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Abstract
Evidence presented over the last few years indicates that the hematopoietic
stem cell (HSC) compartment comprises not just one but a number of different
cell populations. Based on HSCs’ proliferation and engraftment potential, it has
been suggested that there are two classes of HSC, with long- and short-term
engraftment potential. HSC heterogeneity seems to involve differentiation
capacities as well, since it has been shown that some HSC clones are able to
give rise to both myeloid and lymphoid progeny, whereas others are lymphoid
deficient. It has been recognized that HSC function depends on intrinsic cell
regulators, which are modulated by external signals. Among the former, we can
include transcription factors and non-coding RNAs as well as epigenetic
modifiers. Among the latter, cytokines and extracellular matrix molecules have
been implicated. Understanding the elements and mechanisms that regulate
HSC populations is of significant relevance both in biological and in clinical
terms, and research in this area still has to face several complex and exciting
challenges.
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Introduction
The term hematopoietic stem cell (HSC) refers to an immature cell, 
residing in the bone marrow, which is capable of both self-renewal 
and differentiation into all of the different blood cell types. Evi-
dence presented over the last few years, however, indicates that the 
HSC compartment comprises not just one but a number of different 
cell populations. This, of course, has both biological and clinical 
implications. Accordingly, there is great interest in elucidating the 
identity of each of these cell populations and defining their biologi-
cal differences and similarities in molecular, immunophenotypic, 
and functional terms.

HSCs: basic principles
Although the concept of a primitive, immature cell common 
to all of the different blood cell lineages (erythrocytes, leuco-
cytes, and platelets) was presented in the first decades of the  
20th century, it wasn’t until work by James Till and Ernest  
McCulloch in the early 1960s that the existence of such a stem cell 
was demonstrated1,2. The work by Till and McCulloch, in Toronto, 
Canada, together with that of Metcalf and colleagues, a few years 
later in Melbourne, Australia, showed that the hematopoietic system 
could be subdivided into four separate compartments: HSCs (com-
prising the most immature cells, those capable of self-renewal), 
hematopoietic progenitor cells (HPCs; those unable to self-renew, 
but with a large proliferative potential and multilineage, bilineage, 
or monolineage differentiation capacities), precursor cells (those 
immature cells that can already be identified through their morphol-
ogy), and mature blood cells (those present in circulation)3.

Although most of what we know about HSC biology comes from 
studies in animal models, mostly in mice, it has become evident that 
human HSCs follow similar biological patterns4,5. HSCs cannot be 
identified by morphological criteria; instead, their identification is 
based on both immunophenotypic analysis and functional assays6. 
Murine HSCs express antigens such as Sca-1, CD117, and CD150 
and do not express CD48; human HSCs, on the other hand, express 
CD34, CD49f, CD90, and CD117 and do not express CD384,7. In 
both cases, HSCs do not express any lineage-restricted antigen,  
so they are referred to as lineage-negative (Lin-) cells4,7. It is  
noteworthy that within the human HSC pool a CD34-negative pop-
ulation has also been identified (CD34- CD38- Lin-), whose cycling 
status (dormancy) suggests that it is located at the apex of the HSC 
compartment8,9. Apart from the expression of specific cell surface 
markers, HSCs can also be identified by their ability to efflux cer-
tain fluorescent dyes, such as Rhodamine-123 (Rho) and Hoechst 
33342; thus, they are known as Rho-/low cells or side population  
(SP) cells7. The latter form a characteristic cluster of events 
located off to the lower left side in dual wavelength fluorescence-
activated cell sorting (FACS) dot-plot profiles.

Assays to determine the number and functional integrity of HSCs 
include both in vivo and in vitro systems. The former consist of 
introducing HSCs into irradiated animals and determining the abil-
ity of such cells to repopulate the hematopoietic system of the host 
after several weeks post-transplant. This approach is based on the 
experiments described by Till and McCulloch1, although refined 
modifications have been introduced into the experimental sys-
tem during the last few decades10. When using human HSCs, the 

recipient must be an immunodeficient animal (for instance, severe 
combined immunodeficient [SCID], non-obese diabetic [NOD]-
SCID, or NOD SCID Gamma [NSG] mice), so there will not be 
rejection mediated by the immune cells of the host11. In vitro sys-
tems, on the other hand, are based on the ability of HSCs to initi-
ate and sustain hematopoietic cell production for several weeks in 
cultures containing a stromal cell layer in the presence or in the 
absence of exogenous cytokines12,13. It is worth noting, however, 
that this latter method does not necessarily prove that the cells  
sustaining hematopoiesis in vitro are actual HSCs; thus, to date, the 
in vivo repopulation assay is the only method validated to detect 
and measure actual HSC function.

