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The seasonality of recurrent epidemics has been largely neglected, especially where patterns are not driven by

forces external to the population. Here, we use data on cowpox virus in field voles to explore the seasonal

patterns in wildlife (variable abundance) populations and compare these with patterns previously found in

humans. Timing in our system was associated with both the number and the rate of recruitment of susceptible

hosts. A plentiful and sustained supply of susceptible hosts throughout the summer gave rise to a steady rise in

infected hosts and a latepeak.A meagre supply more limited in time was often insufficient to sustainan increase

in infected hosts, leading to an early peak followed by a decline. These seasonal patterns differed from those

found in humans, but the underlying association found between the timing and the supply of susceptible hosts

was similar to that in humans. We also combine our data with a model to explore these differences between

humans and wildlife. Model results emphasize the importance of the interplay between seasonal infection and

recruitment and suggest that our empirical patterns have a relevance extending beyond our own system.
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1. INTRODUCTION
To understand many infectious disease systems, it will

become increasingly important to understand the multiple

and often neglected effects of seasonality (Altizer et al.

2006). Acknowledging that seasonal patterns themselves

are highly labile in the face of recent climate change

(Walther et al. 2002) adds further weight to this. It is

apparent from Altizer et al.’s (2006) review that one

particularly neglected topic is variation, within a system, in

the size and timing of seasonal outbreaks. Stone et al.

(2007) however, have addressed this question in human

infections. Using mathematical models supported by data

on measles and mumps, they found that the size of

epidemic peaks (in years when there was an epidemic

peak) tended to be smaller when epidemics occurred later

in the year, but that these late-phase epidemics tended to

precede larger epidemics the following year. Late-phase

epidemics were often so small that the year could be

described as a ‘skip’: no epidemic having occurred.

Whether a year was a skip year depended in their model

on a threshold, determined by the number of susceptible

hosts remaining after 1 year’s epidemic and the rate of

recruitment of new susceptible individuals into the

population during the following year.

Stone et al. (2007) pointed out however, that further

work was required to extend the analysis to cases in which

the population size and the birth rate varied. This would

be true, for example, moving beyond the relatively simple

medical context to infections in wildlife populations,

which may be of interest either for their potential role in
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wildlife dynamics (Hudson et al. 2002) or because of the

zoonotic threat they pose (Taylor et al. 2001). Mostly,

the large datasets available in the medical literature have

no counterparts for wildlife infections. Here though,

we are able to use data on cowpox virus infection in

populations of the field vole, Microtus agrestis, to seek

patterns comparable to those found by Stone et al. (2007).

We also combine these data and a model pertinent to our

populations (Smith et al. 2008) to begin to explore how

and why seasonal patterns of infection may differ between

human and wildlife populations.

For continuity, we retain the word ‘epidemic’ to

describe an annual peak in the dynamics of cowpox virus

infection, without requiring that this should substantially

exceed endemic levels. However, we refer to the annual

‘timing’ rather than the ‘phase’ of epidemics, since our

host populations undergo multi-annual cycles (Lambin

et al. 2000), which are, by convention, divided into ‘peak’,

‘crash’ and other phases. We also note that Stone et al.

(2007) studied both the numbers infected and the

prevalence of infection (the proportion of the population

that is infected), because the two are interchangeable in

populations of constant size. Here, therefore, where the

two have distinct dynamics because population size varies,

we also study both. Specifically, we first examine the

neglected relationships (Altizer et al. 2006) between the

timing and the size of current and subsequent epidemics.

We also investigate, directly, the more general proposition

that the timing of an epidemic is related to the recruitment

of susceptible hosts into the population. Furthermore,

since, unlike in human infections, host abundance here is

itself dynamic, we examine the relationship between the

timing of epidemics and a key aspect of host dynamics,

the phase of the multi-annual cycle.
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Finally, we study the predictions of the Smith et al.

