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Abstract

Background

Chronic schistosomiasis is predominantly induced through up-regulation of inflammatory

cytokines such as interleukin (IL)-13. IL-13 may contribute to the disease outcomes by

increasing eosinophil infiltration thereby promoting fibrosis. IL-13 may act as an immuno-

suppressive inflammatory cytokine that may promote carcinogenesis and also may offer

protection against schistosomiasis thereby reducing risk of schistosome infections. Our

study evaluated the frequency of the IL-13 rs1800925/-1112 C/ T promoter single nucleotide

polymorphisms (SNPs) among schistosomiasis infected individuals and assessed the asso-

ciation of the variants on IL-13 cytokine levels. We also investigated IL-13 rs1800925 poly-

morphisms on prostate-specific antigen levels as an indicator for risk of prostate cancer

development.

Methodology

The study was cross-sectional and included 50 schistosomiasis infected and 316 uninfected

male participants residing in Murehwa District, Zimbabwe. IL-13 rs1800925 SNPs were gen-

otyped by allele amplification refractory mutation system-polymerase chain reaction. Con-

centrations of serum prostate-specific antigens and plasma IL-13 were measured using

enzyme-linked immunosorbent assay.

Results

Frequencies of the genotypes CC, CT and TT, were 20%, 58% and 22% in schistosomiasis

infected, and 18.3%, 62.1% and 19.6% in uninfected participants with no statistical differ-

ences. There were significantly (p<0.05) higher IL-13 cytokine levels among both infected

and uninfected participants with the genotypes CC and CT; median 92.25 pg/mL and 106.5
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pg/mL, respectively, compared to TT variant individuals; 44.78 pg/mL. Within the schistoso-

miasis uninfected group, CC and CT variants had significantly (p<0.05) higher IL-13 levels;

median 135.0 pg/mL and 113.6 pg/mL, respectively compared to TT variant individuals;

47.15 pg/mL. Within the schistosomiasis infected group, CC, CT and TT variant individuals

had insignificant differences of IL-13 level. Using logistic regression, no association was

observed between prostate-specific antigen levels, IL-13 cytokine levels and IL-13

rs1800925 variants (p>0.05).

Conclusion

IL-13 rs1800925 C variant individuals had the highest IL-13 cytokine levels among the schis-

tosomiasis uninfected suggesting that they may be protective against Schistosoma infec-

tions. There was no association between IL-13 concentrations or IL-13 rs1800925 variants

and risk of prostate cancer indicating that IL-13 levels and IL-13 rs10800925 may not be uti-

lised as biomarker for risk of prostate cancer in schistosome infections.

Introduction

Schistosomiasis is a neglected tropical parasitic disease caused by the digenetic trematodes of

the Schistosoma genus [1,2]. The disease contributes to a globally estimated 70 million disabil-

ity-adjusted life years (DALYs) [3] and accounts for 200 000 deaths annually in the sub-Saha-

ran region [4]. Factors that contribute to the infection include poor sanitation, and open water

bodies infested with schistosome specific vectors and lack of knowledge about the disease [5].

Cardiopulmonary, gastrointestinal tract, genitourinary tract and the central nervous system

are the most affected human functional systems by acute and chronic schistosomiasis infec-

tions [5].

Acute schistosomiasis infections are a result of T helper (Th) 1 immune response whilst

chronic infections are a result of Th2 immune response induced through production of the

cytokines such as Interleukin (IL)-13 [6,7]. IL-13 is a small molecular regulatory multifunc-

tional cytokine mostly produced by activated lymphocytes that modulate inflammatory pro-

cesses [8]. IL-13 promotes Immunoglobulin (Ig) E production and class switch, up-regulates

major histocompatibility complex (MHC) class expression II and it inhibits inflammatory Th1

cytokine production [8–10]. Schistosome infection associated cytokines are connected to cyto-

kine gene polymorphisms of individual variability that influence immune responses and dis-

ease outcomes [11]. Cytokine gene polymorphisms such as single nucleotide polymorphisms

located in the promoter region of encoding genes may modify gene transcription and cytokine

production in parasitic infections and autoimmune diseases [11]. IL-13 plays a major role in

egg granuloma formation during schistosome infections and can stimulate fibroblasts to make

collagen leading to fibrosis that may lead to portal hypertension, thus causing much of the

morbidity and mortality associated with schistosomiasis [12–14]. High IL-13 is associated with

the development of hepatic fibrosis [15,16] and periportal fibrosis [17].

