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Abstract: The aim of this work was to establish whether novel curdlan-based hydrogels enriched with
Ca2+ ions may be considered as potential candidates for dressings, for the acceleration of skin wound
healing. Firstly, biomaterials were allocated for evaluation of structural and mechanical properties.
Subsequently, the ability of hydrogels to absorb simulated wound fluid and water vapor permeability,
as well their capacity to release calcium ions, was evaluated. The biocompatibility of biomaterials
was assessed using normal human skin fibroblasts. Importantly, the main features of the obtained
curdlan-based hydrogels were compared with those of KALTOSTAT® (a commercial calcium sodium
alginate wound dressing). The obtained results showed that curdlan-based biomaterials possessed
a mesoporous structure (pore diameter ranged from 14–48 nm) and exhibited a good ability to
absorb simulated wound fluid (swelling ratio close to 974–1229%). Moreover, in a wet state, they
enabled proper water vapor transmission rate (>2000 g/m2/day), thanks to their hydrogel structure.
Finally, it was found that biomaterial composed of 11 wt.% of curdlan (Cur_11%) possessed the
most desirable biological properties in vitro. It released a beneficial amount of calcium ions to the
aqueous environment (approximately 6.12 mM), which significantly enhanced fibroblast viability
and proliferation. Taking into account the beneficial properties of Cur_11% biomaterial, it seems
justified to subject it to more advanced cell culture experiments in vitro and to in vivo studies in
order to determine its precise influence on skin wound healing.

Keywords: biocompatibility; calcium ions; chronic wounds; hydrogels; skin fibroblasts; wound
exudate; bioactive wound dressing

1. Introduction

Hard-to-heal wounds (mainly the chronic ones) still constitute a huge problem for
current medicine [1–3]. It has been indicated that over 20 million people worldwide suffer
from this ailment. Such wounds are associated with many inconveniences for patients,
such as reduction of their quality of life, physical limitations, numerous hospital stays,
and the need for frequent dressing changes. It is estimated that the global wound care
market will consume $22 billion dollars in 2024 [4]. Treatment of hard-to-heal wounds with
bioactive dressings is crucial to decrease the cost of therapy, increase the quality of patient
life, and accelerate wound healing [5–8].

Appropriate dressings for promoting skin wound healing must meet many require-
ments. They should primarily have the ability to stop bleeding and to absorb a high
amount of wound exudate. A moist environment (but not a wet one) at the wound site is
considered to be a pivotal condition for the proper healing process [3,5,6,9,10]. Dressings
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maintaining moisture decrease the risk of scar formation, enhance re-epithelialization, and
facilitate cell migration into the wound. They also support cell viability and prolifera-
tion [5–7]. Furthermore, the appropriate dressings cannot strongly adhere to the wound
site in order to enable the formation of new tissue without trauma that often occurs during
repeated dressing changes [3,5–7,9,10]. It is well known that wound dressings constitute
a barrier to external contamination. Therefore, they should exhibit mechanical stability
during application, which allows for their wearing in a suitable manner, and then easy
removal. At the same time, wound dressings should exhibit elastic texture to adapt to the
wound bed and should be flexible while the patient is moving [5,11–14]. Permeability of
gases is another important feature of wound dressings. Such biomaterials should allow
skin to “breathe”. Hence, they must enable the exchange of gases, such as CO2, O2, and
H2O [3,5–7]. On the other hand, biocompatibility is a mandatory property of biomateri-
als [15,16]. Modern dressings should not only be non-toxic, but they should also accelerate
the healing process [3,6]. Because various types of cells (inter alia monocytes, fibroblasts,
keratinocytes) are involved in the healing process, desirable wound dressings should
enhance their viability and proliferation, as well as migration [5,6]. In turn, considering the
economic aspects, suitable dressings should not be too expensive in order to avoid the high
cost of treatment [17–19]. Taking into account all the aforementioned criteria, hydrogels,
especially those made from natural polymers, have attracted notable attention in the field
of tissue engineering [3,11,20–25]. They are fabricated using various techniques, such as
phase separation, solvent evaporation, porogen leaching, electrospinning, freeze-drying, or
supercritical CO2 drying, which allows for obtaining of porous biomaterials with a high
ability to absorb wound exudate [6,26,27].

