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Abstract: By means of spectrophotometric titration and NMR spectroscopy, the selective binding
ability of the Co(III)-5,15-bis-(3-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin (Co(III)P1) and
Co(III)-5,15-bis-(2-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin (Co(III)P2) towards imidazole
derivatives of various nature (imidazole (L1), metronidazole (L2), and histamine (L3)) in phosphate
buffer (pH 7.4) has been studied. It was found that in the case of L2, L3 the binding of the “first”
ligand molecule by porphyrinates Co(III)P1 and Co(III)P2 occurs with the formation of complexes
with two binding sites (donor–acceptor bond at the center and hydrogen bond at the periphery of the
macrocycle), while the “second” ligand molecule is added to the metalloporphyrin only due to the
formation of the donor–acceptor bond at the macrocycle coordination center. The formation of stable
complexes with two binding sites has been confirmed by density functional theory method (DFT)
quantum chemical calculations and two-dimensional NMR experiments. It was shown that among the
studied porphyrinates, Co(III)P2 is more selective towards to L1-L3 ligands, and localization of cobalt
porphyrinates in cetylpyridinium chloride (CPC) micelles does not prevent the studied imidazole
derivatives reversible binding. The obtained materials can be used to develop effective receptors
for recognition, delivery, and prolonged release of drug compounds to the sites of their functioning.
Considering that cetylpyridinium chloride is a widely used cationic biocide as a disinfectant, the
designed materials may also prove to be effective antimicrobial agents.
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1. Introduction

Molecular recognition processes, in which one molecule (“host” or receptor) recognizes
and binds another molecule (“guest” or substrate) to form a system due to intermolecular
interactions find broad application in the design of multifunctional devices for new molecu-
lar technologies. Examples are the separation of mixtures of closely related compounds and
enantiomers, gas or toxic substances storing, stabilization of highly reactive compounds,
the prolonged release of drugs in the conditions close to the physiological and control of
reaction routes by including such particles into molecular reactors or channels [1–5].

Metalloporphyrin molecules are very perspective objects for molecular recognition of
ions and neutral molecules. The porphyrinates are capable of forming complexes of various
stability with different substrates, such as cations, anions, oxygen, nitric oxide, nitrogen and
sulfur-containing organic bases, etc. [6–10], depending on the nature of the central metal
cation. The most metalloporphyrin receptors described in the literature are hydrophobic
Zn(II)-porphyrins [11–17], which form supramolecular complexes with substrates in the
organic media (dichloromethane, chloroform, benzene, or toluene). Hydrophilic Co(III)-
porphyrins are characterized by a high binding ability towards various nitrogen-containing
biomolecules in aqueous, biological media [18–21].
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Surfactants are widespread applications in biocatalysis, polymer science, sensors,
solar cells, fuel cells, and biomass processing, and as thermal fluids and ionogels. They
are used to give other compounds their tunable physiochemical and surface properties,
and as by themselves therapeutic agents [22–26]. The purpose of this paper was to study
the recognition ability of two hydrophilic Co(III)-porphyrins with hydroxyl groups in the
phenyl rings of the macrocycle towards to imidazole derivatives-unsubstituted imidazole
(L1), metronidazole (L2), and histamine (L3) due to possibility of formation additional
hydrogen bonds between the functional groups of the receptor (porphyrin molecule) and
substrate (imidazole derivative). Structures of the Co(III)-porphyrins bis-axial complexes
with the ligands L are depicted in Figure 1.
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Figure 1. Structures of the Co(III)-porphyrins bis-axial complexes with the ligands (L = H2O, L1-L3).

The complexation processes in phosphate buffer (pH = 7.4) imitating blood plasma
has been studied. We previously found that the more effective method of influence and
control of binding and elimination processes of hydrophilic Co(III)-porphyrins with various
organic bases in aqueous media is micellization, namely the localization to the outer layer
(it may be intercalated among the CPC chains, most likely with the pyridinium group
extending into the polar headgroup region of the micelle) surfactant micelle [21], which
gives them new properties. In this regard, the investigation of the recognition ability of the
studied Co(III)-porphyrins hydroxy derivatives were carried out both in phosphate buffer
(pH = 7.4) and in solutions containing cetylpyridinium chloride (CPC).
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2. Results and Its Discussion
2.1. Formation of the Co(III)P bis-Axial Complexes with Imidazole Derivatives

Co(III)-complexes of water-soluble tetraarylporphyrins [Co(III)P] are characterized
by bis-axial coordination of both nitrogen and oxygen-containing small organic molecules,
in which there is one additional ligand coordinated on each sides of the macrocycle
plane [18,19]. Earlier, we studied the processes of Co(III)-tetra(carboxyphenyl)porphyrin
(Co(III)TPPC) and Co(III)-tetra(sulfophenyl)porphyrin (Co(III)TPPS) complexation with
various drugs based on nitrogen-containing heterocycles [20,21].

Co(III)P1 and Co(III)P2 form bis-aqua complexes in aqueous media at pH 7.4 similar
to Co(III)TPPC and Co(III)TPPS. The replacement process of aqua-groups with organic
bases goes sequentially in two stages:

Co(III)P-(H2O)2 + L↔ Co(III)P-(L)(H2O) (1a)

Co(III)P-(L)(H2O) + L↔ Co(III)P-(L)2 (1b)
Each stage of the process is accompanied by its own characteristic spectral changes in

the UV–Vis spectra of the reaction system. In particular, the replacement of the “first” water
molecule with the imidazole molecule is characterized by a slight decrease in the intensity
of the Soret band in the UV–Vis spectrum and its red shift by 3.5 nm. The replacement of the
second water molecule was accompanied by less noticeable spectral changes (Figure 2b).
The calculated constants of water molecules replacement for the imidazole compounds (K1

and K2) are listed in Table 1 and Figure 3. The bis-axial complexes formation is confirmed
by the 1H NMR and mass spectrometry data. The spectral changes observed with the
replacement of water molecules by imidazole-containing drugs are similar to those shown
in Figure 2.