Through several mechanisms, IL-13 promotes and combats cancer progression [18,19]. IL-

13 plays a critical role in down-regulation of tumour immunosurveillance and is central to a

novel immunoregulatory pathway in which natural killer T cells are induced by tumours to

secrete IL-13, which acts through intermediate cells to suppress cytotoxic T cell responses

against the tumour [20]. IL-13 can promote survival of certain types of tumours through direct
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action on the tumour or acting through suppression of immuno-surveillance [21]. IL-13 stim-

ulates changes in epithelial and smooth muscle cell functions leading to hypersensitivity reac-

tions [22–24]. Epithelial lesions, tumours, and ulcers have been associated with the presence of

S. haematobium eggs in the lower genital tract [25]. High levels of Th2 cytokines including IL-

13 have been observed in the tumour microenvironment and peripheral blood of individuals

with bladder, breast and prostate cancers [26,27].

Single nucleotide polymorphisms (SNPs) are the most common genetic variations and if

located in the coding regions of genes can result in loss, abrogation or altered function of the

downstream protein by causing alterations in amino acid sequences and protein structure

[28,29]. IL-13 gene is located on chromosome 5q23.31 and encodes IL-13 cytokine [30]. Single

nucleotide polymorphisms substitution of the nucleotide cytosine (allele C) to thymine (allele

T) at the IL-13 rs1800925 (also known as -1111C/T, -1055C/T and -1112C/T) site in the pro-

moter region, results in the binding of nuclear proteins [31]. This causes overproduction of IL-

13 cytokine in Th2 lymphocytes that may play a role in allergic and chronic inflammatory dis-

eases [31–33]. Isnard et al. (2011) showed that S. haematobium infection levels are associated

with interleukin-13 (rs7719175) gene promoter polymorphism [34]. In 2012, Gaitlin et al.
showed that protection against severe infection with S. mansoni was driven by functional IL-

13–1055 polymorphisms [35]. IL-13 rs1800925T has been associated with a higher risk of path-

ological hepatic fibrosis in S. japonicum infected individuals [36]. Additionally, Kouriba et al.
showed that IL-13 -1112T variant was associated with susceptibility to S. haematobium infec-

tion [37]. In contrast to the above findings, recently Adedokun et al. (2018) found no statistical

difference in the IL-13 rs7719175 genotypic or allelic frequencies between schistosome-

infected and uninfected controls or any association with disease [38].

Limited reports on Schistosoma ova and prostate cancer co-existence have been reported

suggesting possible prostate cancer evolution due to schistosomiasis infection [39–42]. Pros-

tate cancer is one of the most common cancer in Zimbabwe [43]. Recently, Choto et al. (2020)

[44] showed that S. haematobium egg burden was associated with the risk of prostate cancer

development in adult males [45]. Schistosome induced pro-inflammatory and immunosup-

pressive cytokines have been reported to arbitrate intracellular communication, regulate gene

transcription and promote carcinogenesis in different tumour types including prostate cancer

[45–47]. Screening for prostate cancer is initially done by using prostate-specific antigen levels

to detect the diseases early stage for better management and reduction of disease specific mor-

tality [48]. Whilst prostate-specific antigen levels above 4.0 ng/mL serves as a reference point

for further prostate management [49]. To further determine risk of prostate cancer, combina-

tion of prostate-specific antigen with single nucleotide polymorphisms was shown to be effec-

tive in men with prostate-specific antigen levels greater than 4 ng/mL [50]. Combination of

genetics and the PSA test is useful for predicting the risk of prostate cancer that enables strati-

fying the population into different risk groups that may be a basis for the development of per-

sonalized screening for prostate cancer [50,51].

Characterizing cytokine genetic variability on the association of schistosome-induced cyto-

kines is important in understanding disease burden and other disease outcomes such as pros-

tate cancer in schistosome endemic countries. Therefore, the aim of the study was to evaluate

the frequency of the IL-13 rs1800925/-1112 C/ T promoter gene polymorphisms. We assessed

the association of the IL-13 rs1800925/-1112 C/ T promoter variants on IL-13 cytokine levels

between schistosome infected and uninfected male individuals. We investigated IL-13

rs1800925/-1112 C/T promoter single nucleotide polymorphisms and susceptibility to schisto-

somiasis. Furthermore, we investigated the implications of IL-13 rs1800925/-1112C/T variants

on the risk of prostate cancer development in male individuals residing in Murehwa District,

Zimbabwe.
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Materials and methods

Study design, study area, study population

This is a sub-study of November 2019 prostate cancer and schistosomiasis cross-sectional study

that included 366 male adult participants recruited from Murehwa District, Mashonaland East

province in Zimbabwe where Schistosoma haematobium is endemic [44]. The study area was

chosen because it has a high schistosomiasis burden of 47.4% in school aged children a repre-

sentative of the study population [52]. Overall population of Murehwa District is 199 607 and

about 94 000 individuals are men [53]. The District consists of more than 90% rural areas where

majority of the residents rely on nearby rivers for their domestic needs and farming activities.

