
Predicting drug-induced transcriptome

responses of a wide range of human cell lines

by a novel tensor-train decomposition algorithm

Michio Iwata1, Longhao Yuan2,3, Qibin Zhao3,4, Yasuo Tabei3,

Francois Berenger1, Ryusuke Sawada1, Sayaka Akiyoshi5,

Momoko Hamano1 and Yoshihiro Yamanishi1,6,*

1Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu

Institute of Technology, Iizuka, Fukuoka 820-8502, Japan, 2Graduate School of Engineering, Saitama Institute of

Technology, Fukaya, Saitama 369-0293, Japan, 3RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo

103-0027, Japan, 4School of Automation, Guangdong University of Technology, Guangzhou, Guangdong, China,
5Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan and 6PRESTO Japan

Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

*To whom correspondence should be addressed.

Abstract

Motivation: Genome-wide identification of the transcriptomic responses of human cell lines to

drug treatments is a challenging issue in medical and pharmaceutical research. However, drug-

induced gene expression profiles are largely unknown and unobserved for all combinations of

drugs and human cell lines, which is a serious obstacle in practical applications.

Results: Here, we developed a novel computational method to predict unknown parts of drug-

induced gene expression profiles for various human cell lines and predict new drug therapeutic

indications for a wide range of diseases. We proposed a tensor-train weighted optimization

(TT-WOPT) algorithm to predict the potential values for unknown parts in tensor-structured gene

expression data. Our results revealed that the proposed TT-WOPT algorithm can accurately recon-

struct drug-induced gene expression data for a range of human cell lines in the Library of

Integrated Network-based Cellular Signatures. The results also revealed that in comparison with

the use of original gene expression profiles, the use of imputed gene expression profiles improved

the accuracy of drug repositioning. We also performed a comprehensive prediction of drug indica-

tions for diseases with gene expression profiles, which suggested many potential drug indications

that were not predicted by previous approaches.

Contact: yamani@bio.kyutech.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying the mode-of-action of drugs is a major challenge in stud-

ies on the chemical systems biology of diseases. For their therapeutic

activities, most drugs modulate the activity of human cell systems

and are expected to enable recovery of these systems from an

impaired state to a normal one. The complexity of human cell sys-

tems arises as a result of coordinated functions of genes and pro-

teins, and drug-induced cellular states are characterized by certain

gene expression patterns (Cancer Genome Atlas Research Network

et al., 2013; Gligorijevic et al., 2016; Menche et al., 2015). Drugs

often interact not only with primary targets but also with other

proteins (off-targets), and drugs function in a cell-dependent man-

ner. Thus, understanding the complex responses of human cell sys-

tems to drugs is vital in medical and pharmaceutical research.

Genome-wide identification of the transcriptomic responses of

human cell lines to drug treatments is a promising approach to deep-

en this understanding.

The Connectivity Map (CMap) is a pioneering database of chem-

ically induced transcriptome data on human cell lines, and this data-

base stores gene expression profiles of five cancer cell lines

perturbed by 1309 compounds, including approved drugs. CMap is

often used for drug repositioning to identify novel diseases to which
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existing drugs can be applied, which has been recognized as an effi-

cient drug discovery strategy (Ashburn and Thor, 2004; Chong and

Sullivan, 2007; Novac, 2013). A popular computational drug repo-

sitioning approach involves the use of drug-induced gene expression

profiles in CMap (Lamb et al., 2006). Potential drug–disease associ-

ations are predicted based on the inverse correlation between the sig-

natures of gene expression associated with drugs and those

associated with diseases, assuming that drugs would abolish disease-

specific gene expression patterns if the given drug is applicable for

the treatment of the disease. Several algorithms and correlation

measures have been developed for this inverse signature method

(Cheng et al., 2013, 2014), and indeed, drugs that are effective for

the treatment of inflammatory bowel disease, prostate cancer and

colorectal cancer have been discovered using this method (Dudley

et al., 2011; Kosaka et al., 2013; van Noort et al., 2014). However,

these methods depend heavily on the coverage of drugs and human

cell lines in CMap, which limits large-scale analyses.

To address the limitations of CMap, a novel gene expression

profiling method, L1000, was developed in the Library of

Integrated Network-based Cellular Signatures (LINCS) program

(Subramanian et al., 2017). The L1000 database stores a large

number of gene expression profiles representing the transcriptomic

responses of 83 human cell lines to the administration of 21 175

compounds including approved drugs. Additionally, this database

has opened the door to the large-scale analysis of drug-induced

transcriptome data. Recently, several studies have focused on the

use of the L1000 database, including those that used a normaliza-

tion procedure for L1000 data (Liu et al., 2015), performed a cor-

relation analysis between drug chemical structures and drug-

induced gene expression profiles (Chen et al., 2015), and conducted

a mode-of-action analysis of drugs (Iwata et al., 2017). The next

challenge is to use drug-induced transcriptome data in the L1000

database in various medical applications, including drug reposition-

ing for a range of diseases. However, the drug-induced gene expres-

sion profiles in the L1000 database are largely unknown because

gene expression levels were not observed for all combinations of

drugs and human cell lines, which is a serious obstacle in practical

applications.