The mono-axial complexes Co (III)P-(L) (H2O) are formed at a 1:1 concentration ratio
of the reagents. A small excess of imidazoles is required to replace the “second” water
molecule. It was found that the imidazole derivatives L2, and L3 form more stable mono-
axial complexes with the Co (III)P(1-2), in comparison with the unsubstituted imidazole
L1. This is probably due to the formation of additional binding centers between the
porphyrinate and the ligand–hydrogen bonds, namely between the porphyrin hydroxyl
group and the carbonyl oxygen atom of the ligand L3 or between the porphyrin hydroxyl
group and the oxygen atom of the nitro group of the ligand L2.
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Figure 2. UV–Vis spectra (Soret band region) of the CoP1(H2O)2 (Cporph. − 9.8× 10−6 M) in phosphate
buffer (pH 7.4) at 25 ◦C upon titration with L1 (CL1 = 0 ÷ 5.9 × 10−6 M (a) and CL1 = 5.9 × 10−6 ÷
1.9 × 10−4 M (b)).
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Table 1. Energies of Co(III)P-(L)(H2O) and Co(III)P-(L)(H2O) formation (−∆G1 and −∆G2, kJ ×
mol−1), calculated values of the Gibbs energy of the bis-axial complexes (−∆G2, kJ × mol−1), length
(r, Å), and energy (−∆GHB, kJ ×mol−1) of hydrogen bonds.

Co(III)P and L −∆G1 a −∆G2 b −∆GHB
c −∆GCo(III)P-(L)

2
d r, Å (OH···O-L)

Co(III)P1/L1 33.0 24.6 - 216.2 -

Co(III)P1/L2 37.7 25.0 4.7 295.4 1.56

Co(III)P1/L3 35.8 25.2 2.8 222.6 1.70

Co(III)P2/L1 33.1 24.5 - 215.4 -

Co(III)P2/L2 38.6 24.9 5.5 309.7 1.47

Co(III)P2/L3 34.8 25.0 1.7 216.9 1.81
a The total energy of Co(III)P-(L)(H2O) complexes formation according to Equation (1a) (∆G = −RT lnK1). b The
total energy of Co(III)P-(L)2 complexes formation from Co(III)P-(L)2 according to Equation (1b) (∆G =−RT lnK2). c The
energy of hydrogen bonding in the complex Co(III)P-(L)(H2O) (∆GHB = ∆G Co(III)P-L − ∆G Co(III)P-L1) (L-ligand
(L1), the compound that does not form hydrogen bonds). d The calculated value of the hydrogen bond length
(OH···O-L; r, Å).
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Figure 3. Stability constants (K1 and K2, (M–1) of the mono- and bis-axial complexes Co(III)P(1-2)-
(L)(H2O) and Co(III)P(1-2)-(L)2, phosphate buffer (pH 7.4) at 25 ◦C.

In the reports [13–17], devoted to the formation of supramolecular porphyrin complexes
with several binding points, the contributions of axial coordination energy (∆Gaxial coord.)
and H-bonds (∆GHB) to the total energy of the complex formation were estimated. A
quantitative measure of increase in stability of the complex “porphyrinate-polyfunctional
ligand” due to additional bond formation is K1/K1,o, where K1,o is a stability constant of
an axial metalloporphyrin complex with one binding center, and K1 is a stability constant
of an axial metalloporphyrin complex containing additional binding center (or centers)
(Table 2).
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Table 2. Geometrical and energetic parameters of Co(III)P-L.

System
Co-Np,

Ǻ

Co-Nj,

Ǻ
r (OH . . .
O=L), ◦

Est(Zn-Nj)
kJ/mol

qCT,
e

−Eint(BSSE)
kJ/mol

Co(III)P1-(L2)2 1.924 1.937 1.56 −216.4 0.242 295.4

Co(III)P1-(L3)2 1.934 1.929 1.80 −238.5 0.218 222.6

Co(III)P2-(L2)2 1.929 1.930 1.47 −214.6 0.259 309.7

Co(III)P2-(L3)2 1.946 1.922 1.81 −242.7 0.215 216.9
Np—nitrogen atom of Co(III)P. Nj—nitrogen atom of imidazole ligand (L2 and L3).

As seen from the Table 1, the energies of hydrogen bonds for the complexes Co(III)P1-
(L2)(H2O), Co(III)P1-(L3)(H2O), Co(III)P2-(L2)(H2O), and Co(III)P2-(L3)(H2O) were in the
range from 1.7 to 5.5 kJ/mol. Porphyrinate Co(III)P2-(OH)2 had the highest selectivity with
respect to the studied imidazole derivatives upon binding of one imidazole ligand. The
formation constants of Co(III)P-(L)2 bis-axial complexes according to Equation (1b) did not
differ significantly from each other, i.e., no binding selectivity was observed.

The selectivity of mono-axial binding of histamine, metronidazole, and their precursor
imidazole with Co(III)P1, Co(III)P2 is confirmed by both quantum-chemical calculations
and NMR spectroscopy data. The optimization of structures by quantum-chemical calcula-
tions showed that a partial transfer of the electron pair of the Nj-atom to the empty orbitals
of the Co-atom (LP N→ LP × Co) is observed in the Co(III)P1, Co(III)P2 complexes with
two axial ligands (L2 and L3). According to the natural bond orbital (NBO), the stabilization
energy of the Co-Nj bond was 214.6–238.5 kJ/mol, and the corresponding charge transfer
value was 0.215–0.259 e (Table 2).

The calculation results showed that a decrease in the Co-Nj bond length led to an
increase in the binding energy Est (Co-Nj) (Table 2). At the same time, an inverse rela-
tionship is observed between the length of the Co-Nj bonds and the binding energy of
porphyrin with the ligand Eint (Table 2). The reason for this dependence is an increase in
the stability of the Co(III)P-L complex not only due to Co-L donor–acceptor interactions in
these complexes, but also due to the formation of additional hydrogen bonds. However,
the saddle-like structure of the macrocycle led to the formation of only one additional
hydrogen bond between the hydroxyl group in the phenyl ring of the porphyrinate and
the oxygen atom of the carboxyl group of L2 or nitro group of L3 (Figure 4).

Thus, the strongest binding of the ligand to porphyrin (Eint) corresponded to the
smaller value of the hydrogen bond length between them (r(OH . . . O = L)). Therefore,
the strongest bonds are formed when porphyrinate Co(III)P2 binds the metronidazole
(L2). The lengths of the formed hydrogen bond and the energies of the intermolecular
interaction of the bis-axial complex are in good agreement with the values of the energies
of hydrogen bonds determined from the formation constants of the Co(III)P-(L)(H2O)
complexes (Figure 5).