(2008) model, shown previously to recreate key features of

our study system, and initiate a comparison of the

predictions of the model with our empirically derived

relationships. The model assumes seasonal reproduction

and a constant infection rate, in contrast to Stone et al.

(2007), although the latter uses a seasonally varying

contact rate. Hence, we ask whether these differing

assumptions may lead to differing predictions and explain

any differences between our empirical relationships and

the predictions of Stone et al. (2007).
2. MATERIAL AND METHODS
(a) Study area and trapping design

The study took place in Kielder Forest, a man-made spruce

forest occupying 620 km2, situated on the English-Scottish

border (55813 0 N, 2833 0 W). Field voles inhabit grassy clear-

cuts that represent 16–17% of the total area, but are

completely absent from forested areas that isolate the clear-

cuts. Clear-cuts range in size from 5 to 100 ha. Field vole

populations at Kielder fluctuate cyclically with a 3–4 year

period (Lambin et al. 2000). Biannual estimates (spring

(March) and autumn (September–October)) of the popu-

lation density (in voles per hectare) of field voles were

undertaken from summer 1984 to spring 2008 in 16–21

grass-dominated clear-cut areas or unplanted river meadows

in Kielder Forest, so as to derive a landscape scale estimate of

vole cycle phase. Density estimation is based on a calibrated

index (the ‘vole signs index’, VSI) scoring the presence/

absence of feeding signs (unoxidized grass clippings) in 25

25!25 cm quadrats at each site. A full description of the

method of data collection and the abundance estimation

procedure can be found in Lambin et al. (2000).

Voles were trapped in four similar-sized clear-cuts, in two

areas of the forest approximately 12 km apart, between May

2001 and March 2007. In the Kielder catchment, Kielder Site

(KCS) and Plashett’s Jetty (PLJ) are situated 4 km apart. In

the Redesdale catchment, Black Blake Hope (BHP) and

Rob’s Wood (ROB) are 3.5 km apart. These four populations

were far enough apart, with sufficient forest between them, to

be considered as effectively independent replicates.

Populations were trapped over 3 days every 28 days from

March to November, and every 56 days from November to

March. Each site had a permanent 0.3 ha live-trapping grid

consisting of 100 Ugglan Special Mousetraps (Grahnab,

Marieholm, Sweden) set at 5 m intervals. Individual animals

were identified using subcutaneous microchip transponders

(AVID plc, East Sussex, UK) injected into the skin at the

back of the neck. A 20–30 ml blood sample was also taken

from the tail tip of each individual each trapping session.

Antibody to cowpox virus was detected in sera by immuno-

fluorescence assay (Crouch et al. 1995), allowing individuals

in each primary session to be classified as seropositive

(antibody present) or seronegative. For further details see

Begon et al. (in press).

(b) Cowpox virus data

Animals infected with cowpox virus develop an antibody

response after approximately two weeks, and remain infected

for a period of approximately four weeks, following which

they recover but remain seropositive (Bennett et al. 1997;

Chantrey 1999; Blasdell 2006). Therefore, in a time series of

antibody results, we assumed that an animal became infected
Proc. R. Soc. B (2009)
with uniform probability between a time 14 days prior to its

last negative result, and 14 days prior to its first positive

result. Time series of serological results were thus used to

calculate probabilities that individual animals were infected

with cowpox virus ( p(I )), were still susceptible ( p(S )) or had

recovered and were resistant ( p(R)) for each trapping session.