Several methods for imputing missing values have been proposed

because gene expression profiling often generates missing values,

normally due to various experimental problems. A weighted K-near-

est neighbor method is considered to be the first proposed imput-

ation method for gene expression data (Troyanskaya et al., 2001).

A singular-value decomposition-based method (SVD impute) uses

SVD to approximate the expression of all genes in the data matrix

(Troyanskaya et al., 2001). The least squares method (LS impute)

uses correlations between both genes and experiments (Bø et al.,

2004). The local least squares method (LLS impute) and the iterated

LLSs method are also based on the LS principle (Cai et al., 2006;

Kim et al., 2005). The Bayesian principal-component analysis

method simultaneously estimates a probabilistic model and latent

variables within the framework of Bayesian inference (Oba et al.,

2003). The Gaussian mixture clustering method (GMC impute) was

developed based on GMC and model averaging (Ouyang et al.,

2004). A support vector regression method was also proposed for

imputing missing values into a much higher-dimensional space

(Wang et al., 2006). Moreover, gene expression data were modeled

as a low-rank matrix, and the matrix was completed using a non-lin-

ear convex optimization algorithm (Kapur et al., 2016). These previ-

ous methods are applicable to a gene expression data matrix (e.g.

for genes and experiments); however, they cannot be applied to

tensor-structured gene expression data (e.g. for genes, experiments,

cells, time points and doses). There is a strong incentive to develop

tensor-specific data completion methods.

Here, we developed a novel computational method to predict un-

known parts of drug-induced gene expression profiles on various

human cell lines and predict new drug therapeutic indications for a

wide range of diseases. We proposed a tensor-train weighted opti-

mization (TT-WOPT) algorithm to accurately predict the potential

values for unknown parts in tensor-structured gene expression data.

Our results revealed that the proposed TT-WOPT algorithm can ac-

curately reconstruct drug-induced gene expression data for a range

of human cell lines in the L1000 database. The results also revealed

that in comparison with the use of original gene expression profiles,

the use of imputed gene expression profiles improved the accuracy

of drug repositioning in the framework of multitask learning.

We also conducted a comprehensive drug indication prediction for

all diseases for which gene expression profiles were available to

identify potential drug candidates for such diseases.

2 Materials

2.1 Drug-induced transcriptome data
In the LINCS project, gene expression profiles have been obtained in

the L1000 mRNA profiling assay (http://www.lincsproject.org). The

gene expression profiles were obtained from the Gene Expression

Omnibus database (GEO; Barrett et al., 2007): GSE70138 and

GSE92742. This assay is based on 93 human cell lines and various

cellular perturbations. The L1000 database provides 978 landmark

genes, which are referred to as ‘L1000 genes’. Here, we used ‘level

5’ data, which comprise profiles generated by collapsing several

replicates.

The gene expression levels were measured at 3, 6, 24, 48 and

144 h after compound treatment. Each gene expression profile (591

855 in total) was represented by its ‘sig_id’. In total, 312 596 com-

pound treatment profiles (denoted as ‘trt_cp’) were used. For each

compound, its corresponding InChIKey (https://iupac.org/who-we-

are/divisions/division-details/inchi/) was also available from GEO.

Here, we analyzed the gene expression profiles of 16 cell lines

treated with 1483 drugs. Note that the drugs were a subset of all

compounds. In this study, of the 1483 drugs, 261 were associated

with at least one disease.

We constructed drug-induced gene expression profiles, which

were referred to as ‘drug signatures’. Each drug signature was repre-

sented as a feature vector x ¼ ðx1;x2; . . . ; xdÞT, where d is the num-

ber of genes. Each element in the drug signature was defined as the

difference of the gene expression value measured after compound

treatment to that measured in the corresponding controls (the back-

ground of the plate). Note that each drug signature is dependent on

human cell lines, doses and time points.

2.2 Disease patient transcriptome data
The gene expression profiles of patients with various diseases were

obtained from the CRowd Extracted Expression of Differential

Signatures database (Wang et al., 2016). This database was con-

structed based on the results of a reanalysis of a large number of

gene expression profiles from GEO. The gene expression profiles

comprised the scores calculated using the characteristic direction

method (Clark et al., 2014), which compares the gene expression

measured in a disease tissue with that measured in a control tissue.

The gene expression scores for the upregulated and downregulated

genes are denoted as the ‘up_genes’ and ‘down_genes’ fields,

respectively.
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In total, 695 profiles annotated as ‘manual disease signatures’

were used here because these profiles were assigned disease ontology

IDs (DOIDs; Kibbe et al., 2015). The DOIDs were converted to their

corresponding KEGG DISEASE database (Kanehisa et al., 2010) IDs

via medical subject headings terms or the Online Mendelian

Inheritance in Man database (Hamosh et al., 2002). We extracted

the profiles obtained from humans for 79 diseases and 14 804 genes.

