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Newcastle disease (ND) is one of the most important avian diseases with considerable threat to the productivity of poultry all
over the world. The disease is associated with severe respiratory, gastrointestinal, and neurological lesions in chicken leading
to high mortality and several other production related losses. The aetiology of the disease is an avian paramyxovirus type-1 or
Newcastle disease virus (NDV), whose isolates are serologically grouped into a single serotype but genetically classified into a total
of 19 genotypes, owing to the continuous emergence and evolution of the virus. In Nigeria, molecular characterization of NDV is
generally very scanty and majorly focuses on the amplification of the partial F gene for genotype assignment. However, with the
introduction of themost objectiveNDVgenotyping criteria whichutilize complete fusion protein coding sequences in phylogenetic
taxonomy, the enormous genetic diversity of the virus in Nigeria became very conspicuous. In this review, we examine the current
ecological distribution of various NDV genotypes in Nigeria based on the available complete fusion protein nucleotide sequences
(1662 bp) in the NCBI database. We then discuss the challenges of ND control as a result of the wide genetic distance between
the currently circulating NDV isolates and the commonest vaccines used to combat the disease in the country. Finally, we suggest
future directions in the war against the economically devastating ND in Nigeria.

1. Introduction

Poultry production is globally threatened by a highly dev-
astating disease of birds called Newcastle disease (ND). The
disease was named after a place known as Newcastle Upon
Tyne, in England where it was reported for the first time in
1926 [1]. The disease was also reported around the same time
in Java, Indonesia [2]. Amazingly, its geographic distribution
slowly expanded, leading to a well-established pandemic of
the disease barely two decades after its novel emergence [3].
Subsequently in the late 1960s, the second pandemic of the
disease occurred with an incredibly high speed, taking only
four years to spread throughout the world, probably due

to extensive commercialization of poultry production and
the improvement of air transport systems which facilitated
the exchange of exotic birds into new areas [4]. Although
this pandemic was quickly placed under control with the
then available ND vaccines, the third pandemic still occurred
around the early 1980s among the racing pigeons [5, 6]. This
particular pandemic proved to be difficult to control because
of the nature of racing pigeon husbandry system. Eventually,
the pandemic virus spilt over to the domesticated chicken
and caused serious economic losses in the poultry subsector
[7]. The fourth pandemic, which started around the mid-
1980s in the South-Eastern Asia, is currently believed to be
on-going and has so far spread extensively to the Middle
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East, Europe, America, and Africa [8–11]. In Nigeria, the first
official documentation of ND was in 1952 (Hill et al. 1953)
and at present, the disease has been reported in all the ago-
ecological zones of the country [12–15].

The aetiology of ND is an avian paramyxovirus type-1,
which is a member of the genus Avulavirus in the family
Paramyxoviridae [16]. The genetic material of the virus is
a negative sense RNA made up of six genes encoding six
structural proteins in the order 3NP-P-M-F-HN-L5 [17, 18].
Pathogenicity indices such as the mean death time (MDT) in
9-10-day-old embryonated chicken eggs and the intracerebral
pathogenicity index (ICPI) in 1-day-old chicks are often used
to classify the virus isolates into velogenic, mesogenic, and
lentogenic strains [19].The velogenic strains (neurotrophic or
viscerotropic) are highly fatal and therefore demonstrate the
severest clinical form of the disease, causing haemorrhagic
gastroenteritis, pneumonia, and/or encephalitis [20, 21]. The
mesogenic strains which are moderately pathogenic cause
respiratory and neurological symptoms but with significantly
low mortality [22, 23]. On the other hand, the lentogenic
pathotypes are of extremely low virulence, causing only mild
respiratory or asymptomatic enteric disease in the affected
chicken [23, 24]. Interestingly, themajor determinant ofNDV
virulence has been traced to be the amino acid composition
of its fusion protein cleavage site [25]. All virulent strains have
multiple basic amino acid residues at positions 112-116 and
a phenyl alanine at position 117, making them cleavable by
most of the ubiquitously distributed intracellular furin-like
proteases in various chicken tissues [26]. In contrast, the F
cleavage site of the avirulent strains is normally composed
of monobasic amino acid residues at positions 112-116 and
a leucine residue at position 117 [27]. Thus the chemistry
of Fo cleavage site can be used as a good index for rapid
pathotyping of NDV using molecular based assays.

In Nigeria, molecular characterization of ND outbreaks
was until recently very scanty and largely focused on the
partial F gene sequences for phylogenetic grouping of isolates
[29, 30]. With the introduction of more objective criteria that
utilizes the complete F gene coding sequences for assigning
new genotypes [31], the genetic diversity of NDV in Nigeria
has become more apparent [32–34]. Unfortunately to date,
the consequences of this genetic diversity on disease control
using the available vaccines in the country remain poorly
addressed. Therefore in this review, we analyze the current
ecological distribution of NDV genotypes in various parts of
Nigeria and discuss the implication of the genotypemismatch
between the circulating field strains and the vaccine strains to
ND control in the country.