For the analysis of the chemical structure of Co(III)P(1-2) and its complexes with L1-L3,
1H NMR spectra were obtained as shown in the Figure 4, which are the superposition
(convolution) of spectra, relating to a certain range of self-diffusion coefficients, which
these bonds are characterized [17,27–31]. Such superposition is obtained by a projection
of a pseudo-two-dimensional spectrum of the diffusive ordered DOSY spectroscopy on
the set range of self-diffusion coefficients. The analysis of the obtained ranges (Figure 5)
showed a change in the values of chemical shifts and a shape of the signals of characteristic
groups that are usually observed as a result of the formation of complexes with ligands. In
particular, formation of hydrogen bonds between one OH group of the porphyrin Co(III)P1
and oxygen atom of carboxy-group of the ligand L3 or oxygen atom of nitro-group of the
ligand L2 was evidenced by the up-field shift of signals of the porphyrin OH groups, which
were involved in the hydrogen bonds formation (∆ = 1.14 ppm in case of the complexes
Co(III)P1(L3)(H2O), and 2.60 ppm in case of the Co(III)P1(L2)(H2O)), compared to the OH
group proton of the Co(III)P1. The protons of another OH group of the Co(III)P1, which
are not involved in the formation of the considered hydrogen bonds in the complexes
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Co(III)P1(L3)(H2O), Co(III)P1(L2)(H2O) appear in the same region (6.26 ppm) as in the
initial complex Co(III)P1. Up-field shift of the Co(III)P(1-2) complexes proton signals
agreed well with the DOSY experiments. The experiments were used for the compounds
identification according to their self-diffusion coefficients, which depend on the size and the
form of a molecule in accordance with the Stokes–Einstein equation [32–35]. The complexes
Co(III)P(1-2) are characterized by a higher relative value of the self-diffusion coefficient
to the solvent (0.39), than the complexes with ligands (0.34 and 0.28), which confirms
the changes of molecular mass as a result of the complex formation. In addition to this,
Co(III)P2 and Co(III)P2-L2, and Co(III)P2-L3 complexes were completely characterized by
means of two-dimensional correlation spectroscopy (1H–1H 2D of COSY), which also is
applied for the determination of macromolecules chemical structure [17,30–35].
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Figure 5. 1D-(part) of the 2D DOSY NMR spectra of the porphyrinate Co(III)P1(H2O)2 (a),
Co(III)P1(L2)(H2O) (b), and Co(III)P1(L3)(H2O) (c) in D2O/H2O, corresponding to the characteristic
self-diffusion coefficient of these complexes.

Based on this spectroscopic technique, the signals in the one-dimensional nuclear
magnetic resonance experiment were assigned to the characteristic groups of the studied
compounds. As shown in Figure 6, we unambiguously assign the proton signals both
Co(III)P and the corresponding ligands of Co(III)P2-L2 and Co(III)P2-L3 complexes. In
addition, the nuclear Overhauser effect experiment in a rotating system of coordinates
(1H–1H 2D ROESY) was carried out to confirm of the space orientation of L2 to oxygen
atoms of Co(III)P2. Recently, this method has been successfully applied to define the spatial
structure of macromolecules [36–39], and the small biologically active molecules [40]. This
experiment unambiguously showed through space interactions of ligand protons with the
Co(III)P protons located in close proximity to oxygen. The appearance of an additional
cross-peak (a red circle) resulting due to the interaction of the COOH or NO2 groups of the
ligands with the OH group of the porphyrins (Figure 6) confirms this fact.
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Figure 6. 1H–1H 2D ROSY NMR spectra of the complexes Co(III)P2-(L2) (a) and Co(III)P2-(L3) (b) in
D2O/H2O.

2.2. Co(III)/Co(II) Red-Ox Processes in the Composition of the Co(III)P in the Presence of CPC

Axial complexes of the porphyrinates with imidazole derivatives [Co(III)P-(L)2] are
very stable in aqueous media, and the central cation reduction Co(III)/Co(II) in the metal-
loporphyrin is the only method of this complexes decomposition (imidazole derivatives
elimination). As shown earlier [21], such a reduction takes place in solutions containing
surfactants with opposite charged porphyrin.

The study of the water-soluble porphyrin interactions with micelles of ionic surfac-
tants revealed the presence of three different forms of porphyrins in solutions: the free
porphyrins in the monomers form, the premicellar surfactant-porphyrin aggregates and
the micellized monomer [21,41–45]. The formation of premicellar porphyrin aggregates
occurs at low surfactant concentrations, and is accompanied by a decrease in the intensity
and broadening of absorption bands in the UV–Vis spectra. The formation of a micellar
monomer is observed with an increase in the surfactant concentration, and is accompanied
by an increase in the intensity of absorption bands in the UV–Vis spectra.

Upon spectrophotometric titration of Co(III)P(1-2)-(L)2 porphyrin solutions with
CPC (Figure 7a, Equation (2a)) with small additions of surfactants, the decrease in the
absorption intensity is observed, which corresponds to the formation of an [Co(III)P(1-2)-
(L)2]Agg associate. After passing through the minimum and further increase in the CPC
concentration, the intensity of the absorption bands in the corresponding UV–Vis spectra
began to increase (Figure 6b, Equation (2b)), which indicates the destruction of associates
and the appearance of micellar monomeric porphyrins.

Co(III)P-(L′)(L′′) + CPC↔ [Co(III)P-(L′)(L′′)]Agg (2a)

[Co(III)P-(L′)(L′′)]Agg + CPC↔ [Co(III)P-(L′)(L′′)]Mc (2b)

As can be seen from the data of Figure 8 and Table 3, the CPC concentrations, at which
the largest premicellar aggregates and micellar monomeric porphyrins (CCM) are formed,
practically did not depend on the position of the hydroxyl group in the phenyl rings of
Co(III)P(1-2), but significantly depended on the nature of the axial ligands. The more
bulky axial ligands were coordinated on the porphyrinate, the greater the number of CPC
molecules required for the formation of a complete micellar shell.

To determine the localization place of Co(III)P (preferentially in the hydrophobic
regions of the micelle interior or at the water–micellar interface), and to deduce the ori-
entation and location of the porphyrin within the micellar aggregates, the trend of the
chemical shift of the surfactant (CPC) resonances in the absence and present of 0.005 M
Co(III)P solution was investigated by 1H NMR spectroscopy. The chemical shifts of the
proton resonance of CPC (0.5 M) in D2O/H2O in the presence and absence of Co(III)P are
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summarized in Table 4. The resonance signals of the surfactant protons occurred in the
spectral region of 0.78–9.10 ppm. The chemical shifts of CPC headgroup protons (-CH-
ortho-, meta-, and para-) and those of the hydrophobic alkyl chain protons (α-CH2-, β-
CH2-,γ-CH2-, (-CH2-)12, andω-CH3) indicated that the Co(III)P interacts with all groups
of CPC but with various strength. The protons of the highly hydrophobic section of the
molecules remain in the core portion of micelle and are highly shielded, with the NMR
signals appeared in the low frequency range (in the present case protons exhibited low
frequency signals at 0.95, 1.38, 1.57, and 2.12 ppm, respectively) (Figure 9a).
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(L2)(H2O) (�).