Curdlan is an unbranched, bacterial β-1,3-glucan, which possesses beneficial chem-
ical, rheological, and biological properties [28,29]. It is colorless, tasteless, and odorless.
Curdlan is not soluble in water (it forms aqueous suspension), but this polysaccharide is
soluble in alkaline solutions [16,30]. It also possesses the ability to form non-toxic, flexible
but solid hydrogels, when both its aqueous suspension is heated to 55–90 ◦C and when
its alkaline solution is subjected to ion-exchanging dialysis. Thanks to all the aforemen-
tioned features, it is successfully used for tissue engineering applications [15,16,29]. It is
also worth highlighting that curdlan belongs to the family of β-glucans, which exhibit
immunostimulatory effects [16,28,30]. Therefore, β-glucans are considered as suitable
wound healing agents. They are known to promote wound healing by increasing the
infiltration of macrophages, which results in better tissue granulation and collagen de-
position, as well as re-epithelialization. Moreover, β-glucans are characterized by good
stability and resistance to wound proteases [31]. Nevertheless, the potential of curdlan as a
component of wound dressings is poorly investigated. Basha et al. [32] demonstrated that
curdlan/polyvinyl alcohol (PVA) nanofibrous scaffolds possess good swelling behavior
and are non-toxic towards myoblast cells (L6 cells). Wojcik et al. [33] fabricated biocompati-
ble curdlan/agarose and curdlan/chitosan dressings with superabsorbent ability. In turn,
our recent study demonstrated that curdlan-based biomaterials enriched with copper ions
possess antibacterial activity but simultaneously exhibit cytotoxicity towards fibroblast
cells [34]. The aim of the current work was to determine whether curdlan-based hydrogels
enriched with calcium ions are suitable candidates as dressings for the acceleration of
wound healing. The biomaterials were prepared using a new procedure, which combined
ion-exchanging dialysis against calcium chloride (CaCl2) solution, followed by two-step
freezing with subsequent freeze-drying. It is worth underlining that the fabrication proce-
dure of the presented curdlan biomaterials was described in the Polish patent application
no. 432848, “the fabrication method of absorbent biomaterial based on curdlan for medical
applications”. The obtained biomaterials were subjected to evaluation of their structural,
mechanical, and in vitro biological properties. Importantly, the main properties of novel
curdlan-based hydrogels were compared with those of KALTOSTAT® (commercial calcium
sodium alginate wound dressing).
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2. Materials and Methods
2.1. Materials

Bovine serum albumin (BSA), formaldehyde solution (36.5–38%), Hoechst 33342 flu-
orescent dye, a Live/Dead Cell Double Staining Kit, penicillin-streptomycin solution,
phosphate buffered saline (PBS), silica gel with indicator (orange gel), sodium dodecyl sul-
fate (SDS), thiazolyl blue tetrazolium bromide (MTT), tris-hydroxymethyl aminomethane
(TRIS), triton X-100, and trypsin-EDTA solution (0.25%) were obtained from Sigma-Aldrich
Chemicals, Warsaw, Poland. Curdlan (MW 80 kDa) was purchased from Wako pure Chem-
icals Industries, Osaka, Japan, whereas the fetal bovine serum (FBS) was from Pan-Biotech,
Aidenbach, Germany. Eagle’s Minimum Essential Medium (EMEM) and normal human
skin fibroblasts (BJ cell line, CRL-2522TM) were supplied by ATTC, Teddington, UK, while
AlexaFluorTM 635 Phalloidin was supplied by Invitrogen, Warsaw, Poland. Calcium chlo-
ride (CaCl2), dimethyl sulfoxide (DMSO), sodium chloride (NaCl), hydrochloric acid (HCl),
and sodium hydroxide (NaOH) were purchased from Avantor Performance Materials,
Gliwice, Poland. A calcium ion detection kit (Calcium CPC) was supplied by BioMaxima,
Lublin, Poland. Calcium sodium alginate dressing—KALTOSTAT® (10 cm × 20 cm) was
obtained from ConvaTec, Tredegar, UK. Before experiments, a KALTOSTAT® sheet was cut
into small discs (2.2 cm in diameter) and sterilized using ethylene oxide.

2.2. Preparation of Curdlan-Based Biomaterials

The curdlan-based biomaterials were fabricated according to the procedure described
in the Polish patent application no. 432848 (“the fabrication method of absorbent bioma-
terial based on curdlan for medical applications”). In the first step, solutions containing
5 wt.%, 8 wt.%, and 11 wt.% of curdlan in 0.3 M aqueous NaOH were prepared using a
magnetic stirrer (25 ◦C, 40 rpm, Cimarec+TM Stirrer, ThermoFisher Scientific, Waltham,
MA, USA). These solutions were placed into round-shaped forms (2.2 cm in diameter) and
then were allocated to ion-exchanging dialysis against 2% of CaCl2 solution (3 h, 25 ◦C).
Curdlan cross-linking by Ca2+ ions was undergone in accordance with the mechanism
described in detail by Sato et al. [35]. Briefly, during the dialysis process, Na+ and OH−