2. Taxonomy and Global Distribution of
Newcastle Disease Virus Isolates

Although all NDV strains are classified under one serotype
[35], their genetic diversity is enormous [36–39]. In the past,
various schemes have been concurrently used to classifyNDV
based on their genetic information. The first classification
system proposed by the Aldous group divides all the isolates
into six lineages and 13 sublineages [40]. An additional

lineage and seven more sublineages were later proposed
[41, 42]. The other scheme of NDV taxonomy proposed by
Ballagi-Pordány et al. [3] and later substantiated by Czeglédi
et al. [43] groups the NDV isolates into various genotypes and
subgenotypes. Conflicts and confusion generated by these
schemes of classification necessitated the need to develop
unified criteria for NDV taxonomy. After analyzing the two
systems extensively, Diel et al. [31] proposed the adoption
of the genotype based classification not only because it is
the most widely used, but also because it gives a stronger
correlation between the intergenetic groups evolutionary
distances and their phylogenetic relationships. Therefore, a
unified nomenclature system was proposed for the then
existing isolates and more comprehensive criteria for the
assignment of newly emerged genotypes were proposed [31].
According to the criteria, classification of a new genotype will
be based on the phylogenetic topology using the complete,
not partial F gene coding sequences. Furthermore, at least
four isolates obtained from epidemiologically distinct events
must form a phylogenetic cluster with a bootstrap value of
nothing less than 60%. In addition, the isolates should have
an average interpopulation evolutionary distance of ≥ 10.
However, amean evolutionary distance of 3-10% shall be used
to designate a new subgenotype within a group [31].

Using these objective criteria, NDV isolates have been
broadly classified into class I and class II [44–46]. The
class I isolates are all grouped into a single genotype and
three subgenotypes because of their high genetic relatedness
which is nearly 96% [47]. They are mostly isolated from
wild and domesticated birds found in Africa, Asia, Europe,
and America [36, 48, 49]. With the exception of one isolate
that caused serious disease outbreak in the Northern Ireland
around the early 1990s [50], all members of this class are
considered of low virulence in chicken. On the contrary, the
class II isolates are a mixture of viruses with diverse virulence
potentials ranging from themost popular vaccine strains used
for disease control to the highly virulent strains that cause
outbreaks in different parts of the world (Table 1). According
to the recent literatures, class II isolates are classified into
genotypes I-XVIII, with majority of the genotypes being
further subdivided into various subgenotypes [51–53]. For
instance, genotype I isolates which are globally distributed
are composed of three subgenotypes: 1a, 1b, and 1c most
of which are considered lentogenic. Indeed, the widely
reported Queensland V4 and Ulster/chicken/Ireland/1967
vaccine strains are all grouped under this genotype [52, 53].
However, Gould et al. [54] reported the occurrence of virulent
genotype I isolates in Australia. Similarly, the genotype II
isolates are a mixture of velogenic [37, 38] and lentogenic
viruses such as LaSota and B1 strains used globally for disease
control [55]. Isolates in this genotype have been majorly
recovered from domestic fowl, chicken, and wild birds found
in North and South America, Africa, Asia, and Europe [44,
45].

Isolates belonging to genotypes III, IV, V, and VI are
all predicted or pathotyped to be virulent in chicken. The
genotype III isolates which include the popular mesogenic
Mukteshwar strain used as a vaccine strain were recovered
from birds in Japan as early as 1930s and also in Pakistan
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Table 1: Current classification and distribution of class II NDV genotypes.

Genotypes Subgenotypes Geographic distribution Remarks

I Ia, Ib, Ic Australia, Africa, Europe,
US, Asia Low virulence, Ulster, V4

II - North and South America,
Africa, Asia and Europe

Avirulent, lentogenic,
Lasota, B1

III - Japan and Australia,
Taiwan, Zimbabwe

Ancient strains but still
emerging, mesogenic

Mukteshwar
IV - Europe, Africa, Asia Virulent, Herts/33 (UK)

V Va, Vb, Vc, Vd South America, Europe and
Africa Virulent, Anhinga (US)

VI
VIa, VIb, VIc, VId,
VIe, VIf, VIg, VIh,

VIi, VIj, VIk

Europe, Asia, Africa, South
America Pigeon paramyxoviruses

VII
VIIa, VIIb, VIIc,,

VIId, VIIe, VIIf, VIIg,
VIIh, VIIi

Emerged in Far East in
1990, spread to Europe and

Asia, Africa.

Virulent, 4th ND panzootic
virus, 5th panzootic virus

VIII - South Africa, Asia Highly virulent, AF22440

IX - First isolated in China in
1948 Highly virulent

X - Taiwan, Argentina, USA Virulent

XI - Madagascar Virulent, restricted
distribution

XII - South America and China Virulent

XIII XIIIa, XIIIb, XIIIc Asia, Europe and Africa Virulent, continuously
emerging

XIV XIVa, XIVb West Africa Highly virulent, recovered
from domestic birds only

XV - China Originated from mixed
virulent and vaccine viruses

XVI - Europe in 1940s, Africa and
Asia in 1980s

Highly related to genotype
IV

XVII XVIIa, XVIIb West and Central Africa
Highly virulent,

continuously emerging
evolving

XVIII XVIIIa, XVIIIb West Africa Highly virulent

around the mid 1970s before they subsequently resurge in
China less than two decades ago [56, 57]. Likewise, the
genotype IV isolates occurred among the European poultry
before the 1940s and include the extensively characterized
Herts/33 strain [3, 58]. However, isolates in this genotype
are currently thought to be extinct [44, 45] due to the
absence of their recent genetic information in the GenBank
database. As for the genotype V isolates that emerged for
the first time around the 1970s in America and spread to
the European continent in 1980s [43, 59], their recovery
from poultry has recently been reported in East Africa,
suggesting the expansion of their geographic distribution
[60] and their continuous evolution. So far, isolates in this
genotype are divided into four distinct subgenotypes (Va, Vb,
Vc, and Vd) because of their within-the-group heterogeneity.
However, the genotype VI isolates which are cosmopolitan in
distribution are much more heterogeneous genetically. They
are currently divided into subgenotypes VIa-k [37, 38, 51]

because of their enormous genetic diversity. In addition,
they are mainly found in wild birds, chicken, and more
frequently in domestic pigeons, hence the name pigeon
paramyxoviruses [6, 52, 61].