Molecules 2021, 26, 868 10 of 20

Table 3. CPC concentrations at which premicellar aggregates and micellated porphyrinates are
formed (Cporph. = 1.15 × 10−5 M).

CCPC
Agg

,M cmc *, M (Na = CCPC/Cporph.)

Co(III)P1-(H2O)2 4.61 × 10−5 9.43 × 10−4 (82)

Co(III)P2-(H2O)2 4.67 × 10−5 9.55 × 10−4 (83)

Co(III)P1-(L1)(H2O) 4.77 × 10−4 1.52 × 10−3 (132)

Co(III)P1-(L2)(H2O) 5.22 × 10−4 1.70 × 10−3 (148)

Co(III)P1-(L3)(H2O) 5.84 × 10−4 1.77 × 10−3 (154)

Co(III)P1-(L1)2 1.12 × 10−3 2.18 × 10−3 (190)

Co(III)P1-(L2)2 1.28 × 10−3 2.47 × 10−3 (215)

Co(III)P1-(L3)2 1.32 × 10−3 2.58 × 10−3 (224)
* cmc—the critical concentration of the localized porphyrin molecule of the CPC micelle.

Table 4. Chemical shift of CPC protons in D2O/H2O in the presence and absence of Co(III)P1
(CCPC = 1 × 10−4 M).

[Co(III)P] m- p- o- α-CH2- β-CH2- γ-CH2- (-CH2-)13 ω-CH3

0 9.08 8.67 8.19 4.75 2.12 1.57 1.38 0.95

0.001 9.10 8.69 8.22 4.74 2.10 1.41 1.20 0.78

∆δ 0.02 0.02 0.03 −0.01 −0.02 −0.16 −0.18 −0.17
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Figure 9. (a) 1H-NMR-spectrum of the CPC in the absence (1) and in the presence of Co(III)P1 (2)
(D2O/H2O) in the region of 0.5–2.5 ppm and (b) 1H–1H two-dimensional correlation spectroscopy
(2D COSY) NMR spectra of the [Co(III)P1-(H2O)2]Mc, CCPC = 6 × 10−3 M, CCo(III)P = 1 × 10−4 M.

The CPC molecules in the micelle are mobile and can freely rotate, bend, or fold inside
the micelle and are characterized by a sharply peak. However, with the addition of Co(III)P,
the CPC molecule mobility inside micelles is decreased, significant broadening and changes
in chemical shift are observed. This increase in line width in the presence of 50 mM Co(III)P
is consistent with a reduced exchange rate at a higher concentration of CoP [46–48].

The protons closest to the surfactant head group and ones on the cationic head group
gave rise to higher frequency NMR signals, as they were less shielded than protons located
in the end of the alkyl chain. The COSY experiment of the [Co(III)P1-(H2O)2]Mc system
showed strong correlations between the CPC head groups protons and porphyrin phenyl
rings, as evidenced by the high cross-peaks between them. Besides, there are comparatively
intense cross peaks between porphyrinate protons and CPC chain protons. All these
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observations led us to conclude that the hydrophilic fragments of porphyrin are solubilized
in the micelle head groups, and the tetrapyrrole macrocycle is located in the micelle
“palisade” layer.

In the presence of surfactant micelles due to the inclusion of the porphyrin molecule
in its outer micellar shell and the screening of the metalloporphyrin coordination center by
the surfactant hydrocarbon chains, the Co(III)porphyrin is reduced into Co(II)porphyrin,
which is accompanied by the elimination of axial ligands.

It is known that cobalt cation in the porphyrin coordination center can have two
oxidation states (2+ and 3+), and both states can quite easily transform into each other. So,
when Co(II)-tetraarylporphyrins are dissolved in electron-donating or non-polar solvents
in the presence of organic bases, the Co(II) cation almost instantaneously oxidizes into
Co(III), coordinating on itself two additional electron-donating ligands or one ligand and
one solvent molecule [49–52]. The catalyst for this process is molecular oxygen contained
in the air. That is, in practice, the presence of an electron donor environment and air
atmosphere is the condition for finding the cobalt cation in the 3+ state in the corresponding
porphyrinate. As noted above, when Co(III)P-(L)2 is localized into CPC micelle, the aqua-
or imidazole complex of the porphyrinate is incorporated into the hydrophobic part of the
micelle. An inert environment is created around the coordination center of the porphyrin,
completely eliminating the presence of water molecules, which apparently initiates the
process of Co(III) reduction into Co(II):

τ, T

[Co(III)P-(L)2]Mc ↔ [Co(II)P]Mc +2L (3)
The spectral changes and reduction rate constant of micellized monomer complexes

[Co(III)P-(H2O)2]Mc, [Co(III)P-(L)(H2O)]Mc are presented in Table 5 and Figure 10.

Table 5. Reduction rate constants of [Co(III)P-(H2O)2]Mc, [Co(III)P-(L)(H2O)]Mc, and [Co(III)P-(L)2]Mc

into [Co(II)P]Mc in phosphate buffer (pH 7.4) (keff, s−1·M−1, CCPC = 2.35 × 10−3 M, T = 40 ◦C).

[Co(III)P-(H2O)2]Mc [Co(III)P-(L)(H2O)]Mc [Co(III)P-(L)2]Mc

Co(III)P1/L1

2.75 × 10−4

1.84 × 10−4

<10−5

Co(III)P1/L2 5.77 × 10−5

Co(III)P1/L3 7.92 × 10−5

Co(III)P2/L1

2.71 × 10−4

1.80 × 10−4

Co(III)P2/L2 4.07 × 10−5

Co(III)P2/L3 7.85 × 10−5
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Our investigations have shown that the Co(III)/Co(II) reduction rate in the micellized
porphyrinate depends on various factors such as the surfactant nature, buffer ionic strength,
temperature, and axial ligand nature. Co-porphyrinates with aqua-ligands have the highest
reduction rate. The reduction rate of Co(III)/Co(II) is decreased at the presence of one
unsubstituted imidazole ligand by 1.5 times. The two-sites binding of imidazole derivative
depending on strength of additional hydrogen bond makes the Co(III)-porphyrins more
stable to reduction from 2 to 4 times. Bis-axial complexes of [Co(III)P-(L)2]Mc are reduced
especially slow.