The gene expression profiles of the patients were referred to as

patient-specific gene expression profiles. Forty-six diseases had at

least one approved drug, and these 46 diseases are listed in alphabet-

ical order as follows: acute myeloid leukemia, adrenoleukodystro-

phy, adult T-cell leukemia, allergic contact dermatitis, Alzheimer’s

disease, amyotrophic lateral sclerosis, aplastic anemia, asthma,

atopic dermatitis, breast cancer, cervical cancer, chronic granuloma-

tous disease, chronic lymphocytic leukemia, chronic myeloid leuke-

mia, colorectal cancer, Crohn’s disease, cystic fibrosis, dengue,

dilated cardiomyopathy, endometrial cancer, familial combined

hyperlipidemia, gastric cancer, hepatitis C, Huntington’s disease,

hypercholesterolemia, idiopathic pulmonary fibrosis, immune

thrombocytopenia, inflammatory bowel disease, LDL receptor dis-

order, malignant melanoma, multiple myeloma, nasopharyngeal

cancer, ovarian cancer, pancreatic cancer, Parkinson’s disease, pitu-

itary adenomas, primary open angle glaucoma, renal cell carcinoma,

rheumatoid arthritis, sickle cell anemia, small cell lung cancer, sys-

temic lupus erythematosus, testicular cancer, tuberculosis, Types I

and II diabetes mellitus.

We averaged multiple patient-specific signatures for the same

disease and constructed a disease signature for each of the 79 dis-

eases. The gene expression signature of each disease was represented

by the feature vector z ¼ ðz1; z2; . . . ; zdÞT, where d is the number of

genes. Disease signatures comprising all genes and those comprising

the L1000 genes were constructed.

The disease signature comprising all genes was represented by a

binary feature vector in which each element was assigned a value of

1 to represent the presence of a differentially expressed gene or a

value of 0 to represent its absence. We constructed a disease similar-

ity matrix by calculating the similarity scores using the Jaccard

index (Tanimoto coefficient).

2.3 Drug therapeutic indication data
Drug therapeutic indications were represented as drug–disease associa-

tions, and the drug–disease association data were obtained from medic-

al monographs (Papadakis et al., 2014) and the KEGG DISEASE

database (Kanehisa et al., 2010). Here, 353 drug–disease associations

involving 261 drugs and 46 diseases were used as gold standard data.

3 Methods

In this section, we present a TT-WOPT algorithm to predict the po-

tential values for unknown parts in drug-induced gene expression

data. Drug-induced gene expression data can be represented by a

high-order tensor (a high-order generalization of vectors and matri-

ces). Figure 1 shows an overview of our proposed approach when

applying the TT-WOPT algorithm to a third-ordered drug-induced

transcriptome dataset comprising drugs, genes and cell lines. For

example, the drug-induced gene expression data consisting of 261

drugs, 978 genes and 16 cell lines can be represented by a 261 �
978 � 16 tensor, but most parts of the tensor are missing or unob-

served. Thus, we aim to complete the tensor-structured gene expres-

sion data.

3.1 TT-WOPT algorithm for data completion
Most existing tensor decomposition methods, which are used to find

latent factors, only target fully observed data. When data have miss-

ing entries, we cannot directly use existing tensor decomposition

methods to predict missing entries. The WOPT method minimizes

the distance between weighted real data and a weighted optimiza-

tion objective. After performing optimization, the obtained tensor

decomposition factors can reconstruct the observed real data well.

Then, the decomposition factors can be converted to the original

data structure to predict missing values.

Here, we apply a TT-WOPT algorithm to analyze a real-valued

tensor, X 2 R
I1�I2�����IN , with missing entries (Yuan et al., 2017).

The index of the missing entries can be recorded by a weight tensor

(W ) and the size of which is the same as that of X. Each entry of W

satisfies the following conditions:

wi1i2 ...iN ¼
0 if xi1 i2 ...iN is a missing entry;
1 if xi1 i2 ...iN is an observed entry:

�

TT decomposition decomposes a tensor into a sequence of core

tensors, where all cores are third-order tensors. The TT decompos-

ition of the tensor X 2 R
I1�I2�����IN can be expressed as follows:

X ¼ hh gð1Þ; gð2Þ; . . . ; gðNÞii;

where gð1Þ; gð2Þ; . . . ; gðNÞ is a sequence of third-order core tensors of

size 1� I1 � r1; r1 � I2 � r2,. . ., rN�1 � IN � 1, respectively. The se-

quence f1; r1; r2; . . . ; rN�1;1g is referred to as TT-ranks, which can

Fig. 1. Overview of our proposed approach: (a) TT decomposition, (b) mode-

n matricization (inspired from Cichocki et al., 2016) and (c) application of ten-

sor decomposition to drug-induced transcriptome data comprising drugs,

genes and cell lines
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limit the size of each core tensor. Each element of tensor X can be

written in the following index form:

xi1 i2 ...iN ¼ G
ð1Þ
i1
�G

ð2Þ
i2
� � � � �G

ðNÞ
iN
;

where G
ðnÞ
in

is the inth slice of the nth core tensor (Fig. 1a).