Genotype VII isolates are arguably the most important
group of NDV reported in the 21st century. From the
year 2000 to date, these viruses have been incriminated in
several economically important disease outbreaks in Asia,
the Middle East, and some parts of America and South
Africa [62–65]. Because of their extensive genetic diversity
and continuous emergence, they are currently grouped into
twelve subgenotypes (VIIa-l) [66] and are believed to be
associated with the ongoing fourth pandemic of the disease.
As a matter of fact, some of these subgenotypes are predicted
to be the potential fifth ND pandemic viruses because of
the recent expansion of their host range and geographic
distribution as well as their increased virulence among the
vaccinated birds [67–70]. In particular, subgenotype VIIi
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isolates have recently replaced the predominant VIIa isolates
in countries such as Pakistan since 2011 [71]. Similarly,
subgenotype VIIj isolates believed to have emerged from
viruses circulating in China and Ukraine are increasingly
isolated in several countries including Iran [72].This complex
genetic diversity of genotype VII NDV highlights the need
to monitor the epidemiological dynamics of the emerging
viruses so that effective vaccination program can be designed.
Unlike the genotype VII isolates, members of genotype VIII
taxon are less diverse both genetically and in terms of spatial
distribution. Apart from the report on their occurrence in
Malaysia, Singapore, China, Turkey, Argentina, and South
Africa between the 1960s and 1990s [8, 17], no report exists
on their emergence in other parts of the world in the recent
times. Hence they are thought to currently cease circulation
in domestic birds. In contrast, the genotype IX isolates are
still evolving in wild birds and domesticated poultry since
survey ofNDVbetween 2008 and 2011 revealed their presence
in China [73, 74]. Nevertheless, they are still considered to
be among the early genotypes, having been isolated as early
as 1940s [3]. However, unlike members of this genotype
(genotype IX) which are mostly virulent in chicken, genotype
X isolates are all predicted to be in the lentogenic class.
Despite their restricted geographic distribution, they are still
maintained between the turkeys and wild birds in Argentina
and the United States of America [75, 76]. They are however
among the less genetically diverse groups of NDV.

Perhaps the most geographically restricted group of
NDV are the genotype XI isolates. They have only been
reported from Madagascar, where they are believed to circu-
late between the wild birds and domestic chicken [35, 58].
Although they are all predicted to be virulent based on
the chemistry of their F cleavage site, there are reports of
their isolation from apparently normal unvaccinated birds in
Madagascar [35].Meanwhile the genotype XII isolates, which
are all predicted to be virulent, have been reported from
both China and America in geese and chicken, respectively
[44, 45, 77]. The epidemiological connection between the
isolates in America and those in China is however still not
clear, since migratory birds have not so far been incriminated
in carrying these viruses [31, 44, 45]. Genotype XIII isolates
which have been recovered from birds in Europe, Asia, and
Africa are all predicted to be virulent based on the amino acid
composition of their F cleavage site [78]. They are thought to
be continuously evolving especially in Asia and the Middle
East. Currently, they are divided into subgenotypes XIIIa,
XIIIb, and XIIIc [79, 80].

The rest of the NDV genotypes are all predicted to be vir-
ulent in chicken. Isolates belonging to genotypes XIV, XVII,
and XVIII have been recovered mainly from domesticated
birds such as chicken, turkeys, and guinea fowls. Each of
these genotypes is currently divided into two subgenotypes, a
and b [53]. Because their geographic distribution is restricted
to the west and central Africa, they are often referred to as
regional NDV genotypes. On the other hand, members of the
genotype XV group are considered to be recombinant isolates
that might have emerged from the suboptimally vaccinated
poultry in China some two decades ago [44, 45]. However,
it is doubtful if they are still maintained in the poultry due

to the absence of report on their occurrence in the last 15
years. Finally, genotypeXVI isolates whichwere isolated from
the Mexican chicken as early the 1940s [81] are believed to
have been maintained in either the vaccinated or wild birds
unnoticed for quite several years. They were also isolated in
the Caribbean islands between 1986 and 2008 [43].

3. Ecology of NDV Genotypes in Nigeria

Analysis of the complete F gene coding sequences (1662bp)
for Nigerian strains of NDV available in the NCBI database
reveals the occurrence of genetically distinct strains in
various species of birds across the lengths and breadths of
Nigeria (Table 2). Based on phylogenetic relationships and
evolutionary distances, those isolates were grouped into class
II genotypes I, VI, XIV, XVII, and XVIII. Except the genotype
I isolates with GRQGRL amino acid motifs at positions 112-
117 of the F gene, all other isolates considered in this study are
predicted to be virulent in chicken based on the presence of
multiple basic amino acid residues in their F cleavage sites
(Table 1). Notably, among those virulent cleavage sites, the
“RRQKRF” is the most diverse, being possessed by all the
analyzed sequences except those from genotypes I and VIh.
Furthermore, some strains from subgenotypes XVIIa, XIVb,
and VIh display “RRRKRF” at their cleavage sites whereas
only one isolate from subgenotype VIg, another one from
subgenotype XVIIb, and four isolates from subgenotype VIh
possess “KRQKRF”, “RRQRRF”, and “RRKKRF” cleavage
sites, respectively. Interestingly, recent studies on amino acid
composition of NDVF cleavage site revealed that strains with
Q at the third position in the cleavage site are predicted to
have an enhanced cell-cell spreading ability [27]. Thus, in
future development of vaccines based on indigenous NDV
isolates in Nigeria, special consideration should be given to
those isolates with Q at the third position of their F cleavage
site.

