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ABSTRACT

Objective: The increasing translation of artificial intelligence (AI)/machine learning (ML) models into clinical

practice brings an increased risk of direct harm from modeling bias; however, bias remains incompletely mea-

sured in many medical AI applications. This article aims to provide a framework for objective evaluation of med-

ical AI from multiple aspects, focusing on binary classification models.

Materials and Methods: Using data from over 56 000 Mass General Brigham (MGB) patients with confirmed

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we evaluate unrecognized bias in 4 AI models

developed during the early months of the pandemic in Boston, Massachusetts that predict risks of hospital ad-

mission, ICU admission, mechanical ventilation, and death after a SARS-CoV-2 infection purely based on their

pre-infection longitudinal medical records. Models were evaluated both retrospectively and prospectively using

model-level metrics of discrimination, accuracy, and reliability, and a novel individual-level metric for error.

Results: We found inconsistent instances of model-level bias in the prediction models. From an individual-level

aspect, however, we found most all models performing with slightly higher error rates for older patients.

Discussion: While a model can be biased against certain protected groups (ie, perform worse) in certain tasks, it

can be at the same time biased towards another protected group (ie, perform better). As such, current bias eval-

uation studies may lack a full depiction of the variable effects of a model on its subpopulations.

Conclusion: Only a holistic evaluation, a diligent search for unrecognized bias, can provide enough information

for an unbiased judgment of AI bias that can invigorate follow-up investigations on identifying the underlying

roots of bias and ultimately make a change.
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INTRODUCTION

The healthcare research and industry have been increasingly pro-

gressive on the translation and implementation of artificial intelli-

gence (AI)/machine learning (ML) to improve outcomes and lower

costs. Diligently identifying and addressing biases in AI/ML algo-

rithms (hereafter, referred to as “algorithms”) have garnered wide-

spread public attention as pressing ethical and technical

challenges.1–5 For instance, there is growing concern that algorithms

may import and/or exacerbate ethno-racial and gender disparities/

inequities through the data used to train them, due to their math, or

the people who develop them.6,7

The costs of deploying algorithms in healthcare carelessly could

exacerbate the very health inequalities society is working to ad-

dress.8,9 The Algorithmic Accountability Act of 201910 requires

businesses to evaluate risks associated with algorithm fairness and

bias.11 Nevertheless, regulating algorithm biases in healthcare

remains a difficult task. Eminent cases of algorithm bias have been

documented, for example, in facial recognition and natural language

processing (NLP) algorithms. Facial recognition systems, for in-

stance, that are being increasingly utilized in law enforcement often

perform poorly in recognizing faces of women and Black individu-

als.12–14 In NLP, language representations have been shown to cap-

ture human-like gender and other biases.15–17

These issues are relevant in the healthcare domain, with different

caveats at the bench and at the bedside. The demographics (eg, eth-

nic, racial) of the patients used to train algorithms are often un-

known for external evaluation.8 As a result, algorithms have been

observed to produce inferior performance in detecting melanoma

and health risk estimation in disadvantaged poorer African-

American populations.7,18,19 Such biases in healthcare may be

caused by missing data (eg, higher rates of missingness in minority

populations due to decreased access to healthcare or lower health-

care utilization), observational error, misapplication, and overfitting

due to small sample sizes or limited population and practice hetero-

geneity.5,20–22

In general, bias in AI/ML can be categorized under statistical

and social. Statistical bias, which is common in predictive algo-

rithms, refers to algorithmic inaccuracies in producing estimates

that significantly differ from the underlying truth. Social bias

embodies systemic inequities in care delivery leading to suboptimal

health outcomes for certain populations.23 Social bias can underly

statistical bias. In healthcare, we could have a third category of

“latent” biases, which encompasses increases in social or statistical

biases over time due to the complexities of the healthcare pro-

cesses.5

Despite the eminent work in other fields, bias often remains

unmeasured or partially measured in healthcare domains. Most pub-

lished research articles only provide information about very few per-

formance metrics—mostly through measures of algorithm’s

discrimination power, such as the area under the receiving operating

characteristics curve (AUROC). The few studies that officially aim

at addressing bias, usually utilize single measures (eg, model calibra-

tion7) that do not portray a full picture of the story on bias. Address-

ing bias in medical AI requires a framework for a holistic search for

bias, which can invigorate follow-up investigations to identify the

underlying roots of bias.