In the optimization algorithm, the objective variables are the ele-

ments of all core tensors. Here the objective function can be written

as follows:

f ðgð1Þ; gð2Þ; . . . ; gðNÞÞ ¼ 1

2
jjðY � ZÞjj2;

where Y ¼W �X and Z ¼W � hh gð1Þ; gð2Þ; . . . ; gðNÞii (* is the

Hadamard product; Kolda and Bader, 2009).

The relation between the original tensor and core tensors can be

derived as follows (Cichocki et al., 2016):

XðnÞ ¼ G
ðnÞ
ð2ÞðG

>n
ð1Þ �G< n

ðnÞ Þ;

where for n ¼ 1; . . . ;N,

G>n ¼ hh gðnþ1Þ; gðnþ2Þ; . . . ; gðNÞii 2 R
Rn�Inþ1�����IN ;

G< n ¼ hh gð1Þ; gð2Þ; . . . ; gðn�1Þii 2 R
I1�����In�1�Rn�1 ;

where G>N ¼ G<1 ¼ 1 and � denotes the Kronecker product

(Kolda and Bader, 2009). Here, the relation function XðnÞ uses a ten-

sor matricization operation (Fig. 1b).

For n ¼ 1; . . . ;N, the partial derivatives of the objective function

with respect to the nth core tensor gðnÞ can be expressed as follows:

@f

@G
ðnÞ
ð2Þ

¼ ðZðnÞ � YðnÞÞðG>n
ð1Þ �G<n

ðnÞ Þ
T:

After the objective function and the derivation of gradient are

obtained, we can solve the optimization problem by any optimization

algorithms based on the gradient descent method (Nocedal and

Wright, 2006). The Supplementary Figure S1 illustrates the optimiza-

tion procedure of the algorithm. In this study, the maximum iteration

number was set to 300 as the criteria for stopping the optimization.

3.2 Relationship with other tensor decomposition

algorithms
Note that most existing tensor decomposition methods (e.g. TT-SVD,

TT-alternating least squares (ALS), CP-ALS) cannot perform data

completion. Although CANDECOMP/PARAFAC WOPT (CP-

WOPT) is applicable to data completion tasks, its prediction accura-

cies are insufficient for high-order tensor data with many missing

entries (Acar et al., 2011). Instead, the TT-WOPT algorithm achieves

high prediction accuracies for data with many missing entries.

The main difference between TT-WOPT and CP-WOPT is that

they aim to find different decomposition models (i.e. TT decompos-

ition and CP decomposition, respectively) for incomplete data.

Though CP decomposition is a more compact model, it has prob-

lems to find optimal CP factors, especially on transcriptome data.

In contrast, TT decomposition is a new decomposition model

which is more flexible and owns better numerical properties like

high compressibility and good performance even on high-order

tensors. Details of the CP-WOPT algorithm are available in the

Supplementary data.

3.3 Preparation of artificial missing values
For the performance evaluation of data completion, we randomly

added artificial missing values to the original data based on two

strategies. Figure 2 illustrates the strategies for generating artificial

missing values. In the first strategy, the artificial missing values were

generated anywhere in the tensors. This strategy is referred to as

‘random missing’. In the second strategy, which is more realistic in

practical applications, all values in each cell axis were set as artificial

missing values. This strategy is referred to as ‘cell-based missing’.

3.4 Multitask learning method for drug indication

prediction
In this study, we presented a multitask learning method to predict

drug therapeutic indications (applicable diseases of drugs) from

drug-induced gene expression profiles and disease similarity. We

formulated the drug indication prediction problem using a super-

vised multiple label prediction (Bickel et al., 2008). Assume that we

have M diseases and P drugs.

We constructed a model to predict whether the ith drug would

be used for treatment of the mth disease ðm ¼ 1;2; . . . ;MÞ. Note

that linear models can be used to analyze extremely high-

dimensional data for both the prediction and feature extraction

tasks. Thus, we adopted a linear function, fmðxiÞ ¼ wT
mxi

ði ¼ 1; 2; . . . ;PÞ, where wm is a d-dimensional weight vector for the

mth disease and xi is a gene expression vector for the ith drug.

To overcome the scarcity of existing knowledge on the relation-

ships between drugs and diseases, we learned individual predictive

models f1; f2; . . . ; fM jointly by sharing information across M

diseases.

We attempted to simultaneously estimate all weight vectors in

the models by minimizing the logistic loss with disease similarity.

We estimated the weight vectors w1; . . . ;wM by minimizing the fol-

lowing objective function based on the learning set:

min
w

RðwÞ þ krXrðwÞ þ ksXsðwÞ;

where RðwÞ is the logistic loss term, XrðwÞ is a standard ridge regu-

larization term to avoid the over-fitting problem, and XsðwÞ is a

regularization term reflecting the similarities among diseases, re-

spectively. kr controls a standard ridge regularization term to avoid

the overfitting problem, and ks controls the correlations between

tasks (diseases in this study) to be considered. This process forces

Fig. 2. Strategies for generating artificial missing values
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the weight vectors wl and wm to be close to each other if the similar-

ity between disease l and disease m is high.