Isolates of NDV belonging to the genotype VI group
have been recovered from pigeons, doves, and chicken in the
Northern (Kano and Jigawa) as well as the Southern (Oyo
and Lagos) parts of Nigeria (Table 2). They are classified
into subgenotypes VIg, VIh, and VIi with the overall average
evolutionary divergence among the three subgenotypes being
7.3%. The highest genetic distance among these groups
occurs between the subgenotypes VIh and VIi (Table 2).
Surprisingly, the Nigerian genotype VIg isolates share a
high degree of phylogenetic relationship with the Russian,
Egyptian, and Ukrainian isolates whereas the genotype VIh
isolates are more related to the pigeon paramyxovirus iso-
lated from wild birds in Kenya (Figure 1(a)). On the other
hand, the isolates grouped under subgenotypes VIi form
the same phylogenetic cluster with the Italian strains. These
close genetic relationships among the isolates could be of
epidemiological significance and certainly suggest a recent
common ancestry during their evolution [52, 53]. Given that
these viruses can easily be transmitted from pigeons and
doves to domesticated chicken especially at ecological contact
surfaces [82–84] and that some of them have been shown to
dramatically gain virulence upon a few passages in chicken
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 Genotypes XII, XIII, XIV, XVII and XVIII 

 Genotype VII
 HQ839733.1 Chicken Sweden 95
 KY042125.1 Bulgaria/Dolno Linevo/1160/1992

 FJ766529.1 isolate ZhJ-3/97
VIc

 KY042128.1 pigeon/Ukraine/Doneck/3/968/2007
 KY042127.1 pigeon/Ukraine/Kharkiv/23-01/967/2013

 KY042130.1 pigeon/Egypt/Helwan/44/1106/2015
 KY042131.1 pigeon/Egypt/Qena/56/1107/2015

 JF827026.1 Pi/Rus/Vladimir/687/05
 JF824032.1 Pi/Rus/Vladimir/687/05

 JQ039385.1 dove/Nigeria/VRD07-163/2007
 JQ039389.1 pigeon/Nigeria/VRD07-369/2007

VIg

 HG424625.1 pigeon/Nigeria/NIE13-005/2013
 HG424626.1 pigeon/Nigeria/NIE13-008/2013

 KU377535.1 12VIR1876-1/turtledove/Italy/2012
 JN638234.1 NDV/DOVE/IT/11RS98 102VIR/2011
 JN638235.1 NDV/DOVE/IT/11RS100 104VIR/2011
 KU377533.1 10VIR7155/turtledove/Italy/2010
 KU377536.1 12VIR604/turtledove/Italy/2012

VIi

 JN872173.1 Pigeon/New York/44407/1984
 FJ410145.1 PPMV-1/New York/1984
 AJ880277.1 Pigeon paramyxovirus-1

VIb

 DQ417113.1 NDV isolate STP96
 KJ808820.1 Pigeon/China/SD2012

VIe

 FJ410148.1 Pigeon paramyxovirus-1 strain PPMV-1/Texas/1998
 JN872188.1 Pigeon/Minnesota/2446/1989

VIf

 KT381595.1 Pigeon/Guangdong/GM1/2014
 KM374059.1 pigeon/Guangxi/1015/2013

 JX486557.1 pi/CH/LJL/120404
VIj

 JX901110.1 PPMV-1/Belgium/98-248/1998
 AY288996.1 pigeon/Italy/1166/00

 KU527559.1 Pigeon/China/Jilin/DH09/2015
 KP861633.1 Pigeon/China/SD069/2012

VIk

 HG326602.1 pigeon/Nigeria/NIE07-062/2007
 HG326603.1 pigeon/Nigeria/NIE07-063/2007
 HG326601.1 pigeon/Nigeria/NIE07-061/2007
 HG326604.1 pigeon/Nigeria/NIE09-1898/2009

 JX518532.1 Pigeon paramyxovirus 1 isolate
 JQ039388.1 pigeon/Nigeria/VRD08-37(10-11-13)/2008
 HG424627.1 pigeon/Nigeria/NIE13-092/2013
 HG424628.1 pigeon/Nigeria/NIE13-093/2013

 JQ039387.1 pigeon/Nigeria/VRD08-37BRpe(7-9)/2008
 JQ039391.1 pigeon/Nigeria/VRD07-231/2007

VIh

Genotype VI

 Genotype V
 Genotype VIII

 Genotypes IV and XI
 Genotype III

 Genotype IX
 Genotype II

 Genotype I
 Genotype XVI

Class II

 EF564833.1 goose/US(OH)/87-78/1987
 JQ713944.1 9a5b-D5C1 Class I
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Figure 1: Continued.
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 HF969163.1 chicken/Nigeria/NIE10-034/2011
 HF969172.1 chicken/Nigeria/NIE10-258/2011
 HF969210.1 chicken/Nigeria/NIE10-139/2011