The COVID-19 pandemic resulted in the generation of new data

and data infrastructures related to both pandemic illness and health-

care more broadly. In this article, we evaluate unrecognized statisti-

cal and latent biases from multiple perspectives using a set of AI

prediction models developed and validated retrospectively during

the first 6 months of the COVID-19 pandemic. These models predict

risks of mortality, hospitalization, ICU admission, and ventilation

due to COVID-19 infection.24 We characterize the evaluation of

bias into model-level metrics and propose a new approach for evalu-

ating bias from an individual level. Here, we provide a framework

for a holistic search for bias in medical AI that the user/model devel-

oper can utilize to ensure her search of bias (1) includes multiple

aspects of technical and practical considerations and (2) can invigo-

rate follow-up investigations for identifying the underlying roots of

bias, rather than providing a partial perspective that may not lead to

constructive improvement.

METHODS

We study unrecognized bias in 4 validated prediction models of

COVID-19 outcomes to investigate whether (1) the models were bi-

ased when developed (we refer to this as a retrospective evaluation)

and (2) the bias changed over time when applying the models on

new COVID-19 patients who were infected after the models were

trained (we refer to this as a prospective evaluation).

We recently developed the thinkin’ Machine Learning pipeline

for modeling Health Outcomes (MLHO), for predicting risks of hos-

pital admission, ICU admission, invasive ventilation, and death in

patients who were infected with COVID-19, only using the data

from prior to the COVID-19 infection.24,25 MLHO models were de-

veloped on data from the first 6 months of the pandemic in Bos-

ton—that is, between March and October 2020. MLHO produces

and evaluates several models using different classification algorithms

and train-test sampling iterations—for more details see ref.24 For

each outcome, MLHO developed several models using different

classification algorithms and/or train-test sampling. To evaluate pos-

sible unrecognized bias across patient sub-groups and time while de-

veloping the models retrospectively, we first select the top 10 models

for each outcome based on their retrospective AUROC—that is, the

discrimination metric obtained on the test set when the models were

tested retrospectively. Then we apply the models to data from the

retrospective cohort (who were infected with COVID-19 after the

models were trained) to evaluate retrospective bias as a baseline. In

addition to retrospective evaluations, we also perform prospective

bias evaluations by applying these models to patient data from the

subsequent 10 months to evaluate temporal changes in discrimina-

tion, accuracy, and reliability metrics (Figure 1). We evaluate bias

by race, ethnicity, gender (biological sex), and across time, by com-

paring the multiple bias metrics against the overall models, which

were trained on all patients.

DATA

Data from 56 590 Mass General Brigham (MGB) patients, with a

positive reverse transcription-polymerase chain reaction (RT-PCR)

test for SARS-CoV-2 between March 2020 and September 2021

were analyzed (Supplementary Table S1). Features utilized in

MLHO models included transitive sequential patterns,26,27 where

we mined sequences of EHR diagnoses, procedures, and medications

extracted from these patients’ electronic health records between

2016 and 14 days before their positive reverse transcription-

polymerase chain reaction (RT-PCR) test.
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Measuring bias
There are multiple metrics for measuring bias/fairness in the broader

AI community. To measure bias in binary clinical predictive models,

we adapt the definitions in refs28–30 where an unbiased algorithm

reflects the same likelihood of the outcome, irrespective of the individ-

ual’s group membership, R. This definition is referred to as “test fair-

ness” in Mehrabi et al.28 Thus, in an unbiased predictive model, for

any predicted probability score by, people in all groups R have equal

probability of correctly belonging to the positive class—for example,

PðY ¼ 1j bY ¼ by; R ¼ blackÞ ¼ PðY ¼ 1j bY ¼ by; R ¼ whiteÞ.

MLHO’s performance metrics
MLHO is equipped with functionality to provide a comprehensive

evaluation of model performance from different standpoints, includ-

ing both model-level and individual-level bias.