ions outflow outside from of the curdlan solution, which leads to a change of the pH and,
as a consequence, to a conformational transition of curdlan molecules—from random coil
to triple helix. Simultaneously, Ca2+ ions inflow to the curdlan solution and cross-link the
helical molecules of this polysaccharide (the curdlan-based biomaterial). After dialysis,
the obtained solid hydrogels were rinsed with deionized water (three times for 15 min in
order to remove residues of calcium chloride) and placed in a freezer at −20 ◦C for two
days, followed by −80 ◦C for 2 h. Finally, they were freeze-dried (LYO GT2-Basic, SRK
Systemtechnik GmbH, Riedstadt, Germany) for 24 h. The general fabrication procedure
is presented in Figure 1. Resultant dry biomaterials were denoted: Cur_5%, Cur_8%, and
Cur_11%. Before experiments, these biomaterials were sterilized using ethylene oxide.
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2.3. Assessment of Biomaterial Morphology

The morphology of the biomaterial specimens was evaluated using a scanning elec-
tron microscope (Nova NanoSEM 450, FEI, Oxford, UK) equipped with an Octane Pro
EDS detector (EDAX), which enabled chemical analysis and identification of occurring
precipitates.

2.4. Evaluation of Specific Surface Area, Pore Distribution, and Pore Diameter of Biomaterials

For this experiment, curdlan-based biomaterials were prepared as cylindrical samples
(5 mm in diameter and 10 mm in length). The specific surface area (SSA) of biomaterials was
determined by the Brunauer-Emmett-Teller (BET) method from N2 adsorption isotherms
obtained at −196 ◦C using ASAP 2020 HD (Micromeritics Inc., Norcross, GA, USA). Before
analyses, the biomaterial samples were degassed at 25 ◦C for 16 h and then under vacuum
(10−5 to 10−6 mmHg) at 25 ◦C for 5 h. The original density functional theory (DFT) and
classical thermodynamic Barrett-Joyner-Halenda (BJH) theory were used for calculation of
pore size distribution and average pore diameter, respectively.

2.5. Wound Fluid Uptake Test

In order to assess the ability of biomaterials to absorb wound exudate, the experiment
was carried out using simulated wound fluid (SWF), according to a procedure described
previously [34]. Briefly, curdlan-based biomaterials and KALTOSTAT® samples were
weighed in the dry state and then immersed in SWF (room temperature). The SWF solution
was prepared immediately before the experiment using 2.22 g of CaCl2, 23.38 g of NaCl,
9.69 g of TRIS, and 20 g of BSA per 1 L of deionized water. The final pH of the obtained
solution was 7.5. At fixed time intervals, the specimens were taken out of solution, blotted
with tissue paper, re-weighted, and re-immersed. The experiment was performed for 24 h.
The swelling ratio was determined using the following Equation (1):

SW (%) =
(Ws − Wd)

Wd
× 100 (1)

where Ws denotes the weight of swollen biomaterials (g) and Wd denotes the weight of dry
ones (g).

2.6. Mechanical Properties

The mechanical properties, namely Young’s modulus (E) and tensile strength (TS),
were evaluated according to ASTM D638-14 standard recommendations [36]. Curdlan-
based biomaterials were prepared as dumbbell-shaped strips (Type V) in accordance with
procedure described in Section 2.2. Prior to test, the samples of curdlan-based biomaterials
were soaked in SWF for 24 h (room temperature), to mimic conditions after absorption of
wound exudate. Then, the biomaterials were measured using an Autograph AG-X Plus
(Shimadzu, Kioto, Japan) testing machine (preload value of 1N, crosshead moving speed
10 mm/min followed by basic load rate 0.5 mm/min). Measurements of Young’s modulus
were carried out using a non-contact extensometer (TRViewX120S, Shimadzu, Kioto, Japan).
In turn, mechanical properties of KALTOSTAT® biomaterial were not determined because
of its unstable structure in a wet state.

2.7. Water Vapor Transmission Test

The water vapor transmission test was carried out according to a procedure described
previously [34]. For this purpose, silica gel with indicator (5 g) was put into glass vials
(diameter of mouth was 1 cm) and they were subjected to drying (Drying oven SUP-65,
Wamed, Warsaw, Poland). Simultaneously, the samples of curdlan-based biomaterials
and KALTOSTAT® specimens were immersed in SWF (24 h, room temperature). Then,
the vials containing dry silica gel were weighed. The biomaterials were removed from
the solution, blotted with tissue paper, and mounted precisely on the mouth of the vials.
After 24 h incubation at 37 ◦C and 95% relative humidity (Heraeus cytoperm 2, Thermo



Materials 2021, 14, 2344 5 of 17

Scientific, Waltham, MA, USA), the biomaterials were removed from the vials and the mass
of vials with wet silica gel was measured. The water vapor transmission rate (WVTR) was
calculated as follows:

WVTR
(

g/m2/day
)
=

Ww − Wd
S

(2)

where Ww denotes the weight of the vial with wet gel (g), Wd denotes the weight of the
vial with dry gel (g), and S denotes the surface of the vial mouth (m2).

