4 )
Thermal

36
unk

12(4 )
Thermal

36
unk / ρ ρ|Ω | ≠ + |Ω | =( )[ ( 0) ( 0)]l l12(4 )

Thermal
36
unk

12(4 )
Thermal

36
unk . We maxi-

mize the sensitivity of the four-level system adapting similar method as for the six-level system but with only one 
optimizing parameter i.e. Ω23.

First, we consider T = 0 case. The maximized strength sensitivity for the six-level loopy ladder system and the 
four-level system is compared in Fig. 10. From this figure it is clear that the six-level system has more sensitivity 
as compared to the four-level system as shown in Fig. 10(a). In order to quantify this comparison, we plot the ratio 
of the sensitivities of the six-level to four-level system in Fig. 10(b). The ratio is more for the low values of the 
Ω36

unk . The increased sensitivity for the six-level loopy system is due to the interferometric nature of the system 
where the effect of small Ω36

unk  is enhanced by the large values of the Ω34
ref , Ω45

ref  and Ω56
ref  as the int term in Eq. 8 

involves multiplication of these quantities. The strength sensitivity of both the systems decreases with increased 
γdec (from 2π × 100 kHz to 2π × 500 kHz) but the effect is more for the four-level system in comparison to the 
six-level system as shown Fig. 10b.

Now, we consider the case at the room temperature. The strength sensitivity for the six-level and previously 
studied four-level is plotted in Fig. 11(a). Form this plot it is clear that the six-level system has much superior 
strength sensitivity as compared to the four-level system. Further we quantify the comparison by plotting the ratio 
(R) of the sensitivities of the six-level to the four-level for different values of Ω36

unk  in Fig. 11(b). In order to check 
the stringency of γdec on the sensitivity, we also plot Smax for these two systems taking γdec = 2π × 500 kHz.

We also plot the R vs maximum sensitivity (Smax) of the six-level system which gives the information about the 
possibility of the detection of Ω36

unk . This is an important plot because there is a possibility that the R might be 
huge but can not be detected by the six-level system as well. The detection of Smax up to 1% is very much feasible 
using locking detection. At this value of sensitivity for the six-level system, the sensitivity of the four-level system 
will be around 1

150
% as shown in Fig. 12.

Finally one more important point is that, for the six-level loopy ladder system the MW field Ω36
unk  can be 

detected by just varying the phase of the reference MW fields, while in the case of the four-level system we need 
to insert and remove MW mechanical shield.

Frequency range.  The frequency range of the atomic based MW interferometry can be any where from the 
range of the few tens of MHz, GHz and THz. The rydberg states can be chosen depending upon the interest of the 
frequency region of MW field. For example, for frequency in the range of few tens of GHz n ryd’s should around 

Figure 10.  (a) Smax(%) vs Ω Γ/36
unk

2 for six-level loopy and four-level ladder system (b) ratio (R) of the sensitivity 
between six-level and four-level system vs Ω Γ/36

unk
2 at T = 0 with all the detunings to be zero and for 

γdec = 2π × 100 kHz and γdec = 2π × 500 kHz.
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547 while for tens of MHz it should be higher number and it is around 57 in case of Cs9. For THz regime this 
should be around 2033.

Discussion
In conclusion we theoretically study a six-level loopy ladder system using Rydberg states for the phase sensi-
tive MW or RF electrometry. This is based upon the interference between the two sub-systems of EITATA. In 
counter-propagating configuration of the probe and control laser there is a change of the lineshape of the probe 
absorption due to Doppler averaging. The limitation of the proposed system is the decoherence rate between the 
ground state and the Rydberg states but not the thermal Nyquist noise as in the case of the electrical circuit based 
MW interferometry. The previously explored four- level atomic system has the same limitation and is already 
much superior than the electrical circuit for the strength sensitivity, frequency range and spatial resolution. This 
proposed system further improves the sensitivity by two orders of magnitude, removes the drawback of the phase 
insensitivity of the previous atomic four level-system and retains the advantages of the large frequency range of 
operation and spatial resolution. This system provides a great possibility to characterize the MW or RF electric 
fields completely including the propagation direction and the wavefront. This work will be quite useful for MW 
and RF engineering hence in the communications specially in active radar technologies and synthetic aperture 
radar interferometry.
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