Sanitation in the area is poor with the majority of residents relying on unsafe drinking water

and open defecation. The main study assessed possibility of prostate cancer development due to

schistosome infections hence, only male adult individuals were enrolled. The inclusion criteria

for the study participants were: adult male individuals aged 18 years and above, with and with-

out schistosomiasis (S. mansoni and S. haematobium) who are residents of the study area that

gave consent to be part of the study. The exclusion criteria included being under 18 years of age

and those not consenting to participate. Adults aged 18 years and above were included into the

study because they were able to understand the study and voluntarily gave informed consent.

Ethical approval

Ethical approvals were obtained from the University of KwaZulu-Natal, Biomedical Research

Ethical Committee (UKZN-BREC BF689/18) and the Medical Research Council of Zimbabwe

(MRCZ/A/2128). Consent to conduct the study in Murehwa District was obtained firstly from

the community gatekeepers. Prior to enrolment, the study aims and procedures were

explained to all participants in the local language (Shona). Written informed consent was

obtained from participants. Participants were free to withdraw from the study without preju-

dice to any services offered at the study sites.

Sample size calculation and sampling

A sample size of 245 including 20% added on to account for drop out was calculated [54]

based on the inferred schistosomiasis prevalence for adults of 15.8% (a third of the 47.4% for

the school aged children) [52]. We purposely recruited male adults aged 18 years and above

residence of Murehwa District, Zimbabwe. However, the number of participants recruited

ended up being 366 because more men met the study criteria [44]. Hence, the sample can be

considered representative of a larger population in the study area.

Participants from rural villages in Murehwa Disctrict were invited to be part of the study

through invitation by the village health workers to report to 8 sampling centres that are used

by the community for meetings or health education and immunisation programs (such centres

include schools or primary health centres) for enrolment into the study. The sampling centres

were Jekwa rural clinic, Dombwe rural clinic, Mutize primary school, Kareza gathering point,

Kapasura gathering point, Magaya primary school, Guzha primary school and Inyagui primary

school. Participants enrolled into the study provided their age or date of birth, samples for

parasitological diagnosis and blood sample for serological assays.

Parasitological diagnosis

Urine samples collected between 10:00 hours and 14:00 hours were processed within 2 hours of

sample collection. The urine was processed and examined to diagnose S. haematobium infections

as described by Mott et al. 1982 [55]. Urine sample collection and processing procedure was

PLOS ONE Interleukin-13 rs1800925 single nucleotide polymorphisms, IL-13 cytokine levels and schistosomiasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0252220 May 28, 2021 4 / 17

https://doi.org/10.1371/journal.pone.0252220


repeated on three consecutive days. The number of eggs were expressed per 10 mL of urine. Stool

samples were collected, processed, and examined using the Kato–Katz method [56]. The S. man-
soni eggs were expressed per milligram of stool. Participants were diagnosed positive for schistoso-

miasis infection if any of the two species of the parasite egg was detected in their urine or stool

samples. S. haematobium infection intensity was classified in accordance with the World Health

Organization guidelines; no infections 0 eggs, light infection<50 eggs/10mL and heavy infection

>50 eggs/10mL [57]. S. mansoni infection intensity was classified with WHO guidelines; no infec-

tions 0 eggs, light infections< 100 eggs per gram (epg), moderate infections�100< 400 epg and

heavy infections� 400 epg [57]. Schistosome infected individuals were treated with praziquantel

(PZQ) at the standard single oral dose of 40mg/kg per body weight [58].

Determination of IL-13 concentrations

Serum was obtained from the venous blood into blood collecting tubes without anti-coagulant

(BD vacutainers Lot- 7114655). Qualitative detection of IL-13 concentrations were measured

by enzyme linked immuno-sorbent assay (ELISA) using human IL-13 development ELISA kit

(product number-3471-1H-6; Mabtech Company, Sweden) according to the manufactures

intstructions. All samples and standards were measured in duplicate and concentrations were

determined from a standard curve using mean optical density values.

Determination of prostate-specific antigen concentrations

As reported by Choto et al. (2020) [44], qualitative detection of prostate-specific antigen levels

was done using enzyme linked immuno-sorbent assay (ELISA) using R &D Human Kallikrein

3/prostate-specific antigen Duo Set ELISA; DY1344 and R&D systems catalog # DY008 ancil-

lary kit (96 well microplates, plate sealers, substrate solution, stop solution, plate coating buffer

(PBS), wash buffer, and reagent diluent concentrate) according to the manufacturer’s instruc-

tion. All samples and standards were measured in duplicate and concentrations were deter-

mined from a standard curve using mean optical density values. The sensitivity of a prostate-

specific antigen levels above 4.0 ng/mL for detecting prostate cancer range from 63% to 83%

hence served as a reference point for further prostate cancer analysis [49,59]. Serum prostate-

specific antigen concentrations were expressed as ng/mL and were categorised into two groups

according to prostate-specific antigen greater than (>) 4 ng/mL and less than (<) 4 ng/mL.