 HF969213.1 chicken/Nigeria/NIE10-325/2011
 KC568205.1 NG-705/KD.TW.7C
 KC568209.1 NG-720/KD.TW.03T
 KY171990.1 chicken/Nigeria/KD/TW/03T/N45/720/2009
 HF969161.1 chicken/Nigeria/NIE10-024/2011
 HF969166.1 chicken/Nigeria/NIE10-076/2011
 HF969208.1 chicken/Nigeria/NIE10-122/2011

 KT948996.1 duck/Nigeria/NG-695/KG.LOM.11-16/2009
 HF969177.1 chicken/Nigeria/NIE10-409/2011
 HF969170.1 chicken/Nigeria/NIE10-160/2011
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 HF969165.1 chicken/Nigeria/NIE10-043/2011
 HF969211.1 chicken/Nigeria/NIE10-263/2011
 HF969169.1 chicken/Nigeria/NIE10-150/2011
 HF969162.1 chicken/Nigeria/NIE10-032/2011
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 HF969203.1 turkey/Nigeria/NIE09-2021/2009
 HF969151.1 chicken/Nigeria/NIE09-2053/2009
 HF969202.1 chicken/Nigeria/NIE09-2013/2009
 HF969157.1 chicken/Nigeria/NIE09-2166/2009
 HF969146.1 chicken/Nigeria/NIE09-2017/2009
 HF969145.1 chicken/Nigeria/NIE09-2014/2009
 KC568206.1 NG-706/JG.KZ.14T

 HF969149.1 chicken/Nigeria/NIE09-2041/2009
 HF969198.1 chicken/Nigeria/NIE08-2279/2009

 HF969212.1 chicken/Nigeria/NIE10-318/2011
 JX546245.1 NDV/chicken/Benin/463MT/2009

 HF969133.1 chicken/Nigeria/NIE08-2159/2009
 HF969141.1 chicken/Nigeria/NIE08-2359/2009
 HF969178.1 chicken/Nigeria/NIE08-2270/2009
 KY171989.1 chicken/Nigeria/VRD10/143/N68/913/2010
 KY171994.1 chicken/Nigeria/VRD09/001/N19/714/2009
 HF969187.1 chicken/Nigeria/NIE08-0453/2008
 HF969190.1 chicken/Nigeria/NIE08-2032/2009

 JQ039390.1 chicken/Nigeria/VRD07-233/2007
 HF969201.1 chicken/Nigeria/NIE09-1599/2009
 HF969142.1 chicken/Nigeria/NIE09-1596/2009
 HF969143.1 chicken/Nigeria/NIE09-1597/2009

XIVb

 HF969186.1 chicken/Nigeria/NIE07-125/2007
 HF969139.1 chicken/Nigeria/NIE08-2280/2009
 HF969200.1 chicken/Nigeria/NIE08-2362/2009
 HF969131.1 chicken/Nigeria/NIE08-2117/2009
 HF969136.1 chicken/Nigeria/NIE08-2194/2009
 HF969193.1 chicken/Nigeria/NIE08-2150/2009

 FJ772452.1 chicken-1377-8-Niger-2006
 JN872165.1 Chicken/Niger/VIR 1377-7/2006

 HF969167.1 turkey/Nigeria/NIE10-082/2011
 JQ039386.1 chicken/Nigeria/VRD08-36/2008

 HF969144.1 chicken/Nigeria/NIE09-2009/2009
 HF969205.1 turkey/Nigeria/NIE09-2071/2009
 HF969150.1 chicken/Nigeria/NIE09-2044/2009
 HF969153.1 chicken/Nigeria/NIE09-2079/2009
 HF969206.1 chicken/Nigeria/NIE09-2101/2009
 HF969155.1 chicken/Nigeria/NIE09-2087/2009
 HF969158.1 avian/Nigeria/NIE09-2168/2009
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Figure 1: Continued.
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 Genotype XIV

 HF969194.1 chicken/Nigeria/NIE08-2199/2009
 HF969196.1 chicken/Nigeria/NIE08-2261/2009
 HF969128.1 avian/Nigeria/NIE07-216/2007
 KF442614.1 Nigeria/228-7/2006

 HF969171.1 chicken/Nigeria/NIE10-182/2011
 FJ772446.1 avian-913-1-Nigeria-2006

XVIIb

 HF969130.1 guinea fowl/Nigeria/NIE08-2004/2009
 HF969137.1 chicken/Nigeria/NIE08-2208/2009
 HF969138.1 chicken/Nigeria/NIE08-2224/2009
 HF969191.1 chicken/Nigeria/NIE08-2042/2009
 HF969135.1 chicken/Nigeria/NIE08-2187/2009
 HF969192.1 chicken/Nigeria/NIE08-2119/2009

 FJ772469.1 chicken-2602-348-Niger-2008
 HF969134.1 chicken/Nigeria/NIE08-2168/2009
 HF969195.1 chicken/Nigeria/NIE08-2247/2009
 HF969140.1 chicken/Nigeria/NIE08-2340/2009
 HF969197.1 chicken/Nigeria/NIE08-2267/2009
 FJ772486.1 avian-3724-6-Nigeria-2008
 KC568204.1 pigeon/Nigeria/ZM/KN/PG01/N1/688/2009
 KY171992.1 chicken/Nigeria/JN/469/N44/892/2009
 HF969132.1 chicken/Nigeria/NIE08-2149/2009
 HF969199.1 chicken/Nigeria/NIE08-2349/2009