It is of particular importance to mention that recent work from 
Camargo’s and Rodewald’s groups has presented evidence indi-
cating that during steady-state conditions, hematopoiesis is sus-
tained by thousands of long-lived progenitors, rather than by actual 
HSCs14,15. These findings suggest that HSC function may not be 
as critical as previously thought for unperturbed hematopoiesis; in 
contrast, HSC activity seems to be of great relevance during stress 
hematopoiesis (e.g., post-hematopoietic cell transplants).

One or several HSC populations?
Since its conception, the idea that the HSC compartment comprises 
a homogeneous cell population prevailed for some time; however, 
studies in animal (murine) models, reported over the last several 
years, demonstrated that some of the cells contained within the HSC 
pool are responsible for long-term engraftment, whereas others 
induce a transient, short-term engraftment4,6,16. Some groups have 
even suggested that, based on their engraftment potential, there are 
three classes of HSC: those with long-, intermediate, and short-term 
engraftment potential17. Thus, it is now recognized that the HSC 
population is heterogeneous, comprising several HSC subsets dif-
fering in their repopulation capacities and cycling properties18–20.

As expected, similar HSC populations also seem to exist in humans. 
Indeed, work from John Dick’s laboratory in Toronto has shown 
that human HSCs capable of long-term engraftment express CD34, 
CD49f, and CD90 and, of course, lack the expression of CD38 
and any lineage-restricted antigen; thus, they are defined as CD34+ 
CD45RA- CD49f+ CD90+ CD38- Lin- cells (LT-HSCs). Loss of 
expression of CD49f and CD90 gives rise to transiently engrafting 
multipotent progenitors (MPPs [CD34+ CD45RA- CD49f- CD90- 
CD38- Lin- cells])21. Based on the genomic analysis performed by 
the same group on these populations, 70 genes were found to be 
differentially expressed between HSC subsets and MPPs, whereas 
500–3000 genes were differentially expressed when comparing 
HSCs and more mature, committed progenitors21. All these find-
ings clearly indicate the existence of not one but several populations 
within the HSC compartment.

HSC heterogeneity seems to involve not only proliferative poten-
tials, as mentioned above, but differentiation capacities as well. 
Work by different groups, including those of Muller-Sieburg and 
colleagues, Eaves and colleagues, and Suda and colleagues, has 
demonstrated that among murine HSCs, some clones are biased 
towards the production of myeloid cells (α-HSCs), whereas some 
are biased towards the production of lymphoid cells (γ/δ-HSCs); 

Page 2 of 6

F1000Research 2016, 5(F1000 Faculty Rev):1524 Last updated: 28 JUN 2016



furthermore, others show a balanced capacity towards the pro-
duction of both myeloid and lymphoid cells (β-HSCs)17,21–24. It is  
noteworthy that the relative proportion of each one of these HSC 
subsets varies throughout development. For instance, lymphoid-
deficient cells (α-HSCs) are present at very low frequencies  
(<5% of all HSCs) in fetal liver, and their levels increase gradually 
with age, so that just before birth they constitute around 15% of 
all HSCs in fetal bone marrow. After birth, their levels correspond 
to 20% of HSCs, and in young adults their levels reach 25–30% 
of the HSC pool. In old mice, α-HSCs correspond to 45% of all  
HSCs25. The presence of α, β, γ, and δ HSCs in humans is less 
clear.

How are HSCs regulated?
HSC viability, self-renewal, proliferation, commitment, and dif-
ferentiation depend on both intrinsic and extrinsic elements. The 
former include a variety of regulatory molecules present within 
the cell, whereas the latter comprise different cell types and their 
products, which create the microenvironment in which HSCs grow. 
Thus, we can say that the function of HSCs is controlled by intrinsic 
cell regulators, which, in turn, are modulated by external signals26. 
Among the intrinsic regulators of stem cell function, we find nuclear 
transcription factors that control gene expression (for instance, the 
transcription factor SCL is essential for HSC survival, self-renewal, 
and quiescence27); molecular regulators of the cell cycle, including 
some cyclins and cyclin-dependent kinases28 (for instance, CDK6 
is absent in long-term HSCs, which keeps them quiescent even in 
the presence of mitogenic stimulation; in contrast, short-term HSCs 
express high levels of CDK6, and this results in rapid entry into 
the cell cycle upon mitogenic stimulation29); the proteins respon-
sible for setting up symmetric and asymmetric cell divisions, such 
as Musashi-230; molecules that act as mitotic clocks that set up the 
number of rounds of division (HSCs express high levels of telomer-
ase, thus the length of their telomeres does not decrease as rapidly 
as in more mature cells31); and epigenetic regulators controlling the 
structure and organization of DNA and chromatin32.