These were used to subdivide the total population into I, S

and R individuals, that total itself being estimated in program

MARK using Huggins’s closed capture model within a robust

design (Huggins 1989; Kendall & Nichols 1997; Pledger

2000). Telfer et al. (2002) and Begon et al. (in press) have

provided detailed descriptions of the calculation of prob-

abilities, but to take a simple example: an individual caught

negative at trap sessions tK2 and tK1, and positive at t and

tC1 (all four weeks apart) must have become infected during

the period from two weeks prior to trap session tK1 until two

weeks prior to session t (see above). Hence, it would have a

0.5 probability of being infected at tK1 ( p(I )Z0.5) and a

0.5 probability of being infected at t. It must still have been

susceptible at session tK2 ( p(S )Z1) and must have

recovered and acquired resistance at session tC1

( p(R)Z1). At session tK1, if not infected, it must still have

been susceptible ( p(S )Z0.5); and at session t it must have

been resistant if not infected ( p(R)Z0.5). Individual p(I ),

p(S ) and p(R) values, calculated in this way, can then be

summed up for each trap session to estimate the proportion in

the sample that are infected, susceptible and resistant. The

total abundance, Nt, estimated as described above, may then

be subdivided into its components, It, St and Rt on the basis of

these proportions.

(c) Data analysis

Analyses were carried out on the natural logarithms of

abundances (total, infected and susceptible), as these

translate multiplicative changes (stemming from per capita

vital rates) into additive ones (Turchin 2003). As previously

noted, epidemics were investigated using both ln(I ) and the

prevalence of infection. Associations were sought between the

timing of peaks (a peak was the single highest lunar month,

1–13, classed as an ordered factor) and their size (both

current and subsequent) through generalized linear models

(binomial in the case of prevalence) in the statistical

package R (The R Foundation for Statistical Computing;

http://www.r-project.org/). To test the hypothesis that the

timing of epidemic peaks was related to the input of susceptible

hosts, timing was the response variable and hence ordinal

regression was applied, using the function lrm in the design

package in R. The predictor variables were the rate of increase

in the number susceptible over the summer concerned, i.e.

ln(number susceptible in month 10/number susceptible in

month 3) and the sum of the number of susceptible hosts

present each month from months 3 to 10 inclusive. This and

other demographic characters change through the phases of the

host’s multi-annual abundance cycle (Ergon et al. 2001).

Hence, ordinal regression was again applied to test whether any

relationships between the timing of epidemic peaks and

numbers susceptible were related in turn to the phase of the

host abundance cycle, this time with peak ln(N ) during

the previous summer as the predictor variable (the highest in

the peak phase and the lowest in the crash phase).

(d) The rodent–pathogen dynamics model

In the model of Smith et al. (2008), the host population

density is divided into four classes of individuals: those that

http://www.r-project.org/
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Figure 1. The dynamics of the natural log of estimated abundance (the mean for the four sites, each 0.3 ha: ‘mean LN’ (thick
solid curve)) and of the natural logs of the estimated numbers infected at the four sites: BHP (log number of BHP infecteds, long
dashed curve); KCS (log number of KCS infecteds, dot dashed curve); PLJ (log number of PLJ infecteds, short dashed curve);
and ROB (log number of ROB infecteds, thin solid curve). The inset shows biannual estimates of the population density
(in voles per hectare) from summer 1984 to spring 2008 in 16–21 sites in Kielder Forest, using the VSI.
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are susceptible to microparasitic infection, S; infected

individuals that cannot reproduce, I; recovered and immune

individuals that cannot yet reproduce, Y; and recovered

and immune individuals that can reproduce, Z. The change in

the densities of the host classes over continuous time, t, is

given by

dS

dt
ZAðtÞðS C f Z Þð1KqNÞKbSIKbS; ð2:2aÞ

dI

dt
ZbSIKðbCaCgÞI ; ð2:2bÞ

dY

dt
ZgIKðbCtÞY ; ð2:2cÞ

dZ

dt
Z tYKbZ ; ð2:2dÞ

where

AðtÞZ
a T! t!T CL;

0 T CL! t!T C1:

(

Here, L is the reproductive season length in units of a fraction

of 1 year, T is the time in integer years and NZSCICYCZ is

the total population density. The disease-free per capita death

rate, b, is constant throughout the year but the per capita birth

rate is seasonal, (A(t)), with no births possible in the non-

reproductive season (AZ0) and a constant maximum

per capita birth rate in the reproductive season (AZa). The

birth rate is assumed to be density dependent and is modified

owing to a crowding coefficient, q, which is related to the

carrying capacity, KZ(aKb)/aq. There is density-dependent

transmission at rate b. Infected individuals potentially have an

increased mortality rate owing to the effects of the disease (a),

and recover at a constant rate g. Recovered individuals

initially enter an immune but non-reproductive class which

they leave at a rate t and regain a proportion of their

reproductive capacity f (0!f!1).