3.5 Previous methods for drug indication prediction
Some well-known methods for transcriptome-based drug repositioning

has been established, such as the inverse signature method (Dudley

et al., 2011; Jahchan et al., 2013; Kunkel et al., 2011; Sirota et al.,

2011) and the eXtreme Sum (XSum) method (Cheng et al., 2014). The

detailed procedures of those methods are explained below.

3.5.1 Inverse signature method

The inverse signature method is a popular transcriptome-based drug

repositioning approach to find novel drugs for the treatment of dis-

eases (Dudley et al., 2011; Jahchan et al., 2013; Kunkel et al., 2011;

Sirota et al., 2011). Generally, drug signatures are assumed to have

an inverse correlation with disease signatures if the drugs have thera-

peutic effects on those diseases (van Noort et al., 2014). To evaluate

the transcriptional correlation between drugs and diseases, we calcu-

lated Pearson’s correlation coefficient.

3.5.2 The XSum method

The XSum method, which does not depend on the inverse correl-

ation, was previously proposed (Cheng et al., 2014).

In the XSum method, multiple signatures from different cell lines

were merged into a single signature by averaging, which resulted in

a single signature for each drug. Here, we prepared a single signa-

ture for each cell line, which enabled us to evaluate the prediction

performance in a cell-specific manner. For each drug–disease pair,

the prediction values were calculated as follows:

Vðx; zÞ ¼
Xd

i¼1;hi2U

xi �
Xd

i¼1;hi2D

xi;

where hi represents the genes in vector x, xi represents the gene ex-

pression values in vector x, U is a set comprising common genes in

the upregulated and downregulated genes in x and upregulated

genes in z, D is a set comprising common genes among the upregu-

lated and downregulated genes in x and downregulated genes in z,

and d is the number of features (i.e. genes). Researchers report that

the XSum method exhibits the best performance in the prediction of

drug–disease associations (Cheng et al., 2014).

4 Results

4.1 The proposed method works better than the

baseline method
We tested the proposed TT-WOPT algorithm’s ability to impute

missing values in drug-induced transcriptome data. For the perform-

ance evaluation of data completion, we randomly added artificial

missing values to the original data, and evaluated whether the TT-

WOPT and CP-WOPT algorithms could correctly recover these val-

ues. The missing values were generated based on two strategies:

‘random missing’ and ‘cell-based missing’.

As a standard imputation method, we used a nearest neighbor

method (Troyanskaya et al., 2001). As a baseline method, we also

tested the CP-WOPT algorithm (Acar et al., 2011), which is a previ-

ously established tensor decomposition method applicable to data

completion tasks. To evaluate the tensor decomposition appropri-

ately, we here applied tensor decomposition algorithms to the nor-

malized drug-induced gene expression data. The tensor ranks of

TT-WOPT and CP-WOPT were set within the range of 10–30 and

optimized for each experiment. We evaluated the relative standard

errors (RSEs) between the original data and the reconstructed data

from the tensor decomposition. We calculated the RSEs for two

types of cases, namely all values and missing values. For the former

case, we calculated the RSEs between all values in the original data

and those in the reconstructed data from the tensor decomposition,

whereas for the latter case, we calculated the RSEs between the miss-

ing values in the original data and the imputed values in the recon-

structed data. We repeated these experiments three times and

calculated the average of the RSEs.

Table 1 shows the result for the performance evaluation of the

data completion for a third-ordered gene expression dataset com-

prising 261 drugs, 978 genes and 16 cell lines, where the dataset

contains artificial missing values generated based on the ‘random

missing’ strategy. Here, the RSEs for only the artificially generated

missing values are compared. In this evaluation, TT-WOPT worked

better than CP-WOPT in most cases (P-value ¼ 5.14 � 10–10,

Wilcoxon signed-rank test). The Supplementary Table S1 provides a

comparison of the RSEs for all values. In most cases, the perform-

ance of the proposed TT-WOPT algorithm was better than that of

the baseline CP-WOPT algorithm. Overall, the RSEs of the

TT-WOPT were significantly smaller than those of the CP-WOPT

(P-value ¼ 5.13 � 10–10). These results suggest that the proposed

TT-WOPT algorithm can work well for data completion of drug-

induced gene expression profiles.

Table 2 shows the results of the performance evaluation of the

data completion for the third-ordered gene expression dataset,

where the dataset contains artificial missing values generated based

on the ‘cell-based missing’ strategy. Table 2a provides a comparison

of the RSEs for all values. The proposed TT-WOPT algorithm works

much better than the baseline CP-WOPT algorithm (P-value ¼
3.05 � 10–5). The difference of artificial missing cells does not affect

accuracy. Table 2b provides a comparison of the RSEs for only arti-

ficially generated missing values. In this evaluation, the baseline

CP-WOPT algorithm worked to some extent for several cell lines.

However, in most cases, the performance of the proposed

TT-WOPT algorithm was better than that of the baseline CP-WOPT

algorithm (P-value ¼ 3.05 � 10�5). These results suggest that the

proposed TT-WOPT algorithm could work well in practice.