 KY171995.1 chicken/Nigeria/VRD124/06/N11/867/2006
 JF966385.1 isolate 2008 Mali ML007 08
 HF969184.1 chicken/Ivory Coast/CIV08-103/2007

 FJ772449.1 avian-913-33-Nigeria-2006
 KY171991.1 quail/Nigeria/VRD17/04/N2/861/2004
 JQ039394.1 chicken/Nigeria/VRD07-410/2007
 JQ039392.1 avian/Nigeria/VRD07-733/2007

 FJ772484.1 chicken-3490-147-Cameroon-2008
 HF969129.1 chicken/Nigeria/NIE08-1363/2008
 HF969189.1 chicken/Nigeria/NIE08-1366/2008
 HF969188.1 chicken/Nigeria/NIE08-1365/2008
 HF969152.1 chicken/Nigeria/NIE09-2072/2009
 HF969154.1 chicken/Nigeria/NIE09-2083/2009
 JQ039393.1 chicken/Nigeria/VRD07-141/2007
 HF969148.1 chicken/Nigeria/NIE09-2034/2009
 HF969207.1 avian/Nigeria/NIE09-2167/2009
 HF969156.1 chicken/Nigeria/NIE09-2128/2009
 HF969204.1 chicken/Nigeria/NIE09-2028/2009
 HF969147.1 chicken/Nigeria/NIE09-2031/2009
 KC568208.1 NG-710/GM.PLBM.10-12T
 HF969215.1 chicken/Nigeria/NIE10-335/2011
 HF969176.1 chicken/Nigeria/NIE10-310/2011
 HF969168.1 chicken/Nigeria/NIE10-124/2011
 HF969209.1 chicken/Nigeria/NIE10-123/2011
 HF969174.1 chicken/Nigeria/NIE10-304/2011
 HF969175.1 chicken/Nigeria/NIE10-306/2011

XVIIa

Genotype XVII

 FJ772455.1 avian-1532-14-Mauritania-2006
 JF966388.1 isolate 2008 Mali ML225 08
 HF969183.1 chicken/Ivory Coast/CIV08-044/2007

XVIIIa

 HF969216.1 chicken/Nigeria/NIE11-1286/2011
 HF969217.1 chicken/Nigeria/NIE10-171/2011

 JX390609.1 NDV/chicken/Togo/AKO18/2009
 HG326600.1 weaver/Ivory Coast/CIV08-032/2006
 HF969218.1 chicken/Ivory Coast/CIV08-042/2007
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 Genotype XII and XIII
 Genotype VII
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Figure 1: Molecular phylogenetic analysis of complete F coding regions (1662bp) for Nigerian Newcastle disease virus isolates. (a)
Zoomed view of prevalent genotype VI isolates is shown. The coloured taxa indicate the subgenotypes with isolates prevalent in Nigeria
(indicated with black icons at the node). (b) Relationship of Nigerian genotype XIV isolates with other reference strains is shown (all isolates
prevalent inNigeria are labelledwith inverted triangle). (c) Expanded view ofNigerian genotype XVII and XVIII isolates (labelledwith circles
at the node).The evolutionary history was inferred using the maximum likelihoodmethod based on the Tamura 3-parametermodel.The tree
with the highest log likelihood (-22231.3479) is shown.The percentage of trees in which the associated taxa clustered together is shown next to
the branches. Initial tree(s) for the heuristic search were obtained by applying the neighbor-joining method to a matrix of pairwise distances
estimated using the maximum composite likelihood (MCL) approach. A discrete Gamma distribution was used to model evolutionary rate
differences among sites (5 categories (+G, parameter = 0.6931)). The tree is drawn to scale, with branch lengths measured in the number of
substitutions per site.The analysis involved 195 nucleotide sequences. Codon positions includedwere 1st+2nd+3rd+Noncoding. All positions
containing gaps and missing data were eliminated. Evolutionary analyses were conducted in MEGA6 [28].
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Table 3: Estimates of evolutionary divergence among the virulent NDV genotypes circulating in Nigeria.

VIg VIh VIi XIVa XIVb XVIIa XVIIb XVIIIb
VIg (0.005) (0.006) (0.007) (0.008) (0.007) (0.007) (0.008)
VIh 0.081 (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
VIi 0.099 0.113 (0.008) (0.009) (0.008) (0.008) (0.008)
XIVa 0.127 0.128 0.149 (0.004) (0.005) (0.006) (0.006)
XIVb 0.132 0.135 0.146 0.067 (0.007) (0.007) (0.007)
XVIIa 0.124 0.128 0.136 0.106 0.109 (0.004) (0.006)
XVIIb 0.122 0.126 0.135 0.104 0.105 0.041 (0.007)
XVIIIb 0.118 0.120 0.132 0.112 0.114 0.093 0.095
The table shows number of base differences per site from averaging over all sequence pairs between groups. Standard error estimate(s) are shown above
the diagonal and were obtained by a bootstrap procedure (500 replicates). The analysis involved 120 nucleotide sequences. Codon positions included were
1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. Evolutionary analyses were conducted in MEGA6 [28].

[85, 86], their occurrence in Nigerian pigeon population
economically threatens the poultry subsector in the country.
Thus, there is a need to intensify disease surveillance in live
birdsmarkets, households, and commercial poultry farms, so
that disease epidemics due to these isolates can be quickly
detected and contained.