Smith et al. (2008) have parametrized this model for a

number of rodent populations including field voles in Kielder

Forest. Here, we use the parameter values for the Kielder
Proc. R. Soc. B (2009)
Forest field voles with disease parameter values, plausible for

cowpox virus, that lead to irregular cycles with a dominant

multi-year periodicity of 4 years. We base our analysis on the

long-term dynamics predicted by the model (visible transients

having disappeared after 50 years, we sampled 100 years of

data for analysis, starting at year 500). To enhance

comparability with the field data, we added stochasticity to

the model by randomly perturbing the maximum birth rate

parameter by a normally distributed amount with a mean of

zero and a standard deviation of 0.5. This occurred at the

start of each reproductive season and subsequently remained

constant for its duration. For comparability with the analyses

of field data described above, and because the timing of peaks

in prevalence and numbers infected were almost perfectly

correlated (§3), relationships were examined between the size

and timing of peak prevalence, and the timing of peak

prevalence and both the rate of increase in S over the breeding

season and N at the end of the previous breeding season

(when N peaks).
3. RESULTS
Figure 1 shows the dynamics of infection at the four sites

(the estimated numbers infected in the populations at the

time of each sample) along with the overall dynamics of

the host over the same period: the estimated total

abundance at each sample point averaged over the four

sites for clarity. These natural dynamics of abundance are

clearly very different from the common assumption of a

constant population size in epidemiological models of

human populations. The field vole population displayed a

clear annual cycle of abundance, peaking in late summer

or autumn each year and falling to a trough in spring or

early summer. Multi-year changes in the population size

are also apparent, rising to a peak in 2003 and falling to a

trough in 2004. VSI dynamics before, during and after the

sampling period are shown as an inset and reveal that these

population dynamics are part of a series of multi-year

cycles, with the peak phase in 2003 as well as the
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Figure 2. Ordinal regressions for the relationships between (a) the lunar month when the numbers infected peak and the rate of
increase in the number susceptible over the summer concerned, i.e. ln(number susceptible in month 10)Kln(number
susceptible in month 3), (b) the lunar month when prevalence peaks and the rate of increase in the number susceptible, (c) the
lunar month when the numbers infected peak and the overall number susceptible present over the summer concerned, and
(d ) the lunar month when prevalence peaks and the overall number susceptible. Statistics are given in table 1.
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subsequent peak in 2007 and crash in 2008, after the

completion of this study. In addition, details of the annual

cycle varied over the course of the multi-annual cycle. The

earliest annual maximum abundance occurred in the

summer of the peak year of the multi-annual cycle, and

the latest annual minimum was in trough phase of the

multi-annual cycle.

Contrary to the findings of Stone et al. (2007), the sizes

of the peaks in the number of infected individuals were not

associated with the timing of those peaks in either the

same year (z24Z0.81, pZ0.43) or the previous year

(z24Z0.56, pZ0.59). Similarly, the sizes of the peaks in

prevalence were not associated with the timing of

those peaks in the same year (z24Z0.39, pZ0.76) or the

previous year (z24Z0.12, pZ0.91). The timings of

the peaks in prevalence and numbers infected were

themselves strongly associated, with the exception of one

site (ROB 2004), which peaked for numbers infected in

month 3 and for prevalence in month 10.