4.2 The proposed method works well even for higher-

order tensors
Note that the tensor decomposition methods are applicable to

higher-order tensors. Here, we attempted to reconstruct drug-

induced gene expression profiles over time and evaluated the per-

formance of the methods for a fourth-order gene expression dataset

comprising 261 drugs, 978 genes, 16 cell lines and 4 time points (i.e.

3, 6, 24 and 48 h), where the dataset contains artificial missing val-

ues generated based on the ‘random missing’ strategy. Table 3 shows

the results for the performance evaluation of the data completion

for the fourth-order data, where the RSEs for missing values are

compared. The Supplementary Table S2 provides a comparison of

the RSEs for all values. The proposed TT-WOPT algorithm worked

better than the baseline CP-WOPT algorithm in terms of small RSEs

for all values (P-value ¼ 4.78 � 10�10) and for missing values (P-

value ¼ 5.05 � 10�10). Table 4 shows the results for the perform-

ance evaluation of the data completion for the fourth-ordered gene

expression dataset, where the dataset contains artificial missing val-

ues generated based on the ‘cell-based missing’ strategy. Table 4a

and 4b show the RSEs for all values and those for missing values, re-

spectively. The proposed TT-WOPT algorithm worked better than
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the baseline CP-WOPT algorithm in terms of having small RSEs for all

values (P-value ¼ 3.05 � 10�5) and for missing values (P-value ¼ 3.05

� 10�5). The tendency for the fourth-order tensor was much clearer,

compared with the previous evaluation for the third-order tensor.

These results suggest that the proposed algorithm can perform well

even for higher-order tensors.

4.3 Tensor decomposition contributes to more accurate

prediction of drug indications
We tested the tensor decomposition’s ability to improve the predic-

tion of drug therapeutic indications from drug-induced gene expres-

sion signatures and disease-specific gene expression signatures. For

the third-order transcriptome data, the tensor ranks {1, 30, 30, 1}

was the best for TT-WOPT. Therefore, the best value of the tensor

ranks was used here. As predictive methods for the drug indication

prediction, we tested three methods, namely the inverse signature

method, the XSum method and the multitask learning method. The

inverse signature and XSum methods are previously developed

methods based on the correlation between drug-induced gene ex-

pression signatures and disease-specific gene expression signatures

(Cheng et al., 2013, 2014; Dudley et al., 2011; Kosaka et al., 2013;

Lamb et al., 2006; van Noort et al., 2014), and the multitask learn-

ing method is our proposed method (this article). These methods

were designed to predict appropriate drugs that could be applicable

to each disease.

We evaluated the performance of drug indication predictions

by performing 5-fold cross-validation experiments. We used the

receiver operating characteristic (ROC) curve, which is a plot of

true positive rates as a function of false positive rates (FPRs).

We evaluated the area under the ROC curve (AUC) score for the

FPR as 1.0, where 1 is perfect inference and 0.5 is random

inference. We calculated the AUC scores for drug–disease pairs and

individual diseases. In the evaluation of drug–disease pairs, we

calculated the AUC scores for all drug–disease pairs simultaneously.

In the evaluation of individual diseases, we calculated the AUC

score for each disease and calculated the average AUC score over

diseases.

Table 2. Performance evaluation of data completion by tensor de-

composition algorithms for third-order transcriptome data (drugs,

genes and cell lines) with artificial missing values

Artificial

missing cell

(a) RSEs for all values (b) RSEs for missing values

CP

(baseline)

TT

(proposed)

CP

(baseline)

TT

(proposed)

MCF7 0.1811 0.1523 0.6673 0.5498

PC3 0.2170 0.1525 0.8199 0.5514

A375 0.2216 0.1511 0.8122 0.5459

HA1E 0.2495 0.1539 0.9562 0.5583

HT29 0.2577 0.1551 0.9910 0.5638

A549 0.2401 0.1529 0.9157 0.5537

VCAP 0.2196 0.1531 0.8329 0.5549

YAPC 0.2604 0.1530 1.0015 0.5547

HELA 0.2695 0.1540 1.0390 0.5590

HCC515 0.2109 0.1528 0.7910 0.5541

HEPG2 0.1657 0.1564 0.5855 0.5696

HS578T 0.2281 0.1517 0.8655 0.5476

MCF10A 0.2157 0.1508 0.8139 0.5439

MDAMB231 0.2134 0.1537 0.8029 0.5571

SKBR3 0.2208 0.1546 0.8307 0.5609

BT20 0.2238 0.1538 0.8500 0.5574

Note: Missing values were generated by the ‘cell-based missing’ strategy. RSEs

between the original and reconstructed data from tensor decomposition were cal-

culated for missing values only. The proposed TT-WOPT method and the base-

line CP-WOPT method are denoted as TT and CP, respectively. Cell lines are

listed in order of increasing original missing rates. Bold indicates the best result.