Isolates belonging to genotypeXIV are themost predomi-
nantly isolated strains of NDV inNigeria. Both subgenotypes,
XIVa and XIVb, have been recovered from domestic birds
found in the North-West (Sokoto, Kaduna, Jigawa), North-
Central (Benue, Kogi), North-East (Taraba and Yobe), and
South-Western parts of the country (Lagos) (Table 1). The
intergroup genetic distance between the two subgenotypes
averages at 6.7% (Table 3). Meanwhile, subgenotype XIVa
isolates appear to be more genetically diverse, having an
average intragenotype evolutionary divergence of 2.6%. On
the other hand, isolates in the subgenotype XIVb are less
divergent with about 98.6% overall mean similarity among
themselves (data not shown). Phylogenetically, the genotype
XIVa isolates forma clusterwith some strains inNiger Repub-
lic while the Nigerian genotype XIVb isolates tend to be
more closely related to the 2009 isolates from Benin Republic
(Figure 1(b)). Interestingly, the isolates in genotype XIVa
that share the highest nucleotide similarity with those from
Niger Republic were all obtained from Sokoto State which
shares a direct international border with Niger Republic.
Their intimate phylogenetic relationship could therefore be
partially explained by the cross border movements between
the two countries which may facilitate the spread of the virus
from one place to another. Notably, all genotype XIV isolates
are so far restricted in distribution to only the West African
subregion where they cause havoc in the regional poultry
industry [11]. However, their emergence in other parts of the
continent within the next few years would not be unexpected
given the poor transboundary biosecurity measures in most
of the African countries.

Several strains of NDV isolated in Nigeria from 2006-
2011 belong to either subgenotype XVIIa or XVIIb, with the
mean evolutionary divergence between the two subgenotypes
being 4.1% (Table 3). Members of the subgenotypes XVIIa are
highly similar, with an average nucleotide sequence similarity
of 98.1% at the level of F protein gene. Surprisingly, despite
their extensive spatial distribution in the northern states

(Sokoto, Zamfara, Plateau, Gombe, and Yobe states), none
of these isolates was recovered from the southern parts of
the country. It is however not clear whether this is due to
sampling bias or they truly do not exist in those areas. On
the basis of phylogenetic analysis, genotype XVIIa isolates
fromNigeria are closely related to those fromNiger Republic,
Cameroun, Burkina Faso, and Mali whereas the genotype
XVIIb isolates, whose mean intrasubgenotype distance was
estimated to be 1.5%, are so far exclusively composed of
Nigerian strains (Figure 1(c)). Importantly, the ecological
distribution of genotype XVII isolates is to date restricted to
the West and Central Africa [32, 53] where they are believed
to considerably militate against poultry production. Indeed,
representatives of these isolates have recently been shown to
cause a typical velogenic viscerotropic ND [87] characterized
by end stage morbidity and high mortality in chicken. There
is therefore need to intensify the ongoing passive and active
surveillance for ND in various parts of the country in order
to avert the potential economic losses due to outbreaks with
these strains.

Two highly similar sequences (99%) obtained fromNige-
rian NDV strains in the NCBI database were categorised
under the subgenotype XVIIIb. They were obtained from
Sokoto State in the North and Oyo State from the South.
Based on the phylogenetic tree analysis, the two strains
are quite related to the isolates from Togo and Ivory-Coast
(Figure 1(c)) as earlier reported by Shittu et al. [32]. On the
contrary, subgenotype XVIIIa isolates are yet to be encoun-
tered in Nigeria. Surprisingly, the interpopulation evolution-
ary distance between the two isolates in the subgenotype
XVIIIb and those in either subgenotype XVIIa or XVIIb is
slightly lower than the 10% cut-off for differentiating new
genotypes (Table 2). This discrepancy was earlier observed
by [88] who wondered if genotype XVIII isolates could be
another subgroup of genotype XVII. However, Snoeck and
Muller (2016) maintained that the two genotypes (XVII and
XVIII) still stand and that the parameter used by Desingu
et al. to challenge the existence of genotype XVIII was
incorrect. Therefore, it is possible that the slightly lower
than the threshold interpopulation distance observed in this
study was due to the small number of genotype XVIII
sequences from Nigeria (n=2) used in the analysis. As all the
known genotype XVIII isolates are predicted to be virulent
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Table 4: Genetic distances between the common vaccine strains and the prevalent virulent NDV subgenotypes in Nigeria.

Vaccine Prevalent subgenotype
VIg VIh VIi XIVa XIVb XVIIa XVIIb XVIIIb

B1 0.156 0.155 0.162 0.173 0.185 0.165 0.173 0.16
Komarov 0.155 0.155 0.161 0.169 0.180 0.157 0.165 0.159
Lasota 0.159 0.157 0.166 0.174 0.186 0.165 0.173 0.162
V4 0.147 0.151 0.156 0.165 0.175 0.153 0.16 0.152
VGGA 0.162 0.162 0.169 0.179 0.191 0.17 0.178 0.166
I2 0.145 0.153 0.155 0.163 0.173 0.151 0.149 0.156
The table shows number of base substitutions per site of the complete F gene sequence pairs between vaccine strains and NDV subgenotypes in Nigeria. The
analysis involved 126 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were
eliminated. Evolutionary analyses were conducted in MEGA6 [28].

in chicken, their emergence in other parts of the country
should be carefully monitored as part of the usual disease
surveillance programme in the country.