2.8. Calcium Ion-Releasing Ability

To evaluate the capacity of biomaterials to release calcium ions in an aqueous en-
vironment, the liquid extracts from specimens were prepared according to ISO 10993-
5:2009 standard recommendations [37]. The samples of curdlan-based biomaterials and
KALTOSTAT® specimens were placed into a 12-well plate and EMEM medium with an
addition of 2% FBS was added (extraction ratio was equal to 0.1 g of biomaterial/1 mL of
EMEM medium). After 24 h incubation at 37 ◦C in a humidified atmosphere of 5% CO2 and
95% air (Heraeus cytoperm 2, Thermo Scientific, Waltham, MA, USA), the liquid extracts
were collected. The EMEM medium incubated without biomaterials served as a control
extract. The concentration of calcium ions in collected solutions was evaluated using the
Calcium ion detection kit in accordance with the manufacturer’s protocol.

2.9. Cell Culture Experiments

The cell culture experiments were performed using normal human skin fibroblasts,
i.e., BJ cell line (ATCC, London, UK), as it is known as a good model for the evaluation
of wound healing in vitro [33,38–41]. The cells were grown in EMEM medium with an
addition of 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin. According
to ATCC directions, BJ cells were cultured at 37 ◦C in a humidified atmosphere of 5%
CO2 and 95% air (Heraeus cytoperm 2, Thermo Scientific, Waltham, MA, USA). To assess
fibroblast response to the tested biomaterials, the liquid extracts from the samples of
curdlan-based biomaterials and KALTOSTAT® specimens were prepared according to
ISO 10993-5:2009 standard directions [37], as described in Section 2.8. For evaluation
of cell viability, extracts were prepared using EMEM supplemented with 2% FBS, while
extracts obtained in EMEM with an addition of 10% FBS was applied for estimation of
cell proliferation. As a control extract, appropriate EMEM medium (with 2% or 10% FBS)
incubated without biomaterials was utilized. The ISO 10993-5:2009 standard guidelines [37]
are commonly applied for the evaluation of biological properties in vitro of biomaterials
with biomedical potential [33,34,42–44].

2.9.1. Cell Viability

In the first step, BJ cells were seeded in 96-well plates in 100 µL of EMEM medium
with an addition of 10% FBS at a high concentration equal to 1.5 × 104 cells/well. After
overnight incubation, the culture medium was replaced with appropriate liquid extracts
(obtained in EMEM with 2% FBS—to minimize cell proliferation) and the plates were
incubated for 24 h. Furthermore, 10% dimethyl sulfoxide (DMSO) solution in culture
medium was served as positive control of cytotoxicity. The fibroblast viability was assessed
quantitatively via MTT test (as described in details earlier [45]) as well as qualitatively
using the Live/Dead Double Staining Kit in accordance with manufacturer protocol. The
fibroblasts stained with fluorescent dyes were observed under confocal laser scanning
microscope (CLSM, Olympus Fluoview equipped with FV1000, Shinjuku, Japan).

2.9.2. Cell Proliferation

Based on results obtained during cell viability evaluation, Cur_11% biomaterial was
selected and its influence on fibroblast proliferation was assessed. The BJ fibroblasts were
seeded in 96-well plates in 100 µL of EMEM medium with an addition of 10% FBS at low
concentration equal to 2 × 103 cells/well. After overnight incubation, culture medium



Materials 2021, 14, 2344 6 of 17

was replaced with biomaterial liquid extracts (obtained in EMEM with 10% FBS—to allow
normal cell proliferation) and the plates were incubated for three and five days. Culture
medium incubated without biomaterial was served as a control. After incubation time, the
cell proliferation was assessed by the WST-8 test. The fold increase in cell proliferation was
calculated using the following Equation (3):

Fold increase in cell proli f eration =
B − A

A
(3)

where A denotes the average value of optical density (OD) obtained for the tested group
at day three, while B denotes the average value of OD obtained for the tested group at
day five.

Moreover, the cells were stained with Hoechst 33342 and AlexaFluorTM 635 Phalloidin
fluorescent dyes and observed under CLSM (Olympus Fluoview equipped with FV1000,
Shinjuku, Japan).