Model-level metrics

The model-level performance metrics in MLHO provide an overall

description of the model’s performance, including standard metrics

for discrimination, accuracy, and reliability (a.k.a., calibration). For

discrimination, in this study, we use the widely used AUROC. Sev-

eral model-level metrics are also available to evaluate the model’s

accuracy such as the Brier score,31 which is the mean squared error

between the observed outcome and the estimated probabilities for

the outcome, including components of both discrimination and cali-

bration.32 As a demonstration, we break down the AUC and Brier

metrics retrospectively in aggregate, and prospectively by month. To

statistically compare model-level metrics across patient sub-groups,

we apply the Wilcoxon rank-sum test with Benjamini, Hochberg,

and Yekutieli P-value correction.33

Reliability is a key factor in AI/ML models’ utility in clinical

care, which is also known as calibration. Reliability refers to the ex-

tent to which the observed value of an outcome Y matches the risk

score R produced by a predictive model.7,29 Several measures have

been recommended for measuring model calibration in binary classi-

fiers. For a review of the available techniques, see Huang et al.34

However, many medical AI/ML models developed in healthcare set-

tings ignore reliability and only report discrimination power al-

though the AUROC, also known as the concordance statistic or c-

statistic.35 MLHO’s performance report provides the ability to as-

sess the models’ reliability for clinical interpretation using diagnostic

reliability diagrams. The diagnostic reliability diagrams are pro-

duced from the raw predicted probabilities computed by each algo-

rithm (X-axis) against the true probabilities of patients falling under

probability bins (Y-axis). In a reliable model, the reliability diagrams

appear along the main diagonal—the closer to the line, the more re-

liable. To evaluate diagnostic reliability diagrams, we compare the

retrospective performance with aggregated prospective perfor-

mance—that is, we do not break down this measure by month pro-

spectively.

Individual-level metric

In contrast to model-level metrics that provide an overall description

of the model’s performance, MLHO also provides the capability for

evaluating model performance at an individual level, when the vari-

able of interest is numeric (vs categorical). This is important when

assessing whether a model is biased against an individual, for exam-

ple, an older patient or a sicker patient (ie, having more medical

encounters). To do that, MLHO computes and records the mean ab-

solute error (MAE) for each patient that can be visualized to illus-

trate changes across numeric indices of interest. MAE is the absolute

distance between the computed probability of the outcome to the ac-

tual outcome.

Mean Absolute Error MAEð Þ ¼
PN

i¼1
bY i � Yi

���
���

M

Where M is the number of models (10 models here), bYi is the pre-

dicted probability for patient i and Yi is the observed outcome for

patient i.

To visualize the MAE patterns, we plot the numeric variables (in

this study, age) on the X-axis and the MAE on the Y-axis and fit a

generalized additive model (GAM) with integrated smoothness36

from R package.37

RESULTS

Data from 56 590 patients with a positive COVID test were ana-

lyzed. Over 15 000 of these patients constituted the retrospective co-

hort—that is, whose data were used to train and test the

retrospective models. More than 41 000 of the patients were

infected between November 2020 and August 2021, who composed

our prospective cohort. Supplementary Figure S1 and Table S1 pro-

vide a demographic breakdown of the patient population over time.

Figure 1. Generating bias metrics from MLHO models using EHR data from retrospective and prospective COVID-19 cohorts. *The dot plot is a schematic of the

COVID-19 patient population over time. MLHO was applied to EHR data from the retrospective cohort to develop predictive models and produce bias metrics. Pro-

spective bias metrics were generated by applying the retrospective predictive models to prospective cohorts.
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Model-level evaluations
Figures 2 and 3 illustrate temporal changes in the AUROC and Brier

scores across the models. The 2 figures demonstrate complimentary

information. Where Figure 2 shows change over time and across

groups, Figure 3 visualizes a non-parametric test of the equality of

means in 2 independent samples. Unlike AUROC, A higher Brier

score means lower accuracy. The models’ performance metrics

remained stable until June 2021. That is, the models that were devel-

oped with data from March to September 2020 were still able to

perform similarly up until May–June 2021. Starting June 2021, both

AUROC and Brier scores exhibit variabilities, in general providing

better discrimination power for Latinx and female COVID-19

patients compared with male patients. In other words, the models

did not demonstrate temporal bias until June 2021, when applied

prospectively.

The models that were developed with data from March to Sep-

tember 2020, provided relatively stable predictive performance pro-

spectively up until May–June 2021. Despite the increased

variability, the prospective modeling performance remained high for

predicting hospitalization and the need for mechanical ventilators.