The timing of epidemic peaks, however, was strongly

associated with the dynamics of susceptible hosts. Epidemic

peaks occurred significantly later when the rate of

recruitment of susceptible hosts over the summer (March–

September) was greater (figure 2a,b), whether these were

peaks in the numbers infected (table 1, model N1) or in

prevalence (table 1, model P1). Peaks occurred significantly

later, too, when the sum of the number of susceptible hosts

present over these summer months was greater

(figure 2c,d ), again whether these were peaks in the

numbers infected (table 1, model N2) or in prevalence

(table 1, model P2). In fact, the effects of these two predictor
Proc. R. Soc. B (2009)
variables appear to be additive, since ordinal regressions

that included both explained significantly more of the

variation (table 1, model N3 compared to models N1 and

N2, and model P3 compared to models P1 and P2).

Furthermore, an interaction term between the two variables

was non-significant, and the coefficients for the individual

variables were essentially unchanged when both were

included (table 1).

These patterns relating timing to host dynamics were

related, in turn, to the phase of the multi-annual cycle

(figure 3a,b). Epidemic peaks occurred significantly later

following summers of lower maximum abundance

(i.e. tended to be the latest in the summer of an ‘increase’

year), whether these were peaks in the numbers infected

(table 1, model N4) or in prevalence (table 1, model P4).

In fact, cycle phase appeared to be a proxy for the number

(rather than the rate of recruitment) of susceptible hosts,

since ordinal regressions with both peak ln(N ) in the

previous year and rate of recruitment explained signi-

ficantly more of the variation than either did alone

(table 1, model N5 compared to models N1 and N4,

and model P5 compared to models P1 and P4), whereas

adding the number of recruits to the ordinal regression

with peak ln(N ) did not improve explanatory power

(table 1, model N6 compared to models N2 and N4, and

model P6 compared to models P2 and P4).

Patterns with similarities to those observed in the data

were also apparent in the model output, for both the

numbers infected and the prevalence, though in view of

the tight correlation between them (figure 4a; linear

regression R2Z0.997) only the latter are presented. Thus,



Table 1. The results of ordinal regressions with, as response variable, either the lunar month when the numbers infected peaked
(above, models N1–N6) or the lunar month when the prevalence of infection peaked (below, models P1–P6). (The first column
shows the explanatory variables included in the model: S-recruitment is ln(number susceptible in month 10/number susceptible
in month 3), S-number is the sum of the number of susceptible hosts present from months 3 to 10, N-previous is peak ln(total
numbers) during the previous summer. Successive columns show b, the coefficient of the explanatory variable in the model, its
standard error, the c2 statistic from the likelihood ratio test for the inclusion of the parameter with its associated p-value, and the
coefficient of determination, R2. For models with two explanatory variables, there are two likelihood ratio tests, but there was
only a single R2 value*.)

model variable(s) b s.e. c2 p-value R2

timing of peaks in the numbers infected
N1. S-recruitment 1.5 0.68 5.27 0.022 0.24
N2. S-number 0.19 0.090 5.07 0.024 0.23
N3. S-recruitmentCS-number 1.7 0.74 6.21 0.013 0.45*

0.22 0.10 6.01 0.014 0.45*
N4. N-previous K2.9 1.0 10.43 0.001 0.43
N5. N-previousCS-recruitment K3.4 1.2 11.92 0.0006 0.60*

1.9 0.78 6.76 0.009 0.60*
N6. N-previousCS-number K2.5 1.1 6.09 0.014 0.48*

0.085 0.10 0.73 0.39 0.48*
timing of peaks in the prevalence of infection
P1. S-recruitment 1.4 0.73 3.95 0.047 0.18
P2. S-number 0.21 0.087 6.33 0.012 0.28
P3. S-recruitmentCS-number 1.3 0.72 3.65 0.056 0.40*

0.21 0.089 6.03 0.014 0.40*
P4. N-previous K2.1 0.87 6.55 0.011 0.29
P5. N-previousCS-recruitment K2.2 0.92 6.48 0.011 0.42*