DNA extraction protocol

Genomic DNA was isolated from whole blood using the Zymo Quick-DNA™ Miniprep Plus Kit

(Zymo Research, Irvine, CA), according to manufacturer’s instructions. In summary, whole

blood sample was mixed with genomic lysis buffer followed by 10-minute room temperature

incubation. Samples were vortexed and incubated in a water bath at 55˚C for cell lysis. An equal

volume of genomic binding buffer was added to the digested sample. The mixture was trans-

ferred to a Zymo Spin column in a collection tube and centrifuged. DNA pre-wash buffer was

added and centrifuged then g-DNA wash buffer was added and centrifuged. The spin column

was transferred to an Eppendorf tube and DNA elution buffer was added. DNA elution buffer

was added to the spin column, incubated at room temperature and was centrifuged. The DNA

was collected in the Eppendorf tube and stored at -80˚C until further analysis were conducted.

Genotyping

Genotypes for the IL-13 −1112C/T (rs1800925), polymorphism were determined by allele-spe-

cific ARMS–PCR methodology as described by Hummelshoy et al. [60]. For each DNA
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sample, two reactions were done with each of the forward primers: IL-13–1112 forward C

primer: 5’-TTCTGGAGGACTTCTAGGAAAAC-3’ or IL-13–1112 forward T primer: 5’-
TTCTGGAGGACTTCTAGGAAAAT-3’. The reverse primer IL-13 -740R: 5’-GGAGATGG
GGTCTCACTATG-3’ was used for all samples. Amplicon size of 319 bp product is detected.

The specific primer concentrations were 0.5 um for both reactions. Internal control PCR prim-

ers (amplicon size of 726 bp) were included in each reaction and allele specific and internal

control primer sequences and PCR product sizes as follows: Forward 5’-TGCCAAGTGGAG
CACCCAA -3’ and reverse: 5’- GCATCTTGCTCTGTGCAGAT-3’. Each PCR reaction was

performed under the following conditions: genomic DNA, Taq master mix (Inqaba biotechni-

cal industries, SA) containing 20 mM Tris-HCL pH 25˚C, 1.8 mM magnesium chloride, 22

mM NH4Cl, 22 mM potassium chloride, 0.2 mM deoxynucleotide triphosphates (dNTPs), 25

units/mL one Taq DNA polymerase, 5% glycerol, 0.06% IGEPAL CA-630 and 0.05% Tween-

20. The cycling conditions were 2 min at 94˚C, 15 cycles of 30 sec at 94˚C, 60 sec at 63˚C and

60 sec at 72˚C, 20 cycles of 30 sec at 94˚C, 60 sec at 60˚C and 60 sec at 72˚C, and finally 5 min

at 72˚C. The PCR products were separated on 2% agarose gel.

Statistical analyses

Data was analysed using Statistical Package for Social Sciences (SPSS) statistics version 16 and

graph pad prism version 6.0. Continuous variables were summarized by median and inter-

quartile range (IQR), and categorical variables were summarized by frequency and percentages

(%). Genotype frequencies were tested for agreement with Hardy–Weinberg equilibrium

using sing the chi-square (X2) goodness of-fit-test analysis based on likelihood theory, using

estimates of African genotype rs1800925/ -1112 CC, CT and TT frequencies of 0.340, 0.472,

0.188 respectively available at http://www.ensembl.org/Homo_sapiens/Variation/Population?

db=core;r=5:132656617-132657617;v=rs1800925;vdb=variation;vf=50310967. Differences in

genotypic and allelic frequencies between schistosomiasis infected and controls were assessed

by Chi-square test and strength of association was assessed by odds ratio with a 95% confi-

dence interval. Differences of genotypic variants and different villages were assessed by Chi-

square test. Additionally, genotypic differences on all 50 schistosomiasis infected and age

matched 50 schistosomiasis uninfected were assessed using the Chi-square test. Descriptive

statistics were applied on the following variables; schistosomiasis prevalence and infection

intensity. Kruskall-Wallis test and Mann-Whitney test were used to determine the IL-13 cyto-

kine level differences of the following: schistosomiasis infected and uninfected groups, schisto-

somiasis infection intensity groups, IL-13–1112 CC, CT and TT genotypes and prostate-

specific antigen level differences > or< 4 ng/mL. Multiple regression analysis was run to asso-

ciate the dependent variable; IL-13 levels from IL-13 SNP genotype (CC, CT, TT) and schisto-

somiasis status. Odd ratios (OR) and their 95% confidence intervals were used to measure the

strength of association. Binary logistic regression was done to predicted risk of prostate cancer

development using the dependent variable; prostate-specific antigen levels groups (> 4 ng/mL

or< 4ng/mL) and independent variables; IL-13 concentrations and schistosomiasis status.