2.3. The Effect of Micelle Formation on the Processes on Axial Coordination of the Organic Ligands
by the Co(III)-Porphyrins

Similarly to the monomeric bis-aqua complex Co(III)P-(H2O)2, the micellized [Co(III)P-
(H2O)2]Mc and [Co(II)P(1-2)]Mc complexes in aqueous media at pH 7.4 replaces the water
ligands in two stages and this process is accompanied by characteristic spectral changes
(Figure 11a). The “second” ligand attachment leads to oxidation of Co(II) into Co(III) in the
case of [Co(II)P(1-2)] (Figure 11b).

[Co(III)P-(H2O)2]Mc + L↔ [Co(III)P-(L)(H2O)]Mc (4a)

[Co(III)P-(L)(H2O)]Mc + L↔ [Co(III)P-(L)2]Mc (4b)

[Co(II)P]Mc + L↔ [Co(III)P-(L)(H2O)]Mc (4c)
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(b) upon titration with L1 (CCPC = 0 ÷ 8 × 10–4 M, in phosphate buffer (pH 7.4) at 25 ◦C).

The formation constants of mono-axial complexes of [Co(III)P(1-2)(L)(H2O)]Mc ob-
tained according with the equilibrium 4a confirm that selective ability of imidazole deriva-
tive binding by Co-porphyrin in CPC micellar solutions was retained (Figure 12). As the
Co-porphyrin monomer, as micellized porphyrin binding ligands L2 and L3 via formation
of donor–acceptor and hydrogen bonds.
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Figure 12. Stability constants (K1 and K2, (M−1) of the micellized mono-axial porphyrinates Co(III)P1-
(L)(H2O)]Mc and [Co(III)P2-(L)(H2O)]Mc in phosphate buffer (pH 7.4) at 25 ◦C.
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3. Materials and Methods

5,15-bis-(methoxyphenyl)-10,20-bis-phenylporphyrins (1,2) were obtained according to [53]
through acid catalyzed condensation reaction between meso-phenyldipyrrolylmethane
and corresponding methoxy-benzaldehydes followed by oxidation of reaction mixture
by o-chloranil. 5,15-bis-(3-methoxyphenyl)-10,20-bis-phenylporphyrin (1). To a solution
of 0.2 g (0.96 mmol) meso-phenyldipyrrolylmethane in 50 mL of dichloromethane, were
added 0.14 g (1.21 mmol) of 3-methoxybenzaldehyde in 25 mL dichloromethane and
1 mL of trichloroacetic acid. The solution was refluxed for 30 min and subjected oxi-
dation by treatment with 0.1 g of o-chloranil. The reaction mixture was washed with
water, evaporated to a minimum volume and chromatographed on aluminum oxide using
dichloromethane as an eluent. Yield of the compound (1) was equal to 52%. Rf = 0.42
(Silufol, eluent—dichloromethane). UV–Vis spectrum in dichloromethane, λ, nm (lgε):
419.0 (4.92), 515.0 (3.60), 550.0 (3.12), 593.0 (2.87), 649.0 (2.21). 1H NMR in CD2Cl2: 9.28 (d,
8H, β-pyrrole), 7.70 (m, 8H, o-H), 7.51 (m, 10H, p-, m-H), 3.18 (s, 6H, OCH3), −2.14 (br.s.,
2H, NH).

5,15-bis-(2-methoxyphenyl)-10,20-bis-phenylporphyrin (2) was obtained similarly (1). Yield
of the compound (2) was equal to 39%. Rf = 0.39 (Silufol, eluent—dichloromethane). UV–Vis
spectrum in dichloromethane, λ, nm (lgε): 417.0 (4.89), 513.0 (3.58), 548.0 (3.10), 591.0 (2.83),
647.0 (2.19). 1H NMR in CD2Cl2: 9.22 (d, 8H, β-pyrrole), 7.66 (m, 6H, o-H), 7.48 (m, 12H, p-,
m-H), 3.14 (s, 6H, OCH3), −2.09 (br.s., 2H, NH).

5,15-bis-(hydroxyphenyl)-10,20-bis-phenylporphyrins (3,4) were obtained according with [54]
by demethylation of the 5,15-bis-(methoxyphenyl)-10,20-bis-phenylporphyrins (1,2) un-
der action of trimethylsilane iodide in chloroform in the presence of hydrochloric acid
according. 5,15-bis-(3-hydroxyphenyl)-10,20-bis-phenylporphyrin (3). To a solution of 0.3 g
(0.39 mmol) of porphyrin (1) in 50 mL of chloroform with stirring in argon atmosphere
was added 0.1 g (0.46 mmol) of trimethylsilane iodide in 20 mL chloroform. To the solu-
tion was added 15 mL of 5% hydrochloric acid and the resulting solution was heated at
70 ◦C for 30 min. The reaction mixture was cooled, washed with water, evaporated to a
minimum volume, and chromatographed on aluminum oxide using dichloromethane as
an eluent. Yield of the compound (3) was equal to 62%. Rf = 0.22 (Silufol, eluent—mixture
of dichloromethane:acetone, 3:1. UV–Vis spectrum in dichloromethane, λ, nm (lgε): 412.0
(4.71), 509.0 (3.43), 541.0 (3.01), 587.0 (2.79), 641.0 (2.11). 1H NMR in D2O/H2O: 9.12 (d,
8H, β-pyrrole), 7.62 (m, 8H, o-H), 7.45 (m, 8H, p-, m-H), 2.01 (br.s., 2H, OH). 5,15-bis-(2-
hydroxyphenyl)-10,20-bis-phenylporphyrin (4) was obtained similarly (3). Yield of the com-
pound (8) was equal to 49%. Rf = 0.1 (Silufol, eluent—mixture of dichloromethane:acetone,
3:1). UV–Vis spectrum in dichloromethane, λ, nm (lgε): 410.0 (4.69), 507.0 (3.41), 539.0
(2.98), 584.0 (2.72), 639.0 (2.09). 1HNMR in D2O/H2O: 9.10 (d, 8H, β-pyrrole), 7.62 (m, 6H,
o-H), 7.45 (m, 10H, p-, m-H), 2.01 (br.s., 2H, OH).