1.4 0.72 4.12 0.040 0.42*
P6. N-previousCS-number K1.5 0.94 2.72 0.10 0.37*

0.14 0.093 2.50 0.11 0.37*
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as the timing of the epidemic peak gets later, the size of

that peak initially increases slightly (figure 4b), in line with

the data, but then declines, in line with the predictions

of Stone et al. (2007). More directly in line with the

data, epidemic peaks tended to occur later when

the rate of increase of susceptible hosts over the breeding

season was greater (figure 4c; linear regression R2Z0.138,

p!0.001), and also when abundance at the end of the

previous breeding season was lower, although this negative

relationship was relatively weak (figure 4d; linear

regression R2Z0.045, pZ0.03).
4. DISCUSSION
The focal patterns identified by Stone et al. (2007) for

human infections, where a large epidemic peak in 1 year

delayed the onset of an epidemic peak in a subsequent

year, were not repeated here. This is perhaps not

surprising, given that there is an especially strong contrast

between the key characteristics of human populations—

(approximately) constant abundance and long lifespan

(and hence low population turnover)—and populations of

wild rodents. What patterns may be found in larger, longer

lived wildlife species remains an open question. Our

model results indicate, moreover, that we should not

necessarily expect these relationships to be monotonic,

and they clearly show that fitting linear regressions to such

relationships may grossly misrepresent the true mechan-

istic relationship.

Stone et al. (2007) were able to attribute their small

(late) peaks to a shortage of newly recruited susceptible

hosts. Following this, a winter with continued recruitment

but little disease transmission provided a ready supply of

susceptible hosts in the following summer, and
Proc. R. Soc. B (2009)
consequently a large (early) peak. An association of the

timing of epidemics with the supply of susceptible hosts

was also found in the present study, but the pattern was

not the same. The contrast is between a human

population, in which abundance is effectively constant

and disease transmission is often strongly seasonal but

recruitment is not, and wildlife populations such as ours in

which abundance is variable and both recruitment and

transmission are seasonal. Thus, in human populations,

the supply of susceptible hosts at the beginning of the

summer is a straightforward reflection of the extent to

which disease reduced the number of susceptible hosts in

the previous summer. But in our vole populations, the

supply of susceptible hosts over the summer is usually

dominated by host rather than infection dynamics.

A plentiful supply of susceptible hosts throughout the

breeding season (March–September) gives rise to a

steadily increasing number of infected hosts and a late

peak. A meagre supply may be insufficient to sustain an

increase in the numbers infected, leading to a curtailed

epidemic, with an early peak followed by a decline.

In fact, the timing of the epidemic peak in our

system appears to be associated with both the number

of susceptible hosts and their rate of recruitment

measured over the whole breeding season. Peaks tended

to occur later when there were more susceptible hosts.

This is likely to have occurred because the basic

reproduction number, R0 (the average number of

secondary infections generated by a primary infection

over its infectious lifetime), which increases with the

number of susceptible hosts, was relatively large

throughout much or all of the summer, and so the

numbers infected could continue to increase. But peaks

also tended to occur later when recruitment of
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susceptible hosts was sustained throughout the sum-

mer, rather than peaking early itself.

Thus, peaks were most consistently late in 2005 (all in

month 11), when recruitment of susceptible hosts was

maintained throughout the summer, but the proportion of

susceptible hosts also started at a high level as a result of

the small epidemics in the previous (crash) year (reminis-

cent of the patterns found by Stone et al. 2007). Peaks

were late, too, in other increase-phase years (2002 and

2006), when the number of susceptible hosts was relatively

high and their recruitment rate was sustained. However, in

the peak year (2003), although the numbers susceptible

reached high levels, these peaked early (and then started to

crash) and the epidemic peaks were themselves relatively

early (one month 7 and three month 9).