Results

Prevalence of schistosomiasis and distribution of IL-13 – 1112C/T

genotype

A total of 366 adult male participants were recruited from eight rural schistosomiasis endemic

communities within Murehwa District, Zimbabwe, namely Dombwe, Mutize, Kareza, Kapa-

sura, Inyagui, Magaya, Jekwa and Guzha. Participants ranged from 18 to 95 years with a
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median age of 44 (31–61). Schistosomiasis prevalence was 13.7% (n = 50) with S. haematobium
infections prevalence of 12.3% (n = 45) and S. mansoni infection prevalence of 1.4% (n = 5).

Majority of the infected participants were young adults and they harboured mostly light infec-

tions as shown in the participants demographic Table 1. The overall schistosomiasis for both S.

haematobium and S. mansoni prevalence in each village was as follows: Dombwe 3.2%, Mutize

0%, Jekwa 3.5%, Guzha 10%, Magaya 13.2%, Inyagui 11.9%, Kapasura 37.7% and Kareza

13.5%. The above presented data has been previously reported by Choto et al. (2020) [44].

There was unsuccessful genotyping of 10 samples hence, the genotypic frequency distribution

of IL-13 -1112C/T polymorphism for 356 participants are shown in Table 2. The frequencies

of the genotypes CC, CT and TT, were 20%, 58% and 22% in schistosomiasis infected partici-

pants, and 18.3%, 62.1% and 19.6% in participants without schistosome infection, respectively.

All genotype frequencies were distributed in accordance with Hardy–Weinberg equilibrium

(at X2 (2) = 13.398; P < 0.001) shown in S1 Table. We found no significant differences in the

genotypic or allelic frequencies of IL-13 (Table 2) promoter gene polymorphisms between

infected and uninfected groups (p> 0.05). Also, there was no significant differences in the

genotypic of IL-13–1055 C/T promoter gene polymorphisms and the different villages

(p = 0.096, X2 = 21.207, df = 14). Furthermore, there was no significant association between

the IL-13-1112 C/T genotype age matched schistosomiasis infected and uninfected (CC 14%;

CT 33% and TT 10%) (p = 0.659, X2 = 0.835, df = 2). While slightly higher S. haematobium
mean egg counts were observed among participants in different villages with the heterozygous

genotype CT and homozygous TT variants there were no significant differences among partic-

ipants from Guzha, Magaya and Kapasura villages (Fig 1).

IL-13 cytokine levels

IL-13 cytokine concentrations measured were detected in 107 participants and the concentra-

tions ranged from 2.055 pg/mL to 1 334 pg/mL with a median of 85.13 (IQR 37.66–206.20) pg/

mL. Two hundred and fifty-nine (259) samples had undetectable IL-13 concentrations. As

shown in Fig 2, participants with schistosomiasis (n = 20) had lower but not significant levels

of IL-13, 75.64 (14.52–287.50) pg/mL compared to schistosomiasis uninfected group (n = 87)

89.88 (40.03–206.20) pg/mL; p = 0.481. There were significantly higher levels of IL-13 cytokine

among participants with the genotypes CC; 92.25 (41.22–210.9) pg/mL and CT; 106.5 (53.09–

254.8) pg/mL compared to TT variant individuals, 44.78 (19.86–98.18) pg/mL (p = 0.0163)

(Fig 3). Furthermore, there were significantly higher (p = 0.004) IL-13 cytokine levels of indi-

viduals with the CT genotype compared to the TT genotype. There was no significant higher

(p = 0.086) IL-13 cytokine levels of individuals with the CC genotype compared to the TT

genotype as shown in Fig 3. As illustrated in Fig 4, IL-13 cytokine levels of the IL-13-1112 CC

and CT variants were not significantly different (p = 0.310) from those with the TT variant for

Table 1. Participant demographics by age, schistosomiasis status and infection intensity.

Age groups

Young adults Middle aged Older aged Missing Total

18–19 20–29 30–39 40–49 50–59 60–69 70–79 80–100

Schistosomiasis negative 10 (3.2) 45 (14.2) 63 (19.9) 58 (18.4) 41 (13.0) 56 (17.7) 20 (6.3) 19 (6.0) 4 (1.3) 316 (100)

S. haematobium infected 8 (17.8) 11 (24.4) 11 (24.4) 6 (13.3) 2 (4.4) 5 (11.1) 0 (0) 1(2.2) 1 (0) 45 (100)

S. mansoni infected 0(0) 2(40) 0 (0) 2 (40) 0 (0) 0 (0) 1(20) 0 (0) 0 (0) 5 (100)

Light infection intensity 5 (11.4) 13 (29.5) 11 (25.0) 8 (18.2) 2 (4.5) 3 (6.8) 1(2.3) 1(2.3) 0 (0) 44 (100)