Table 1. Performance evaluation of data completion by tensor decomposition algorithms for third-order transcriptome data (drugs, genes

and cell lines) with different rates of artificial missing values

Artificial missing rate

10% 50% 90%

Standard

imputation

CP

(baseline)

TT

(proposed)

Standard

imputation

CP

(baseline)

TT

(proposed)

Standard

imputation

CP

(baseline)

TT

(proposed)

Total cell lines 0.0750 0.0765 0.0694 0.0837 0.0798 0.0716 NA 0.0820 0.0776

MCF7 0.0634 0.0616 0.0568 0.0735 0.0658 0.0574 NA 0.0681 0.0604

PC3 0.0648 0.0650 0.0592 0.0742 0.0673 0.0614 NA 0.0699 0.0655

A375 0.0832 0.0862 0.0764 0.0929 0.0906 0.0788 NA 0.0930 0.0881

HA1E 0.0744 0.0759 0.0681 0.0842 0.0796 0.0707 NA 0.0819 0.0764

HT29 0.0773 0.0777 0.0703 0.0853 0.0810 0.0726 NA 0.0831 0.0797

A549 0.0755 0.0785 0.0708 0.0833 0.0812 0.0718 NA 0.0822 0.0770

VCAP 0.0643 0.0710 0.0632 0.0703 0.0723 0.0662 NA 0.0740 0.0717

YAPC 0.0728 0.0738 0.0679 0.0840 0.0786 0.0718 NA 0.0810 0.0782

HELA 0.0701 0.0715 0.0666 0.0800 0.0749 0.0693 NA 0.0772 0.0739

HCC515 0.0986 0.0994 0.0893 0.1068 0.1039 0.0926 NA 0.1049 0.1000

HEPG2 0.0948 0.0954 0.0907 0.1012 0.0978 0.0914 NA 0.0990 0.0958

HS578T 0.0407 0.0420 0.0403 0.0431 0.0432 0.0412 NA 0.0445 0.0431

MCF10A 0.0480 0.0476 0.0455 0.0496 0.0482 0.0455 NA 0.0496 0.0476

MDAMB231 0.0432 0.0440 0.0429 0.0475 0.0467 0.0434 NA 0.0490 0.0456

SKBR3 0.0415 0.0440 0.0416 0.0426 0.0432 0.0417 NA 0.0450 0.0426

BT20 0.0433 0.0441 0.0419 0.0443 0.0443 0.0426 NA 0.0468 0.0439

Note: Missing values were generated by the ‘random missing’ strategy. RSEs between the original and reconstructed data from tensor decomposition were cal-

culated for missing values only. The proposed TT-WOPT method and the baseline CP-WOPT method are denoted as TT and CP, respectively. Artificially gener-

ated missing rates of 10, 50 and 90% were tested. Cell lines are listed in order of increasing original missing rates. Bold indicates the best result.
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Figure 3 shows the resulting AUC scores for different methods

with and without tensor decomposition, where these scores were

evaluated for drug–disease pairs and individual diseases. As shown

Table 3. Performance evaluation of data completion by tensor decomposition algorithms for fourth-order transcriptome data (drugs, genes,

cell lines and time points) with different rates of artificial missing values

Artificial missing rate

10% 50% 90%

Standard

imputation

CP

(baseline)

TT

(proposed)

Standard

imputation

CP

(baseline)

TT

(proposed)

Standard

imputation

CP

(baseline)

TT

(proposed)

Total cell lines 0.00271 0.0031 0.00266 0.0028 0.0030 0.0027 NA 0.0036 0.0028

MCF7 0.00195 0.0031 0.00189 0.00242 0.0028 0.00236 NA 0.0037 0.0026

PC3 0.0024 0.0027 0.0022 0.0026 0.0029 0.0024 NA 0.0036 0.0026

A375 0.00288 0.0032 0.00286 0.0028 0.0030 0.0026 NA 0.0035 0.0025

HA1E 0.0033 0.0032 0.0029 0.0029 0.0032 0.0028 NA 0.0037 0.0029

HT29 0.0022 0.0022 0.0018 0.00195 0.0023 0.00192 NA 0.0030 0.0020

A549 0.0027 0.0027 0.0024 0.0033 0.0035 0.0032 NA 0.0039 0.0033

VCAP 0.0028 0.0036 0.0027 0.0031 0.0033 0.0030 NA 0.0037 0.0030

YAPC 0.0036 0.0037 0.0034 0.0037 0.0037 0.0032 NA 0.0041 0.0036

HELA 0.0043 0.0035 0.0032 0.0040 0.0040 0.0037 NA 0.0042 0.0038

HCC515 0.0023 0.0023 0.0015 0.0021 0.0023 0.0020 NA 0.0031 0.0021

HEPG2 0.0011 0.0017 0.0010 0.00142 0.0017 0.00138 NA 0.0030 0.0016

HS578T 0.0019 0.0018 0.0007 0.0011 0.0020 0.0010 NA 0.0031 0.0014

MCF10A 0.0016 0.0016 0.0004 0.0009 0.0017 0.0008 NA 0.0032 0.0011

MDAMB231 0.0006 0.0017 0.0005 0.0008 0.0020 0.0007 NA 0.0028 0.0008

SKBR3 0.00035 0.0017 0.00036 0.0012 0.0022 0.0011 NA 0.0029 0.0011

BT20 0.0007 0.0018 0.0008 0.0009 0.0020 0.0007 NA 0.0030 0.0011

Note: Missing values were generated by the ‘random missing’ strategy. RSEs between the original and reconstructed data from tensor decomposition were cal-

culated for missing values only. The proposed TT-WOPT method and the baseline CP-WOPT method are denoted as TT and CP, respectively. Artificially gener-

ated missing rates of 10, 50 and 90% were tested. Cell lines are listed in order of increasing original missing rates. Bold indicates the best result.