Finally, peaks tended to occur earlier in the crash phase

(2004), where both the number and the rate of

recruitment of susceptible hosts were low, and R0 was

therefore likely to be much closer to, and eventually less

than, unity. However, the crash year was also inevitably the

most affected by both process and sampling uncertainty,

and the variable timing of the epidemic peaks (months

3–9) is likely to have reflected that. In particular, there was

a tendency at all sites for ‘twin’ epidemic peaks (figure 1),

with the mid-summer decline likely to reflect the shortage
Proc. R. Soc. B (2009)
of susceptible hosts. In some cases there was no

substantive recovery in the infection dynamics following

this and the epidemic peaked early, but in others the

recruitment of susceptible hosts was eventually sufficient

to generate a second, higher and therefore later peak.

The predictions from the model of Smith et al. (2008)

can in the first place be contrasted with those reported by

Stone et al. (2007), reflecting the contrasting assumptions

they incorporate. Seasonal infection and recruitment can

clearly lead to different effects on the timing of seasonal

epidemics, and the interplay between them may be even

more complicated. Further theoretical studies will be

required to look at this interplay. On the other hand, the

similarities between the predictions from Smith et al.

(2008) and the field vole-cowpox data (i.e. between one

set of data from one field system and a model aimed at

capturing the dynamics of such systems generally) suggest

that the empirical patterns reported here have a relevance

that extends beyond the system that generated them.

The work of Stone et al. (2007) aside, most of the

relatively few empirical studies of seasonality in infectious

disease dynamics have described, or sought to understand,

consistent unvarying patterns (Altizer et al. 2006), or, if

the patterns have varied, the variation has been linked

clearly to external forcing. Thus, Pascual et al. (2002)

describe regional switches in India from one to two peaks

of cholera incidence each year, linked to patterns of

precipitation; while Altizer et al. (2004) describe a

latitudinal cline in the eastern USA in the timing and

severity of outbreaks of Mycoplasma gallisepticum infection

in house finches, linked to milder southern climates. Here,

by contrast, similar to Stone et al. (2007), we have

described variations in timing and severity that are

apparently generated within the system itself.

Altizer et al. (2006) also identified a series of five ‘future

challenges’ for studies of seasonality in the dynamics of

infectious disease.Of these, two are reinforced by thepresent

study. First, the need they identify, for mathematical models

to move beyond simple formulations (such as sine waves)

when seasonality is incorporated, is further accentuated by

the variations in the timing and severity of epidemics that

have been demonstrated here. Similarly, their challenge of

moving beyond speculation in identifying the mechanisms

through which seasonality affects infection dynamics is

especially evident once the added complexity of the patterns

described here is acknowledged. Moreover, a third of their

challenges are taken up directly by the present study, namely

the need to describe patterns of seasonality in time-series

data, especially since, as they point out, almost all previous

studies have been on humans. However, their call for

methods that can handle ‘hidden’ variables such as the

numbers susceptible has been obviated in our study by these

numbers having been estimated directly.

Hence, this study supports the contention of Altizer

et al. (2006) that seasonality adds important additional

dimensions to infection dynamics that should not be

ignored. The mounting evidence that climate change is

transforming the timing and length of growing and

breeding seasons (Walther et al. 2002) further supports

this contention. Our study also supports the underlying

pattern demonstrated by Stone et al. (2007) in which the

supply of susceptible hosts is key to understanding the

timing of epidemic peaks. However, the results from our

study argue that in many wildlife populations, especially
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where size is dynamic and lifespans are short, the timing of

peaks will be related not just to the seasonal dynamics of

infection but also to the seasonal dynamics of host

abundance. Moreover, since the seasonal dynamics of hosts

are likely to vary among systems (few will show 3–4 year

cycles, as here) the detailed seasonal dynamics of epidemic

peaks are also likely to be system specific, at least in detail.

All experiments were licensed under the Home Office
project license PPL40/1813 to protect the welfare of the
animals concerned.
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