5,15-bis-(hydroxyphenyl)-10,20-bis-(sulfophenyl)porphyrins (5,6) were prepared as described
in [55] from the intermediate products (3, 4) respectively. 5,15-bis-(3-hydroxyphenyl)-10,20-
bis-(4-sulfophenyl)porphyrin (5). Of 5,15-bis-(3-hydroxyphenyl)-10,15-bis-phenylporphyrin
0.15 g (0.19 mmol) was dissolved by stirring in 30 mL of concentrated sulfuric acid at room
temperature and heated at 70 ◦C for 30 min. The resulting solution was cooled poured
onto ice, the precipitate was filtered and washed with water and used without further
purification. Yield of the compound (5) was equal to 87%. 5,15-bis-(2-hydroxyphenyl)-10,15-
bis-(4-sulfophenyl)porphyrin (6) was obtained similarly to (5). Yield of the compound (6)
was equal to 79%. The compounds 5 and 6 were used in subsequent transformations
without additional purification.

Structures of the porphyrins (1–6) are depicted in Figure 13.

Co(III)P-(L)(H2O) + L↔ Co(III)P-(L)2 (1b) (5)
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Co(II)-5,15-bis-(hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrins [Co(II)P1, Co(II)P2]
were obtained according to the literature procedure [56] from the corresponding porphyrin
ligands (3,4) and Co(II) acetate by refluxing in DMF. Co(II)-5,15-bis-(3-hydroxyphenyl)-
10,20-bis-(4-sulfophenyl)porphyrin (Co(II)P1). To 0.1 g (mmol) solution of compound 5 in
50 mL of dimethylformamide was added 100 mg of cobalt(II) acetate and resulting mixture
was refluxed for 30 min. The resulting solution was diluted with water, the precipitate
formed was filtered, dried, and chromatographed on aluminum oxide using toluene as an
eluent. Yield of the Co(II)P1 was equal to 79%. Rf = 0.62 (aluminum oxide, eluent—toluene).
UV–Vis spectrum in DMF, λ, nm (lgε): 414.2 (5.37), 528.3 (4.24). 1H NMR in DMSO-d6:
15.87 (br. s., 8H, β-pyrrole), 12.96 (br.s., 4H, 4-sulfophenyl), 10.08 (br. s., 4H, 4-sulfophenyl),
11.82 br.s., 4H, o-H), 9.65 (m, br.s., 4H, p-, m-H), 8.27 (s, -OH). Mass spectrum, m/z (Irel, %):
865.1 (94) [M]+. Calculated for C44H26N4S2O8Co 865.9.

Co(II)-5,15-bis-(2-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin [Co(II)P2] was ob-
tained similarly to Co(II)P1. 1H NMR in DMSO-d6: 16.03 (br.s., 8H, β-pyrrole), 13.05 (br.s.,
4H, 4-sulfophenyl), 10.14 (br.s., 4H, 4- sulfophenyl), 11.67 (br.s., 2H, J = 8.1 Hz o’-H), 11.60
(t, 2H, m’-H), 9.29 (t, 2H, p-H), 9.10 (d, 2H, J = 8.1 Hz, m-H), 5.61 (s, -OH). UV–Vis spectrum
in DMF, λ, nm (lgε): 413.2 (5.35), 527.3 (4.23). Mass spectrum, m/z (Irel, %): 864.8 (92) [M]+.
Calculated for C44H26N4S2O8Co: 865.9.

Co(III)-porphyrins [Co(III)-5,15-bis-(3-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin
(Co(III)P1-(H2O)2) and Co(III)-5,15-bis-(2-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin
(Co(III)P2-(H2O)2)] were obtained similarly [56] by dissolving of corresponding Co(II)-
porphyrins ([Co(II)P1, Co(II)P2] in aqueous media.

Co(III)-5,15-bis-(3-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin (Co(III)P1-(H2O)2.
1H NMR in D2O/H2O: 9.07 (s, 8H, β-pyrrole), 8.26 (d, 4H, J = 8.2 Hz, 4-sulfophenyl), 8.16
(d, 4H, J = 8.1 Hz, 4-sulfophenyl), 7.81 (m, 4H, o-H), 7.65 (m, 4H, p-, m-H), 6.27 (s, 2H,
HO-Ar). UV–Vis spectrum in phosph. buf., λ, nm (lgε): 424.0 (5.33), 540.0(4.09).

Co(III)P1-(L2)(H2O): 1H NMR in D2O/H2O: 9.05 (s, 8H, β-pyrrole), 8.22 (d, 4H,
J = 8.2 Hz, 4-sulfophenyl), 8.11 (d, 4H, J = 8.1 Hz, 4-sulfophenyl), 7.79 (m, 4H, o-H), 7.63 (m,
4H, p-, m-H), 6.25 (s, 1H, HO-Ar); 5.05 (br.s, 1H, -CH2-CH2OH), 4.37 (t, 2H, -CH2-CH2OH),
3.79 (t, 2H, -CH2-CH2OH), 3.67 (s, 1H, HO-Ar); 3.25 (s, 1H, 2-Im), 2.28 (s, 3H, -CH3). UV–Vis
in phosph. buf., λ,nm (lgε): 426.0 (5.31); 543.0 (4.06).

Co(III)P1-(L3)(H2O): 1H NMR in D2O/H2O: 9.04 (s, 8H, β-pyrrole), 8.21 (d, 4H,
J = 8.2 Hz, 4-sulfophenyl), 8.10 (d, 4H, J = 8.1 Hz, 4-sulfophenyl), 7.80 (m, 4H, o-H), 7.62
(m, 4H, p-, m-H), 6.26 (s, 1H, HO-Ar), 6.14 (br.s. 2H (NH2), 6.03 (s, H, Im), 5.22 (br.s, H,
-COOH), 5.12 (s, 1H, HO-Ar), 4.68 (s, H, -CH<), 4.18 (m, 2H, -CH2-), 3.65 (s, H, Im). UV–Vis
in phosph. buf., λ, nm (lgε): 425.5 (5.29), 542.0 (4.05).

Co(III)-5,15-bis-(2-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin (Co(III)P2-(H2O)2).
1H NMR in D2O/H2O: 9.05 (s, 8H, β-pyrrole), 8.25 (d, 4 H, J=8.2 Hz, 4-sulfophenyl), 8.14
(d, 4H, J = 8.1 Hz, 4-sulfophenyl), 7.67 (d, 2H, J = 8.1 Hz o’-H), 7.60 (t, 2H, m’-H), 7.19 (t, 2H,
p-H), 7.10 (d, 2H, J = 8.1 Hz, m-H), 5.61 (s, -OH). UV–Vis in phosph. buf., λ, nm (lgε): 423.0
(5.29); 539.0 (3.97).