Heavy infection intensity 3 (50.0) 0 (0) 0(0) 0 (0) 0 (0) 2 (33.3) 0 (0) 0 (0) 1 (16.7) 6 (100)

https://doi.org/10.1371/journal.pone.0252220.t001

PLOS ONE Interleukin-13 rs1800925 single nucleotide polymorphisms, IL-13 cytokine levels and schistosomiasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0252220 May 28, 2021 7 / 17

https://doi.org/10.1371/journal.pone.0252220.t001
https://doi.org/10.1371/journal.pone.0252220


schistosomiasis infected. IL-13 cytokine levels for IL-13-1112 CC, CT and TT variants were

89.88 (45.97–326.0) pg/mL, 76.82 (26.98–322.5) pg/mL) and 13.92 (7.989–195.5) pg/mL in

schistosomiasis infected participants, and 135.0 (56.65–215.7) pg/mL, 113.6 (59.02–253.7) pg/

mL and 47.15 (28.16–9.18) pg/mL for participants without schistosomiasis. Levels of IL-13

were significantly different between the IL-13–1112 CC, CT and TT genotypes of the schisto-

somiasis uninfected individuals (p = 0.022).

Association of IL-13 cytokine levels, IL-13 – 1112C/T genotypes, schistosomiasis and

infection intensities. Multiple regression analysis run to determine association of IL-13 lev-

els from IL-13-1112 variants (CC, CT, TT) and schistosomiasis status confirmed no associa-

tion [F (2, 107) = 0.920, P (0.406) > 0.05, R2 = 0.017]. Despite higher infection intensity of the

IL-13 -1112CT, infection intensity of IL-13–1112 CC, TT and CT genotypes were not signifi-

cantly different as shown in Fig 5. Similarly, IL-13–1112 CT and CC variants had insignif-

icantly higher schistosomiasis burden (mean egg count: 11 (6.0–36.25) eggs/10 mL and 11

(7.0–34.5) eggs/10mL, respectively) compared to TT variants (mean egg count, 9 (4.0–14.0)

eggs/10 mL); p = 0.499.

Association between risk of prostate cancer development and IL-13 (rs1800925) vari-

ants, schistosomiasis status; and IL-13 cytokine levels. One hundred and ninety-five

Table 2. Distribution and association of IL-13-1112C/T genotype and allelic frequencies in schistosomiasis infected and uninfected participants.

Genotype/Allele Schistosomiasis infected n (%) Schistosomiasis uninfected n (%) Total population n (%) p value X2 df Odds Ratio (95% C. I)

CC 10 (20.0) 56 (18.3) 66 (18.5) 0.864 0.304 2 -

CT 29 (58.0) 190 (62.1) 219 (62.0)

TT 11 (22.0) 60 (19.6) 71 (19.5)

C 24 (48) 151 (49.3) 175 (49.2) 1 0.003 1 1.014 (0.623–1.649)

T 26 (52) 155 (50.7) 181 (50.8) 0.987 (0.633–1.540)

https://doi.org/10.1371/journal.pone.0252220.t002

Fig 1. Comparison of IL-13-1112C/T genotype of S. haematobium among individuals in different villages.

https://doi.org/10.1371/journal.pone.0252220.g001

PLOS ONE Interleukin-13 rs1800925 single nucleotide polymorphisms, IL-13 cytokine levels and schistosomiasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0252220 May 28, 2021 8 / 17

https://doi.org/10.1371/journal.pone.0252220.t002
https://doi.org/10.1371/journal.pone.0252220.g001
https://doi.org/10.1371/journal.pone.0252220


Fig 2. Comparison of IL-13 cytokine levels in schistosomiasis infected and uninfected.

https://doi.org/10.1371/journal.pone.0252220.g002

Fig 3. Comparison of IL-13 cytokine levels in IL-13–1112 C/T variants.

https://doi.org/10.1371/journal.pone.0252220.g003
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participants had detectable prostate-specific antigen levels but only 8 (4.1%) participants had

prostate-specific antigen levels above 4 ng/mL (S2 Table). Of the 107 participants with detect-

able IL-13 cytokine levels, 66 participants had detectable prostate-specific antigen levels with 4

participants having prostate-specific antigen levels above 4 ng/mL and 62 participants having

prostate-specific antigen levels less than 4 ng/mL. IL-13 cytokine levels were not different

between the group with prostate-specific antigen levels < 4 ng/mL 86.32 (29.94–219.80) pg/

mL and participants with prostate-specific antigen levels > 4 ng/mL 68.51 (16.89–266.10) pg/

mL (p = 0.6927).

Risk of prostate cancer development between participants with prostate-specific antigen

levels > 4 ng/mL and< 4ng/mL assessed by IL-13 cytokine concentrations and schistosomia-

sis status was insignificant X2 (4, n = 66) = 3.996 p = 0.406 (Table 3). The model explained 16%

(Nagelkerke R2) of the variance in prostate cancer risk of development and correctly classified

93.9% of the cases. All variables in the model were insignificant (p> 0. 05).