2.10. Statistical Analysis

Most of the analyses were performed at least in three independent experiments
and obtained results have been shown as mean values ± standard deviation (SD). For
determination of statistical differences between samples (p < 0.05), the unpaired t-test or
one-way ANOVA test followed by Tukey’s multiple comparison test were used (GraphPad
Prism 5, Version 5.04 Software).

3. Results and Discussion
3.1. Morphology of Biomaterials

The scanning electron microscope (SEM) images (Figure 2a) showed that surfaces
of all tested curdlan-based samples were covered with sporadically visible precipitates
(examples of such precipitates have been marked in red frames). They were primarily
composed of calcium and chlorine, as proven by energy dispersive spectroscopy (EDS)
spectra (Figure 2a). Most likely, calcium chloride precipitates occurring on biomaterial
surfaces should have the ability to dissolve during direct contact with wound exudate. As a
consequence, this would lead to an increase in calcium ion concentration at the wound site.
This is a very desirable phenomenon because, after skin injury, the concentration of Ca2+

ions gradually increases, which enhances wound healing [46–48]. It was experimentally
proved (in vitro and in vivo) that wound dressings possessing the ability to release calcium
ions into the wound site promote hemostasis, enhance cell proliferation, and accelerate the
formation of granulation tissue [6,20,47–53].

Moreover, SEM images of cross-sections of the biomaterials revealed that they had
a porous internal structure (Figure 2b). It is worth pointing out that the use of porous
dressings is beneficial for the wound healing process. On the one hand, porosity positively
affects the ability of biomaterials to absorb liquids, because porous samples—thanks to
higher specific surface area—possess better swelling capacity compared to non-porous
ones [54,55]. On the other hand, occurrence of pores within the biomaterial structure allows
for the exchange of gases and nutrients, which are necessary for cells [26,56].
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3.2. Specific Surface Area, Pore Distribution, and Pore Diameter of Biomaterials

Specific surface area (SSA), pore distribution, and pore diameter are key features of
porous biomaterials. The SSA is mostly expressed as a ratio between total surface area
of a sample and its weight. The value of SSA strictly depends on the size of pores. The
pores can be classified as micropores (diameter < 2 nm), mesopores (diameter 2–50 nm), or
macropores (diameter > 50 nm), wherein the presence of micropores mainly determines
the value of a specific surface area. It was shown that microporous and mesoporous
biomaterials have very good or good absorption ability, due to high specific surface area
and high pore volume. In turn, macroporous samples possess relatively poor swelling
ability [57–62].

In the case of curdlan-based biomaterials, it was demonstrated that the specific surface
area and cumulative pore area of samples increased in the following order: Cur_5%
> Cur_8% > Cur_11% (Table 1). Thus, as expected, Cur_5% and Cur_8% biomaterials
were mainly characterized by the presence of micropores and mesopores, while Cur_11%
possessed predominantly mesopores and macropores (Figure 3). Interestingly, because
the fabrication method of tested biomaterials was the same, it seems that concentration
of curdlan in samples affected their architecture. Some researchers demonstrated that
biomaterial porosity decreased along with the increase of polymer concentration due to a
higher density in samples [63–66]. Thus, these results can explain our observations. Despite
some differences between samples, all tested curdlan-based biomaterials can be classified
as mesoporous (based on average pore size values, Table 1). Given the values of specific
surface area for curdlan-based biomaterials (50.13–100 × 10−2 m2/g; Table 1), it seems that
they exhibited moderate parameters. For instance, Chen et al. [59] fabricated polyurethane
membranes as potential wound dressings. The authors indicated that their specific surface
area ranged from 230 to 270 × 10−2 m2/g. In turn, Zhang et al. [67] prepared three types
of porous alginate wound dressings. The specific surface area of these materials ranged
from 21.77 to 45.44 × 10−2 m2/g.
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Table 1. Specific surface area, cumulative pore area, and average pore size of Cur_5%, Cur_8%, and
Cur_11% biomaterials.

Parameter Cur_5% Cur_8% Cur_11%

Specific surface area * [m2/g] × 10−2 100 79.04 50.13

Cumulative pore area # [m2/g] × 10−2 69.74 45.60 17.10

Average pore size $ [nm] 14.25 27.30 47.95
* Specific surface area was calculated from N2 adsorption isotherms using Brunauer-Emmett-Teller (BET) method;
# Cumulative pore area was determined from Barrett-Joyner-Halenda (BJH) adsorption cumulative surface area of
pores between 1.70 nm and 300.00 nm diameter; $ Average pore size was determined from Barrett-Joyner-Halenda
(BJH) adsorption average pore width (4 V/A).
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3.3. Ability of Biomaterials to Swell in Wound Fluid