In postnatal life, blood cell formation takes place primarily in the 
bone marrow. Here, stem cells are surrounded by different cell 
types, including stromal (e.g., mesenchymal stromal cells [MSCs], 
osteoblasts, fibroblasts, adipocytes, macrophages, and endothelial 
cells) and accessory (e.g., lymphocytes) cells. All of these different 
cell types form a unique environment, known as the HSC niche,  
that is responsible for providing HSCs with the right conditions 
for their growth33,34. Interestingly, recent evidence indicates that 
there are, in fact, several hematopoietic niches within the marrow 
microenvironment, including endosteal, vascular, and perivascular 
niches, which exert differential effects on HSCs35. The composi-
tion of each one of these niches is different, e.g., the endosteal 
niche consists mainly of osteoblasts, whereas the vascular niche  
consists of endothelial cells. The perivascular niche, in turn, con-
tains both MSCs and Cxcl12-abundant reticular (CAR) cells35.  
Current evidence indicates that most of the HSCs residing in the 
bone marrow (around 85% of marrow HSCs) are located within  
10 µm of a sinusoidal vessel36 and that cell fate is dictated mainly  
by elements of the perivascular niche35.

The cells that form part of the stem cell niche are able to produce 
and secrete a wide array of proteins – including extracellular matrix, 

cytokines, and chemokines – that influence stem cell behavior37.  
Cytokines exert their effects via specific molecules (receptors) 
located on the cell surface38, and they can be presented to their tar-
get cells as soluble or as membrane-bound molecules. The fact that 
some cytokines are presented as membrane-bound proteins implies 
that direct cell-to-cell interactions must take place between the 
cytokine-producing cell and the cytokine receptor-bearing cell. It 
has been suggested that the primary action of cytokines on stem 
cells is to prevent cell death and to promote cell division38.

Controlling HSC fate
In stem cell biology, the balance between self-renewal and dif-
ferentiation is of key relevance. Cell fate decisions are associated 
with changes in gene expression and are controlled by the action of 
transcription factors39. Gene expression changes are usually accom-
panied (specifically preceded) by epigenetic changes in regulatory 
regions40. It is noteworthy, however, that the initial changes usually 
occur without de novo transcription and are mediated by the asym-
metric distribution of cell fate determinants41.

In humans, several transcription factors have been associated with 
the HSC state, including ID genes, SOX8, SOX18, and NFIB. In 
contrast, factors such as MYC and IKZF1 have been implicated 
in differentiation into MPPs21. HOXB4 has also been found to be 
important in HSC biology, both in mice and in humans. Indeed, 
overexpression of such a factor in mouse HSCs induces sym-
metric divisions, which result in a 1000-fold expansion in HSC  
numbers42. BMI1, a polycomb-group factor, increases the multilin-
eage potential of human HSCs, as well as their replating capac-
ity; in contrast, bmi1 deletion results in loss of clonal potential43,44.  
Other genes whose expression favors self-renewal and confers 
increased repopulation potential include hes1 and hlf45, as well as 
notch46. Activation of certain genes and pathways has been impli-
cated in the loss of HSC potential. For instance, activation of the 
mTOR pathway results in the loss of HSC self-renewal47; simi-
larly, BATF activation decreases self-renewal capacity and induces  
lymphoid differentiation48.

Today, we know that HSC fate choices are greatly influenced and  
controlled by epigenetic changes. For instance, an increase in 
H4K16Ac levels results in inhibition of Cdc42, and this, in turn, 
results in restoration of the B cell lineage output in aged HSCs49. 
Increased levels of H3K9me2 mark the onset of HSC lineage commit-
ment, whereas inhibition of G9a improves HSC maintenance50.  
Non-coding RNAs are also key regulators of HSC biology.  
MiRNA-22, for example, is a powerful inducer of HSC mainte-
nance and self-renewal51, and very recently miRNA-126 was shown 
to play a key role in the self-renewal capacity and outcome of 
HSCs52.

Implications and challenges
Understanding the elements and mechanisms that regulate HSC 
populations is of significant relevance at two different levels. On 
the one hand, it is important in our knowledge regarding blood cell 
production under both normal and pathological states; thus, it helps 
us decipher the steps and pathways that lead to disorders such as 
myelodysplasia or leukemia. Indeed, particular mutations in sev-
eral transcription factors have been implicated in the pathophysi-
ology of such disorders (reviewed in 4). On the other hand, it is  
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important in the development of therapeutic strategies. For instance, 
knowledge of the Notch pathway has led to the development of 
laboratory strategies for the ex vivo expansion of HSCs and HPCs  
from human cord blood53,54.

Research on the regulation of HSC populations still has to face  
several challenges. One of the most obvious is related to the 
development of therapeutic strategies using specific regulatory  
molecules and intracellular pathways as targets; for example, WNT 
or Notch pathways. Another one would be trying to understand 
aging of the HSC pool at the single cell level. In this regard, it will 
be of the most importance in the development of single cell RNA 

technologies, some of which have already been worked out, to fully 
understand the processes of gene regulation in HSCs from young 
and old individuals. Promising and exciting years are yet to come.
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