Discussion

The purpose of this study was to evaluate the frequency of promoter gene polymorphisms, to

elucidate promoter gene polymorphisms on IL-13 cytokine levels, to determine susceptibility

or protection against schistosomiasis and to determine association to risk of prostate cancer

development. Our results illustrated differences in the distribution of IL-13 -1112C/T genotype

among study participants and no association of the polymorphism in the schistosomiasis

infected and uninfected participants was established. The study involved only adult males who

may have developed acquired immunity after repeated exposure [61] and showed low num-

bers of schistosome infections that may have contributed to the results. However, the findings

Fig 4. Comparison of the IL-13 cytokine level in IL-13 -1112C/T variants.

https://doi.org/10.1371/journal.pone.0252220.g004
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are consistent with the recent findings by Adedokun et al. (2018) who, despite working on dif-

ferent promoter positions found insignificant differences in the IL-13 (rs7719175) genotypic

or allelic frequencies between schistosome-infected and uninfected controls; and any associa-

tion with disease [38]. We found that IL-13 genotype variants are indicative of IL-13 cytokine

concentrations, with the highest levels in schistosomiasis uninfected individuals with heterozy-

gous CT variants compared to the homozygous TT variant of the schistosomiasis uninfected

group. Additionally, a combination of the homozygote IL-13-1112 CC and heterozygote IL-

13-1112CT variants significantly had higher IL-13 cytokine levels compared to IL-13-1112TT

variant implying an association between IL-13-1112C/T promoter genotype and IL-13 cyto-

kine levels. The results illustrated that IL13-1112CT genotype exhibited the most frequent dis-

tribution among the study population and there were higher schistosomiasis prevalence and

infection intensity of individuals with IL13-1112CT variant. Apparently, IL-13-1112C variant

Table 3. Risk of prostate cancer development (PSA> 4 ng/mL and< 4ng/mL) association to schistosomiasis status, IL-13 cytokine concentration and IL-13

rs1800925 variants.

Variable B S.E Wald df p. value Odds Ratio 95% C.I.

Schistosomiasis status -1.752 1.094 2.565 1 0.109 0.173 0.020–1.480

IL-13 concentrations (pg/mL) -0.002 0.003 0.399 1 0.527 0.998 0.991–1.004

TT 0.203 2 0.903

CC -18.528 1.283 0.000 1 0.999 0.000 0.000

CT .572 1.269 0.203 1 0.652 1.772 0.147–21.336

Constant -1.505 1.185 1.612 1 0.204 0.222

https://doi.org/10.1371/journal.pone.0252220.t003

Fig 5. Comparison of the mean egg burden between IL-13 (rs1800925) variants among S. haematobium infected

males.

https://doi.org/10.1371/journal.pone.0252220.g005
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individuals were more susceptible to schistosomiasis whereas individuals with IL-13-1112T

variant were protected against infection. The findings are consistent with the recent findings

of Kouriba et al. (2005), who found higher S. haematobium infection prevalence among partic-

ipants with the C/C and C/T genotypes [37]. He et al. (2008) also showed that the C/T geno-

type individuals were more susceptible to S. haematobium infection [33]. Similarly, Grant

et al. in 2012 showed that protection against severe infection with S. mansoni was driven by

functional IL-13 rs1800925 T polymorphisms [62]. In contrast to our findings, Isnard et al. in

2011 showed that IL-13-1112T/T was associated with higher S. haematobium infection inten-

sity [34]. Although it was for a different schistosomiasis species, Gaitlin et al. showed that IL-

13 genotype CT exhibited resistance to S. mansoni infection [35]. Our small sample size and

perhaps different ethnicity of the study population may explain the different observations.

IL-13 may contribute to disease burden by increasing eosinophil infiltration and promoting

fibrosis but could also protect against infection and reduce the risk of schistosomiasis [8,16].

Although there was no statistically significant differences in levels of IL-13 cytokine differ-

ences, schistosomiasis infected individuals had higher IL-13 cytokine levels range compared to

the uninfected group, thus providing evidence of up-regulated IL-13 levels in schistosome

infections to eradicate the parasite tissue lodged Schistosoma eggs [7]. In accord to our results,

Long et al. reported higher IL-13 cytokine levels in S. japonicum infected individuals with liver

fibrosis compared to those with normal liver tissues [36]. Mutengo et al. also showed that high

IL-13 levels influenced S. mansoni disease progression [17].