The measurement of sample weights before and after their incubation in simulated
wound fluid (SWF) showed that all tested biomaterials possessed good ability to absorb
liquid (Figure 4a).
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Figure 4. The ability of Cur_5%, Cur_8%, Cur_11%, and KALTOSTAT® biomaterials to absorb
simulated wound fluid (SWF) after 24 h incubation (a) (# significantly different results compared to
Cur_8% biomaterial; * significantly different results compared to Cur_11% biomaterial; $ significantly
different results compared to KALTOSTAT®; one-way ANOVA test followed by Tukey’s multiple
comparison, p < 0.05). Representative images presenting Cur_11% and KALTOSTAT® biomaterials in
a dry state—before incubation in SWF and in a wet state—after incubation in SWF (b).
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After 24 h incubation in SWF, the swelling ratio (SW) of Cur_5%, Cur_8%, Cur_11%,
and KALTOSTAT® biomaterials was 1229 ± 66.59%, 1025 ± 36.31%, 974 ± 35.56%, and
1021 ± 59.19%, respectively. These results confirmed the data obtained from BET theory
(Table 1), as the swelling ability of curdlan-based biomaterials decreased along with the
decline of their specific surface area. Importantly, all tested curdlan-based biomaterials
exhibited swelling ability at least as good as KALTOSTAT®. Because this commercial
dressing is designed for moderately to heavily exuding wounds (based on manufacturer
data from [68]), it seems that all fabricated curdlan-based biomaterials may be considered
as promising absorbent dressings.

Moreover, it is worth underlining that, in contrast to the loose, fibrous-like morphol-
ogy of KALTOSTAT® in a dry state, the fabricated curdlan-based biomaterials possessed a
compact, foam-like structure. When all tested samples (curdlan-based and KALTOSTAT®)
were swollen in SWF, they became semi-transparent hydrogel structures. The representa-
tive pictures of Cur_11% and KALTOSTAT® biomaterials in dry and wet states have been
presented in Figure 4b. Hydrogel biomaterials have many properties of ideal wound dress-
ings. They are semi-transparent or transparent, allowing for wound observation without
removal of the dressing and they have the ability to maintain a moist environment, which
enhances wound healing [5,6,11]. Furthermore, such dressings are known to reduce pain
for patients, because they provide a cooling effect. Hydrogels also exhibit low adherence to
the wound site, which decreases pain and overcomes trauma during dressing changes [5,6].

3.4. Mechanical Properties of Biomaterials

The swollen curdlan-based hydrogels possessed a compact structure and, simultane-
ously, they were flexible and could also fit into the site where they were placed (data not
shown). The mechanical test was conducted for wet biomaterials and the results have been
summarized in Table 2.

Table 2. The values of Young’s modulus and tensile strength of Cur_5%, Cur_8%, and Cur_11% after
24 h incubation in simulated wound fluid (SWF).

Biomaterial Young’s Modulus ± SD
[MPa]

Tensile Strength ± SD
[MPa]

Cur_5% 0.179 ± 0.036 * 0.029 ± 0.002 *

Cur_8% 0.189 ± 0.004 * 0.033 ± 0.011 *

Cur_11% 0.296 ± 0.036 0.051 ± 0.008
* significantly different results compared to Cur_11% biomaterial (unpaired t-test, p < 0.05).

It was shown that the higher the curdlan concentration in the sample, the better
the mechanical properties. Thus, Cur_11% had the highest values of Young’s modulus
(0.296 ± 0.036 MPa) and tensile strength (0.051 ± 0.008 MPa), which indicates its higher
stability compared to the other tested biomaterials. This observation is in accordance with
results presented by other researchers, as the hardness and stiffness of the biomaterials
increased with greater concentration of polymer in the sample [69,70].

3.5. Water Vapor Permeability of Biomaterials

The performed experiment showed that all curdlan-based hydrogels and KALTOSTAT®

biomaterial were permeable to water vapor with water vapor transmission rate (WVTR)
values above 2000 g/m2/day (Figure 5).