To facilitate understanding Figure 2, we provide Figure 3 in which

we compare model-level performance metrics using the Wilcoxon

rank-sum test. The figure combines an illustration of statistical signifi-

cance and sign for comparing a given metric for a demographic group

to the overall model at a point in time. For example, þþþ under

AUROC for the female patients in November 2020 means that the

AUROC was higher for females compared with the overall model and

the difference was statistically significant at P< .001.

Figure 4 presents diagnostic reliability diagrams, broken down by

demographic group and temporal direction of the evaluation (retrospec-

tive vs prospective). Any divergence from the diagonal line in the diag-

nostic reliability diagrams means lower reliability. The diagrams show

that, retrospectively, models’ predicted probabilities were similar across

groups for predicting mortality, hospitalization, and ventilation. Pro-

spectively, between-group variability in models fared similarly, although

the uncalibrated predicted probabilities were less reliable for mortality

prediction, specifically, among Latinx, Black, and Female patients.

Compared to the overall population, retrospectively and pro-

spectively across time, the models marginally performed worse for

male patients and better for Latinx and female patients, as measured

Figure 2. Changes in the 2 model-level metrics for discrimination (AUROC—left panels) and error (Brier score—right panel) by group and over time. *The top-10

models for each outcome are broken down by race, ethnicity, gender, and over time.
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by AUROC and higher Brier scores. We use the term “marginal” as

the range of delta between performance metrics within demo-

graphics groups and the overall model was relatively small. For the

rest of the demographic groups, the performances were more mixed.

From the diagnostic reliability diagrams, the divergence from the di-

agonal line is present in 3 of the 4 prediction tasks, but there are var-

iabilities across groups in both with no consistent pattern. The only

exception in this regard was diminished reliability in prospectively

predicted probabilities of COVID-19 mortality among Latinx, fe-

male, and Black patients.

Individual-level evaluation
For the individual-level evaluation of the bias, we looked at the

mean absolute error across age (Figure 5). We evaluated whether the

models’ average error rates (ie, the absolute difference between the

actual outcome and the predicted probabilities) change as patients’

age increases. Conventionally assuming 0.5 as the operating point

for assigning patients to positive/negative groups, an MAE smaller

than 0.5 would indicate that the model predicted probability was

not far off from the actual outcome. For example, the patient could

have the outcome and the computed probability would be above

50% and therefore the MAE would be smaller than 0.5. To visualize

the trends, we fit a smoothed trendline using generalized additive

models. For all outcomes, modeling error seemed to increase as the

patients became older, and the patterns were almost identical retro-

spectively and prospectively. None of the trend lines passed the 0.5

threshold, which means despite the higher error rates for the older

patients, the models provide acceptable errors for most of the

patients. The lowest error rates were observed in predicting ventila-

tion. In the case of predicting mortality and hospitalization, the er-

ror rates increasingly escalated by age, whereas in predicting ICU

admission and need for mechanical ventilator, error rates peaked at

around 75 years and then diminished for older patients.

DISCUSSION

From a model-level perspective, we did not find consistent biased

behaviors in predictive models against all underrepresented groups.

Figure 3. Comparing model-level performance metrics using the Wilcoxon rank-sum test. *A color-coded cell means some type of bias compared to the overall

model. ��� and �� represent significantly smaller than the overall model (at P < .001 and P < .01, respectively). þþþ and þþ represent significantly larger than

the overall model (at P < .001 and P < .01, respectively). **Discrimination power and error are opposing measures—better discrimination means smaller error.
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From the individual-level, we found consistent bias in increasing er-

ror rates for older patients. It is known that a predictive model’s reli-

ability (calibration) and discrimination cannot both be maximized

simultaneously.35 That is, for example, improving reliability may

not meaningfully improve discrimination.38 Yet, there are ad hoc

calibration methodologies to scale predicted probabilities for better

clinical interpretation. We argue that proper evaluation of bias in

medical AI requires a holistic framework (which we provide here)

that can invigorate follow-up investigations for identifying the un-

derlying roots of bias, rather than providing a partial perspective

that may not lead to constructive improvements.

Compared to the overall population, retrospectively and pro-

spectively across time, the models marginally performed worse for

male patients and better for Latinx and female patients, as measured

by AUROC and Brier scores. The range of delta between these per-

formance metrics within demographics groups and the overall

model was relatively small. For the rest of the demographic groups,

the performances were more mixed. The models’ performance met-

Figure 4. The diagnostic reliability (calibration) diagrams for each outcome broken by group and temporal direction. *The background lines represent reliability

curves from each of the top models selected for prospective evaluation.