Co(III)-5,15-bis-(2-hydroxyphenyl)-10,20-bis-(4-sulfophenyl)porphyrin (Co(III)P2-(H2O)2).
1H NMR in D2O/H2O: 9.05 (s, 8H, β-pyrrole), 8.25 (d, 4 H, J = 8.2 Hz, 4-sulfophenyl), 8.14
(d, 4H, J = 8.1 Hz, 4-sulfophenyl), 7.67 (d, 2H, J = 8.1 Hz o’-H), 7.60 (t, 2H, m’-H), 7.19 (t, 2H,
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p-H), 7.10 (d, 2H, J = 8.1 Hz, m-H), 5.61 (s, -OH). UV–Vis in phosph. buf., λ, nm (lgε): 423.0
(5.29); 539.0 (3.97).

Co(III)P1-(L2)2. 1H NMR in D2O/H2O: 9.07 (s, 8H, β-pyrrole), 8.25 (d, 4H, J = 8.2 Hz,
4-sulfophenyl), 8.14 (d, 4H, J = 8.1 Hz, 4-sulfophenyl), 7.80 (m, 4H, o-H), 7.64 (m, 4H, p-,
m-H), 6.20 (s, H, -OH); 5.02 (br.s, 2H, -CH2-CH2OH), 4.33 (m, 4H, -CH2-CH2OH), 3.64 (m,
4H, -CH2-CH2OH), 3.23 (s, 2H 2-Im), 2.27 (s, 6H, -CH3). UV–Vis in phosph. buf., λ, nm
(lgε): 427.6 (5.30); 547.0 (4.04).

Co(III)P1-(L3)2. 1H NMR in D2O/H2O: 9.07 (s, 8H, β-pyrrole), 8.26 (d, 4H, J = 8.2 Hz,
4-sulfophenyl), 8.16 (d, 4H, J = 8.1 Hz, 4-sulfophenyl), 7.81 (m, 4H, o-H), 7.65 (m, 4H, p-,
m-H), 6.20 (s, H, -OH), 6.14 (br.s. 4H (NH2), 6.03 (s, H, Im), 5.22 (br.s, 2H, -COOH), 5.12 (s,
H, -OH), 4.68 (s, 2H, -CH<), 4.18 (m, 4H, -CH2-), 3.65, 3.60 (s, 2H, Im). UV–Vis in phosph.
buf., λ, nm (lgε): 427.0 (5.27); 546.0 (4.02).

Co(III)P2-(L2)(H2O). 1HNMR in D2O/H2O: 9.05 (s, 8H, β-pyrrole), 8.25 (d, 4H, J = 8.2 Hz,
4-sulfophenyl), 8.14 (d, 4H, J = 8.1 Hz, 4-sulfophenyl), 7.67 (d, 2H, J = 8.1 Hz o’-H), 7.60 (t,
2H, m’-H), 7.19 (t, 2H, p-H), 7.10 (d, 2H, J = 8.1 Hz, m-H), 5.61 (s, H, -OH), 5.06 (br.s, 1H,
-CH2-CH2OH), 4.37 (t, 2H, -CH2-CH2OH), 3.80 (t, 2H, -CH2-CH2OH), 3,.67 (s, 1H, -OH),
3.25 (s, 1H, 2-Im), 2.28 (s, 3H, -CH3). UV–Vis in phosph. buf., λ, nm (lgε): 425.0 (5.28);
542.0 (3.97).

Co(III)P2-(L2)2. 1HNMR in D2O/H2O: 9.05 (s, 8H, β-pyrrole), 8.25 (d, 4H, J = 8.2 Hz,
4-sulfophenyl), 8.14 (d, 4H, J = 8.1 Hz, 4-sulfophenyl), 7.67 (d, 2H, J = 8.1 Hz o’-H), 7.60 (t,
2H, m’-H), 7.19 (t, 2H, p-H), 7.10 (d, 2H, J = 8.1 Hz, m-H), 5.61 (s, H, -OH), 5.03 (br.s, 2H,
-CH2-CH2OH, 4.33 (m, 4H, -CH2-CH2OH), 3.63 (m, 4H, -CH2-CH2OH), 3.20 (s, 2H 2-Im),
2.26 (s, 6H, -CH3). UV–Vis in phosph. buf., λ, nm (lgε): 426.5 (5.27); 545.6 (3.94).

Co(III)P2-(L3)(H2O). 1HNMR in D2O/H2O: 9.05 (s, 8H, β-pyrrole), 8.25 (d, 4H, J = 8.2 Hz,
4-sulfophenyl), 8.14 (d, 4H, J = 8.1 Hz, 4-sulfophenyl), 7.67 (d, 2H, J = 8.1 Hz o’-H), 7.60
(t, 2H, m’-H), 7.19 (t, 2H, p-H), 7.10 (d, 2H, J = 8.1 Hz, m-H), 6.32 s(H, -OH), 6.13 (br.s. 4H
(NH2), 6.04 (s, H, Im), 5.26 (br.s, H, -COOH), 5.15 s(H, -OH); 4.67 (s, H, -CH<), 4.16 (m, 2H,
-CH2-), 3.63 (s, H, Im). UV–Vis in phosph. buf., λ, nm (lgε): 424.0 (5.25); 541.0 (3.96).

Co(III)P2-(L3)2. 1HNMR in D2O/H2O: 9.05 (s, 8H, β-pyrrole), 8.25 (d, 4H, J = 8.2 Hz,
4-sulfophenyl), 8.14 (d, 4 H, J = 8.1 Hz, 4-sulfophenyl), 7.67 (d, 2H, J = 8.1 Hz o’-H), 7.60
(t, 2H, m-H), 7.19 (t, 2H, p-H), 7.10 (d, 2H, J = 8.1 Hz, m-H), 6.20 (s, H, -OH), 6.14 (br.s.
4H (NH2), 6.03 (s, H, Im, 5.22 (br.s, 2H, -COOH), 5.12 (s, H, -OH), 4.68 (s, 2H, -CH<), 4.18
(m, 4H, -CH2-), 3.65, 3.60 (s, 2H, Im). UV–Vis in phosph. buf., λ, nm (lgε): 426.0 (5.23);
544.5 (3.95).

Structures of the complexes Co(III)P(1-2)(L2)(H2O), Co(III)P(1-2)(L3)(H2O), Co(III)P(1-
2)(L2)2, and Co(III)P(1-2)(L3)2 are depicted in Figure 14.