The WVTR values for Cur_5%, Cur_8%, Cur_11%, and KALTOSTAT® biomaterials
were 2377 ± 98.23 g/m2/day, 2223 ± 124.8 g/m2/day, 2091 ± 48.41 g/m2/day, and
2434 ± 70.71 g/m2/day, respectively. It is considered that evaluation of WVTR is crucial
for determination of the biomedical potential of future dressings [14,71]. If WVTR of
biomaterials are too low, this can result in exudate accumulation which, as a consequence,
may inhibit the healing process and increase risk of infection [72]. The WVTR of normal skin
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is equal to 204 g/m2/day, while injured skin possesses significantly higher permeability
with WVTR ranging from 279 g/m2/day to 5138 g/m2/day [71]. An “ideal” dressing
should reduce excessive dehydration of skin as well as preventing exudate buildup. Thus,
its WVTR should be close to 2000–2500 g/m2/day [34,71,73]. The results obtained for
curdlan-based biomaterials and KALTOSTAT® dressing indicate that they should allow for
proper water vapor permeability and should maintain a moist environment at the wound
site without undue dehydration.
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3.6. Ability of Biomaterials to Release Calcium Ions

The calcium ion detection kit revealed that all the tested biomaterials possessed a
huge capacity to release Ca2+ ions to the culture medium (Figure 6). After 24 h incubation,
the concentrations of Ca2+ ions in extracts obtained from Cur_5%, Cur_8%, Cur_11%, and
KALTOSTAT® biomaterials were approximately five- to six-fold higher (p < 0.05) than
the concentrations of these ions in the control extract (culture medium incubated without
biomaterials). Of the tested biomaterials, Cur_11% released the greatest amount of Ca2+ ions.
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biomaterials after 24 h incubation in culture medium (EMEM with addition of 2% FBS). Extracts were
prepared according to ISO 10993-5:2009 standard recommendations [37]. (& significantly different
results compared to control extract—culture medium incubated without biomaterials; # significantly
different results compared to Cur_8% extract; * significantly different results compared to Cur_11%
extract; $ significantly different results compared to KALTOSTAT® extract; one-way ANOVA followed
by Tukey’s multiple comparison test, p < 0.05).
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It is worth underlining that calcium ions (Ca2+ ions) play a pivotal role in wound
healing [46–48]. Immediately after skin injury, the concentration of these ions gradually
increases, while the highest level is observed during the inflammation and proliferative
phases. Generally, it was found that the concentration of calcium ions during wound
healing increases from 0.5 mM (basal layer of skin) to above 1.4 mM (in the stratum
granulosum). The Ca2+ ions are crucial for the formation of fibrin clots as they constitute
clotting factor IV. They are released by platelets and their presence stimulates the synthesis
and release of other clotting factors (i.e., VII, IX, and X). They also promote conversion of
prothrombin to thrombin. During the next two phases (inflammation and proliferation),
Ca2+ ions induce an influx of inflammatory cells, fibroblasts, and keratinocytes. They also
regulate proliferation of fibroblasts and keratinocytes [46,53,74–76]. Thus, given the high
significance of calcium ions in early phases of wound healing, some bioactive dressings
for the treatment of chronic wounds (e.g., KALTOSTAT®) have the ability to release Ca2+,
which significantly accelerates skin regeneration [3,7,20,77]. In our study, we demonstrated
that after 24 h incubation, the concentration of calcium ions released from tested samples to
the culture medium was approx. 4.82–6.12 mM for curdlan-based biomaterials and approx.
5.72 mM for KALTOSTAT®. These results seem to be promising when compared with data
obtained by Ågren [50]. The author evaluated the biomedical potential of four commercial
alginate dressings (ALGOSTERIL, Comfeel Alginate, KALTOSTAT, and SORBSAN), as
well as polyurethane film dressing (control sample) using a wound model in domestic pigs.
After 24 h treatment with alginate-based dressings and polyurethane film, the concentration
of calcium ions in the collected wound exudate was 5.0–11.7 mM and 2.8 mM, respectively.
Moreover, it was shown that all alginate-based biomaterials enhanced re-epithelialization
of pig skin significantly better, compared to control (polyurethane film dressing). Thus,
these results may suggest that curdlan-based biomaterials release a suitable amount of
calcium ions to ensure proper wound healing.

3.7. Fibroblast Viability

The thiazolyl blue tetrazolium bromide (MTT) assay demonstrated that extracts ob-
tained from Cur_5%, Cur_8%, Cur_11%, and KALTOSTAT® were not only non-toxic
towards BJ fibroblasts, but also supported viability of these cells (Figure 7a). Thus, after
24 h incubation, the viability of BJ cells treated with extracts from Cur_5%, Cur_8%,
Cur_11%, and KALTOSTAT® was 103.30 ± 1.91%, 114.30 ± 8.14%, 120.60 ± 3.17%, and
112.70 ± 5.85%, respectively, in comparison with the viability of cells grown in the control
extract (culture medium incubated without biomaterials, i.e., negative control of cytotoxic-
ity). The confocal laser scanning microscope (CLSM) observations confirmed the results
obtained with the MTT test. The fibroblast cells treated with the control extract and extracts
from Cur_5%, Cur_8%, Cur_11%, and KALTOSTAT® were viable, and no dead cells were
observed. In turn, the cells incubated with DMSO solution (positive control of cytotoxicity)
were mainly dead (Figure 7b).