Figure 5. Mean absolute error of predictions across patient age.
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rics remained stable until June 2021. That is, the models that were

developed with data from March to September 2020, provided rela-

tively stable predictive performance prospectively up until May–

June 2021. Despite the increased variability, the prospective model-

ing performance remained high for predicting hospitalization and

the need for mechanical ventilators.

COVID-19 vaccinations became widely available in the spring of

2021. It is possible that the widespread use of vaccinations through-

out Massachusetts, along with the incorporation of other proven

therapies including dexamethasone39 and Remdesivir,40 changed

outcomes for patients. Also, the case rate in Massachusetts was very

low in July,41 which may have resulted in increased capacity com-

pared to the outset of the pandemic when the healthcare system was

stressed. Additionally, the Delta variant was expected to be the

dominant strain of Coronavirus in Massachusetts.42 The mutations

to the virus itself could potentially change outcomes for patients.

While we do not know exactly what led to the decreased perfor-

mance of the model in July, future studies should consider character-

izing whether the model overestimates or underestimates an

outcome in certain populations, which could give further insight

into how these changes are cumulatively having a favorable or ad-

verse impact on patient care.

From the reliability/calibration perspective, except in the case of

prospective evaluation of mortality predictions among Latinx, fe-

male, and Black patients, the diagnostic reliability diagrams did not

show consistent bias towards or against a certain group.

In terms of the mean absolute error between the actual outcome

and the estimated probabilities, we did see error rates increase over

age, but the error rates were not critical in that one could still assign

the patients to the correct group based on the produced probabili-

ties. Although the age-based analysis is reported as a summarization

of a group-level trend, the individual-level metric enables further in-

vestigation of modeling error in user-defined sub-groups of the pa-

tient population. More numeric metrics need to be evaluated at the

patient level for a comprehensive view of changes in AI bias against

or towards certain patients.

To an AI algorithm, bias can happen due to the signal strength

(or lack thereof) in one or more of the features (ie, variables, covari-

ates, predictors). That is, the model which has been trained on a cer-

tain predictor may not predict well for a certain protected group

because the important predictors are not available or are noisy in

that population. This, in turn, could have multiple underlying

causes, such as healthcare disparities that can influence access to

care, systematic inequalities, data quality issues, biological factors,

and/or socio-economic and environmental determinants. Some of

this bias can be addressed by post-processing techniques, depending

on which aspect of bias one aims to address. We concluded that

medical AI bias is multi-faceted and requires multiple perspectives

to be practically addressed. Nevertheless, the first step for address-

ing the bias in medical AI is to identify bias in a way that can be

traced back to its root.

We evaluated raw predicted scores. There is a large body of

work on calibrating prediction scores for improving the reliability of

prediction models in clinical settings.43–46 Calibration methods are

useful ad hoc solutions for increasing the reliability of the prediction

models. We show in Supplementary Figure S3 that isotonic calibra-

tion,47 for instance, can provide more reliable predictive scores and

may reduce bias. However, unless calibration methods are embed-

ded into a predictive modeling pipeline, their impact on improving

or aggravating bias in medical AI needs to be fully evaluated as a

post-processing step.

Given that we face systemic bias in our country’s core institu-

tions, we need technologies that will reduce these disparities and

not exacerbate them.48 There are efforts from the larger AI com-

munity, such as AI Fairness 36049 and Fairlearn,50 to develop

open-source software systems for measuring and mitigating bias.

These programs are often ad hoc or work as standalone post-proc-

essing solutions. We plan to compare these model independent

methods and add relevant functionalities to our domain-specific

approach.

The premise for evaluating these predictive models was to create

a framework for discovering and quantifying the various types of

biases towards different sub-groups that were encoded unintention-

ally. The population sub-groups selected by the model evaluator can

include minority ethno-racial groups or intersectional sub-groups,

such as Black women. We have incorporated the presented bias mea-

surement framework within the MLHO pipeline,24 which is specifi-

cally designed for modeling clinical data. We hope that providing

means to evaluate such unrecognized biases within a data-centric

modeling pipeline will enable the generation of medical AI that con-

siders various biases while in development and addresses them in

production.
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