4. Challenges for Newcastle Disease
Control in Nigeria

Vaccination remains the most practical method of disease
control in poultry and therefore plays a major role in
strengthening the modern poultry industry [89, 90]. The
ultimate goal of any vaccination program is the induction
of sterilising immunity in the vaccinated host [91]. However,
this is hardly achievable in poultry [89], owing to numerous
factors that may adversely affect the efficacy of vaccination.
The fact that all NDV strains are grouped into one serotype
[92] suggests that immunity developed against one strain
should offer cross protection against challenge with any
other strains. Unfortunately to date, outbreaks of ND are
frequently reported among farms that have vaccinated using
the available vaccines [32, 52, 53]. The cause of these disease
outbreaks among the vaccinated birds is still controversial
in the literature. While some researchers hold the view that
the poor vaccine induced immunity is due to the suboptimal
vaccine intake following its mass administration in poultry
[93], others believe that the genetic variation between the
vaccine and the circulating field strains might be the major
factor responsible for the incomplete protective efficacy of
the current vaccines [94, 95]. Although the currently used
vaccines, when correctly administered, are known to fully
protect birds against clinical disease and mortality [95, 96],
they cannot block the replication of the virulent virus post
challenge [44, 45].Thus, the vaccinated birdsmay look appar-
ently healthy but still excrete a large amount of the virulent
virus, which can in turn cause disease among unprotected
birds. Since it is an established fact that ND vaccines are
more effective in reducing virus shedding when the vaccine
strains are genetically closer to the challenge strain [57, 97],
the evolutionary distance between the vaccine strains and
the circulating field strain represents an important factor
in effective disease control, since it explains the continuous
occurrence of ND outbreaks despite the extensive poultry
vaccination programs in the country.

Based on the evolutionary analysis of the complete F
coding sequences performed in this study, all the virulent
NDV genotypes circulating in Nigeria are shown to be
distantly related to the currently available vaccine strains in
the country (Table 4). LaSota which is the most widely used
live attenuated ND vaccine in Nigeria and indeed many parts
of the world has an average nucleotide sequence divergence
of 15.7-18.6% when compared with all the existing virulent
class II subgenotypes in Nigeria (Table 4). Similarly, the
very popular Komarov inactivated NDV vaccine differs from
the circulating NDV subgenotypes in the country with an
average evolutionary distance of 15.5-18% (Table 4). Recently
in Indonesia, sequence divergence between the field and
the vaccine strains has been implicated in a severe disease
outbreak that led to 70% mortality among the vaccinated
birds [95]. Furthermore, in Malaysia where the prevalent
isolates are genotype VII strains that considerably diverge
from the LaSota strain, the frequency of ND outbreaks
among the vaccinated farms has steadily increased from
2009 to date [62, 98]. Therefore, the wide genetic divergence
between the Nigerian NDV strains and vaccine strains used
in the country should be a source of a serious concern to
the national poultry industry and requires urgent attention.
These problems collectively highlight the possible limitations
of the current vaccines in offering a complete protection
against the circulating strains of NDV in Nigeria. The need
to improve the current disease control strategies is therefore
imperative.

5. Way Forward

The panacea for all these ND control challenges in Nigeria is
the maintenance of strict biosecurity and the development of
rationally designed vaccines based on the currently circulat-
ing isolates in the country.With the advent of reverse genetics
technology that allows the recovery of recombinant NDV
from their cloned cDNA [99], genotype-matched live atten-
uated vaccines can be easily generated. Since the complete
genome sequence of some biologically well-characterized
viruses in the country has already been obtained [33, 34],
efforts should be intensified towards rescuing their attenuated
counterparts by simply engineering their F cleavage site to
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encode monobasic amino acid residues instead of the poly
basic motifs [100]. By developing a reverse genetics system
for one prevalent strain in the country, vaccine candidates
against all the circulating strains can easily be obtained by
F gene swapping in the full length infectious clone followed
by the recovery of the chimeric viruses by reverse genetics
techniques. Alternatively, recombinant viral vectors such
as herpesvirus of turkey [101] (HVT) expressing surface
glycoproteins (F and/or HN) of the circulating NDV can be
developed as an effective genotype-matched vaccine against
the prevailing genotypes in the country.

6. Conclusion

In summary, a comprehensive distribution ofNDVgenotypes
in various regions of Nigeria has been provided. Apparently,
multiple genetically distinct strains of NDV are cocirculating
in some states of the federation, an important factor that
may favour the emergence of novel virulent isolates in the
country. In particular, apart from genotype VI isolates, all
the virulent NDV genotypes prevalent in Nigeria have been
isolated in Sokoto State between 2007 and 2011, making
the State a potential hotspot of different NDV genotypes in
Nigeria. It is interesting to know that genotype VII isolates
responsible for the on-going fourth and the imminent fifth
ND panzootic [102, 103] have not been reported in Nigeria
despite their recent emergence in some African countries
[104, 105]. Since these panzootic viruses have a high potential
for international spread, there is a need to intensify disease
surveillance activities and strengthen biosecurity barriers so
as to avoid their introduction into the country. Finally, given
the wide evolutionary divergence between the commonly
used vaccines and the circulating NDV strains in the country,
there is a need to revise the current ND control strategies
in Nigeria. Genotype-matched vaccines with improved pro-
tective efficacy and virus shedding blocking ability should be
designed to specifically target the currently circulating NDV
genotypes in the country.
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