Taking into consideration obtained results (Figure 7a,b), it should be concluded that
fibroblast viability is most likely correlated with the ability of biomaterials to release
calcium ions to the culture medium (Figure 6). Extract from Cur_11% dressing exhibited
the most beneficial effect on fibroblast viability and it contained the highest concentration of
calcium ions compared to both the control extract as well as extracts from other biomaterials.
Considering the fact that extract obtained from Cur_11% biomaterial enhanced fibroblast
viability more potently than other tested biomaterials, it was allocated to the next cell
culture experiment—evaluation of cell proliferation.
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Figure 7. Fibroblast viability (BJ cell line, ATCC CRL-2522TM) after 24 h incubation with extracts
obtained from Cur_5%, Cur_8%, Cur_11%, and KALTOSTAT® biomaterials. Extracts were prepared
in culture medium (EMEM with addition of 2% FBS) according to ISO 10993-5:2009 standard rec-
ommendations [37]. Culture medium incubated without biomaterials (control extract) and 10%
DMSO solution were used as negative and positive controls of cytotoxicity, respectively. The results
obtained using the MTT assay (a) (& significantly different results compared to culture medium
incubated without biomaterials (control extract); * significantly different results compared to Cur_11%
extract; one-way ANOVA followed by Tukey’s multiple comparison test, p < 0.05). The confocal laser
scanning microscope (CLSM) images presenting viable cells (green fluorescence) and dead cells (red
fluorescence) after staining with Live/Dead Cell Double Staining Kit (b); magnification 100x, scale
bar equals 150 µm.

3.8. Fibroblast Proliferation

The WST-8 assay revealed that extract obtained from Cur_11% biomaterial promoted
growth and proliferation of BJ cells compared to the control extract (Table 3). Moreover, the
CLSM images (Figure 8) showed that the number of cells treated with Cur_11% extract was
higher compared to the number of control cells. Thus, these results are in good agreement
with the data obtained during the cell viability evaluation (Figure 7a,b), as such extract also
significantly promoted fibroblast viability compared to control extract.
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Table 3. Influence of Cur_11% extract and control extract (culture medium incubated without
biomaterial) on skin fibroblast proliferation (BJ cell line, ATCC CRL-2522TM). Extracts were prepared
in culture medium (EMEM with addition of 10% FBS) according to ISO 10993-5:2009 standard
recommendations [37]. The results were expressed as values of fold increase in cell proliferation
based on data obtained using WST-8 assay after 3- and 5-day incubation.

Sample Fold Increase in Cell Proliferation

Control extract 0.79

Cur_11% extract 1.16
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Figure 8. The confocal laser scanning microscope (CLSM) images presenting skin fibroblasts (BJ cell
line, ATCC CRL-2522TM) after three- and five-day incubation with Cur_11% extract. Culture medium
incubated without biomaterial was served as a control. Extracts were prepared in culture medium
(EMEM with addition of 10% FBS) according to ISO 10993-5:2009 standard recommendations [37].
Nuclei—blue fluorescence after Hoechst 33342 staining; cytoskeletal filaments—red fluorescence
after AlexaFluorTM 635 phalloidin staining; magnification 200×, scale bar equals 70 µm.

4. Conclusions

To sum up, three curdlan-based biomaterials, namely Cur_5%, Cur_8%, and Cur_11%,
were fabricated via ion-exchanging dialysis against a CaCl2 solution followed by two-step
freezing, and subsequent freeze-drying. Combination of these three techniques permitted
the production of curdlan-based biomaterials, which exhibited good capacity to absorb
simulated wound fluid compared to the commercially available dressing—KALTOSTAT®.
New curdlan-based biomaterials became beneficial hydrogel structures in the wet state and
simultaneously allowed for proper water vapor permeability. Moreover, they possessed
the ability to release great amounts of calcium ions to the surrounding environment, which
are essential during wound healing. Considering the main requirements for bioactive
wound dressings, Cur_11% biomaterial had the most desired properties. Importantly, it
possessed similar absorbent properties to KALTOSTAT®, but supported fibroblast viability
significantly better than this commercial dressing. Cur_11% biomaterial was also found
to promote fibroblast proliferation. Thus, Cur_11% hydrogel may be considered as a
promising bioactive dressing for wound healing with moderate to high amounts of exudate.

5. Patents

The fabrication procedure of curdlan dressings was claimed in the Polish patent
application no. 432848 (“The fabrication method of absorbent biomaterial based on curdlan
for medical applications”).
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