3.1. Spectrophotometric Studies

Thermodynamic constants for the complexation of the Co(III)P with L were calculated
according to the Equation (6) on the base of the spectrophotometric titration experiment results:

K =
[CoP− L]
[CoP]·[L] =

1
[L]
·
(

∆Ai, λ1

∆A0, λ1

·
∆A0, λ2

∆Ai, λ2

)(
M−1

)
(6)

where λ1 is descending wavelength, λ2 is ascending wavelength; [Co(III)P-Im] is the
concentration of the porphyrinate with one axial ligand; and [L] is the ligand concen-
tration. ∆A0 is the maximal change of solution optical density at the given wavelength,
and ∆Ai is the change of solution optical density at the given wavelength at the given
concentration [57].

Kinetic parameters of the investigated reaction were obtained according to the known
procedure [33]. Effective rate constants (keff) were determined by the change in the solution
optical density on working wave lengths (λ = 414, 425 nm) after definite time intervals by
the equation of formally first order (Equation (7)) when CPC were in excess.

keff = 1/τ log(c0/cτ) (7)
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where c0 and cτ are the complexes concentrations of at start of the process and at time τ.
Values keff and determination of average deviations were optimized with using of Microsoft
Excel and ggh.exe (QB-45) by the Guggenheim method. Relative error was 3–5%.Molecules 2021, 26, x FOR PEER REVIEW 17 of 22 
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3.2. NMR Studies

NMR experiments were performed on a Bruker Avance III 500 MHz NMR spectrom-
eter (Bruker Biospin, Karlsruhe, Baden-Württemberg, Germany) equipped with a 5-mm
probe using standard Bruker TOPSPIN Software. Temperature control was performed
using a Bruker variable temperature unit (BVT-2000) in combination with a Bruker cooling
unit (BCU-05) to provide chilled air. Experiments were performed at 298 K without sample
spinning. TMS signals were used as internal standards for counting chemical shifts. The
two-dimension diffusion ordered spectroscopy (2D DOSY) spectra were recorded with
PGSTE pulse sequence using a bipolar gradient pulses and the insertion of a supplementary
delay (LED) [58]. The PGSTE sequence was used with a diffusion delay of 0.1 s, a total
diffusion-encoding pulse width of 5 ms. For each of 32 gradient amplitudes, 32 transients of
16.384 complex data points were acquired. The two-dimensional correlation spectroscopy
(2D COSY) spectra with a zero-quantum suppression element [59] were acquired with
a 16.96 ppm spectral window in the direct dimension F1 with 2048 complex data points
and a 16.96 ppm spectral window in the indirect dimension F2 with 128 complex points.
The spectra were acquired with 64 scans and relaxation delay of 2 s. Two-dimensional
rotating frame nuclear Overhauser effect spectroscopy (2D ROESY) [59] experiments were
performed with pulsed filtered gradient techniques. The spectra were recorded in a phase-
sensitive mode using Echo/Antiecho-TPPI gradient selection with 2048 points in the F2
direction and 256 points in the F1 direction. Spin-lock delay values for 2D ROESY were
200 ms. The spectra were acquired with 64–72 scans and relaxation delay of 2 s.



Molecules 2021, 26, 868 17 of 20

3.3. Quantum-Chemical Calculations

Were performed using the Gaussian 09 software package [60]. The optimization
of the geometrical parameters of the compounds under study and NBO-analysis were
performed using the density functional theory method (DFT) with the introduction of
dispersion interactions in the semiempirical Grimm DFT-D3 (BJ) model [61]. We used the
CAM-B3LYP functional [62] with the basic set: Def2TZVPP [63,64] for the Co atom and
6-31G (d, p) [65,66] for the rest of the atoms. All structures did not have virtual frequencies
in vibration spectra correspond to energy minimum.

The energy of intermolecular interaction of the studied complexes ∆E with taking into
account the superposition error of BSSE was calculated according to the Equation (8) [67,68]:

∆E = E(AB,aUb,R) − [E(A,aUb,R) + E(B,aUb,R)] (8)
The error arising from the superposition of basis sets of functions (BSSE) was calcu-

lated using the Equation (9):

BSSE = [E(A,aUb,R) − E(A,a,R)] + [E(B,aUb,R) − E(B,b,R)] (9)

where E(AB,aUb,R),E(A,a,R), and E(B,b,R) are the energy of the complex and the initial
molecules, respectively. Molecules A and B are separated by the distance R in the complex,
a and b are the basic set of isolated molecules, and aUb is the basic set of the AB complex.

The stabilization energy of the electronic pair acceptor orbitals at the bond for-
mation (Est) and the values of charge transfer (qCT) were calculated by the following
Equation (10) [69,70]:

Est =
−2F2

ij

∆E
(10)

qCT = 2(
Fij

∆E
)

2

where Fij—the Fock matrix element between i and j NBO orbitals and ∆E—the difference
in orbital energies.

4. Conclusions

Thus, it was found that disulfoderivatives of Co(III)-tetraarylporphyrines with hy-
droxyl groups in two aryl fragments of the macrocycle have the ability to recognize the
various imidazole derivatives (including drugs) due to the formation of additional hy-
drogen bonds upon their axial coordination on the cobalt cation in aqueous media. The
strongest additional hydrogen bonds were formed in the case of Co(III)-porphyrinate with
a hydroxyl group in the ortho-position of the phenyl fragment and the nitro group of the
pharmaceutical metronidazole molecule. Moreover, the selectivity of binding was recorded
when only one imidazole derivative was attached in axial-position. It was found that
the localization of the investigated sulfonated Co(III)-tetraarylporphyrin into spherical
micelles of cetylpyridine chloride decreased their binding ability towards imidazoles, but
the selectivity of their binding was retained.

Micellation of the Co(III)-porphyrins leads to a complete or partial reduction of the
central cobalt cation into Co(II). The rate of the reduction process and the degree of its
occurrence very strongly depended on the strength of the axial ligands binding: bis-aqua
Co(III)-porphyrins were reduced more rapidly, and bis-imidazole complexes were reduced
more slowly. The presence of additional hydrogen bonds during the formation of mono-
axial complexes of Co(III)-porphyrins with imidazole derivatives increased their resistance
to reduction by 2–4 times. The rate of reduction can also be controlled by increasing the
temperature, varying the nature of substrate or medium. The obtained materials can be
used to develop effective receptors for recognition, delivery, and prolonged release of drug
compounds to the sites of their functioning. Considering that cetylpyridinium chloride is a
widely used cationic biocide as a disinfectant, the materials we developed might prove to
be effective antimicrobial agents. We are currently conducting research in this area.
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