We could not establish an association between IL-13-1112C/T variants and susceptibility to

schistosomiasis. However, our results showed that schistosomiasis uninfected individuals with

IL-13-1112C variant (i.e genotypes CT and CC) had significantly higher IL-13 cytokine levels

compared to the TT genotype implying that IL-13–1112 C variants may be protective against

Schistosoma infections. In contrast to our findings, Kouriba et al. reported that protection

against schistosomes is increased by the IL13-1055 TT genotype due to the number of less

infected individuals with TT genotype [37]. TT genotype individuals had lower IL-13 cytokine

levels compared to the CT and CC genotype individuals. We observed that IL-13-1112TT vari-

ant had lower mean egg count hence they can control schistosome egg burden compared to

CC and CT variants. Our findings contradict those of, Long et al. who showed that IL-13 poly-

morphism rs1800925 T elevates IL-13 production thereby increasing risk of liver fibrosis by S.

japonicum infected individuals and increasing disease pathology [36]. This is so because IL-13-

1112 TT genotype increases transcription of the cytokines leading to elevation of IL-13 cyto-

kine and the cytokine enhances resistance to infection by schistosome in humans [33,63].

Also, He et al. [21] and van der Pouw Kraan et al. [63] suggested that TT genotype increases

transcription of the cytokine leading to elevation of IL-13 cytokine, in turn IL-13 cytokine

enhances resistance to infection by schistosome in humans [33,63]. However, lower mean egg

count could be because adults do not shed S. haematobium eggs well in urine, hence majority

of the participants had low infection intensity suggesting that urinary egg counts may not be a

good indicator of intensity or disease burden in adults.

Schistosomiasis induced inflammatory cytokines such as macrophage inhibitory cytokine-1

[64], IL-6 [65] and tumour necrosis alpha [66] have been identified as potential mediators

between prostatic inflammation and prostate carcinogenesis. More recently, a pro-oncogenic

factor for S. haematobium, egg secreted infiltrin protein that is an ortholog of interleukin-

4-inducing principle of S. mansoni egg (IPSE) was shown to initiate bladder urothelial hyper-

plasia and angiogenesis [67]. Chronic schistosomiasis has been instigated in granuloma forma-

tion, tissue eosinophilia, collagen deposition and fibrosis driven by IL-13 cytokine may cause

significant morbidity and mortality [68–70]. Additionally, IL-13 promotes and facilitates can-

cer progression by down regulating immune-surveillance and suppressing cytotoxic T
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lymphocytes responses against the tumours [18–20]. An association between increased risk of

prostate cancer or aggressive prostate cancer and IL-8 -47CT genotype as well as the IL-10

-1082GG variant was established [71,72]. One of the objectives of this study was to evaluate

schistosomiasis up-regulated inflammatory cytokine IL-13 possibly controlled by IL-13

-1112C/T polymorphisms that could directly or indirectly contribute to prostate carcinoma

development. Our results showed no significant differences in IL-13 levels among individuals

with prostate-specific antigen levels greater and less than 4 ng/mL. Therefore, IL-13 cytokine

levels are not associated with prostate-specific antigen levels or inflammation. Logistic regres-

sion showed no association between prostate-specific antigen levels greater or less than 4 ng/

mL and IL-13 concentrations, IL-13-1112C/T genotype and schistosomiasis status.

Despite different genetic assessment, our results are in accord to Tindall et al. (2010) which

showed no association between IL-13 alleles and prostate cancer risk [73]. Hence, the IL-13-

1112C/T genotype may not be utilised as a biomarker for risk of prostate cancer. To the best of

our knowledge this is the first time IL-13 -1112C/T promoter polymorphisms have associated

with prostate-specific antigen levels an indicator for risk of prostate cancer. Prostatic Schistosoma
carcinoma individuals would further elucidate association of the prostate cancer and schistosomi-

asis. Additionally, inclusion or combination of other inflammatory cytokines elevated due to

schistosomiasis and functional polymorphisms may elucidate prostate cancer development due

to schistosomiasis. There are some limitations observed in this study caused by the low number

of schistosomiasis infected participants and single nucleotide polymorphisms locus may not have

provided us with a clear understanding of the genetic effects of IL-13 on its cytokine productions

and risk of prostate cancer. As a result, more work is recommended for the IL-13 promoter single

nucleotide polymorphisms assessments. Lack of confirmed prostate cancer cases could have lim-

ited assessment of the association of IL-13 cytokine levels or IL-13 -1112C/T variants and risk of

prostate cancer. Further, only few numbers of individuals were found with prostate-specific anti-

gen above 4 ng/mL that limited our interpretation of the results.

Conclusion

IL-13 rs1800925/-1112 C variant individuals may have protection from Schistosoma infections.

There was no association between risk of prostate cancer and IL-13 concentrations and IL-13

rs1800925 genotypes in Zimbabwean male individuals residing in a schistosomiasis endemic

area. Therefore, IL-13 levels and IL-13 rs10800925 may not be utilised as a biomarker for risk

of prostate cancer in schistosome infections.
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