Table 4. Performance evaluation of data completion by tensor de-

composition algorithms for fourth-order transcriptome data (drugs,

genes, cell lines and time points) with artificial missing values

Artificial

missing cell

(a) RSEs for all values (b) RSEs for missing values

CP

(baseline)

TT

(proposed)

CP

(baseline)

TT

(proposed)

MCF7 0.2693 0.0071 1.0749 0.0266

PC3 0.2215 0.0064 0.8859 0.0236

A375 0.1811 0.0122 0.7245 0.0481

HA1E 0.2568 0.0052 1.0273 0.0173

HT29 0.2950 0.0056 1.1522 0.0198

A549 0.2222 0.0111 0.8887 0.0436

VCAP 0.1543 0.0115 0.6172 0.0452

YAPC 0.1838 0.0055 0.7352 0.0198

HELA 0.2073 0.0098 0.8291 0.0380

HCC515 0.3141 0.0048 1.0315 0.0171

HEPG2 0.2077 0.0051 0.8308 0.0175

HS578T 0.1887 0.0101 0.7548 0.0395

MCF10A 0.1678 0.0108 0.6713 0.0421

MDAMB231 0.2241 0.0053 0.8964 0.0191

SKBR3 0.2164 0.0108 0.8654 0.0423

BT20 0.2711 0.0052 1.0127 0.0178

Note: Missing values were generated by the ‘cell-based missing’ strategy.

RSEs between the original and reconstructed data from tensor decomposition

were calculated for (a) all values and (b) missing values only. The proposed

TT-WOPT method and the baseline CP-WOPT method are denoted as TT

and CP, respectively. Cell lines are listed in order of increasing original miss-

ing rates. Bold indicates the best result.

Fig. 3. Performance comparison on the drug indication prediction among the

inverse signature, XSum and multitask learning methods with and without

tensor decomposition. Each box-plot represents AUC scores for all cell lines.

The horizontal gray line corresponds to random inference

Tensor-train decomposition i197



in this figure, tensor decomposition improved the prediction per-

formance, particularly for the multitask learning method. The pre-

diction performances of the inverse signature and XSum methods

were nearly the same in all cases. In addition, in all cases, multitask

learning outperformed these other two methods, which suggests that

supervised learning could be meaningful. These results also suggest

that the multitask learning method with tensor decomposition

worked the best at predicting therapeutic indications for drugs.

Figure 4 shows a comparison of the AUC scores for each cell line

and the associated missing rate in the gene expression profiles for each

cell line. For nearly all cell lines, the use of imputed gene expression pro-

files with tensor decomposition worked better than the use of original

gene expression profiles. In cell lines with high missing rates in particular,

the usefulness of the tensor decomposition was clear. Note that drug-

induced gene expression profiles were largely unobserved (96.6% unob-

served) for several cell lines such as HS578T, MCF10A, MDAMB231,

SKBR3 and BT20, which means that the cell lines were treated by few

drugs. These results suggest that tensor decomposition has the potential

to improve the performance of a variety of drug repositioning methods.

Finally, we performed a comprehensive prediction of unknown

therapeutic indications of 1483 drugs. For these drugs, the gene ex-

pression data are available in the LINCS database. We used all

known drug–disease associations as a learning dataset and predicted

new drug therapeutic indications. Because of space limitation, the

detailed results are found in the Supplementary data (the

Supplementary data are available at http://labo.bio.kyutech.ac.jp/

~yamani/ismb2019/).

5 Discussion

In this article, we have proposed a novel tensor decomposition tech-

nique, named TT-WOPT, to predict unknown parts of drug-induced

gene expression profiles for a variety of human cell lines. The proposed

TT-WOPT algorithm allowed us to accurately impute the missing entries

in drug-induced transcriptome data. This could potentially significantly

improve the performance of drug repositioning for a wide range of dis-

eases. The idea that the proposed TT-WOPT algorithm is applicable to

higher-order tensors should be noted. The gene expression levels were

measured at several time points after drug treatment with different drug

concentrations. Representing the drug-induced transcriptome data by a

higher-order tensor structure by employing additional axes, such as a

time axis and a concentration axis, would be possible. The investigation

of this idea could further enhance the performance in drug repositioning.

The analysis of drug-induced gene expression profiles is a power-

ful approach to understanding the mode-of-action of drugs and to

discover new purposes for existing drugs. However, drug-induced

Fig. 4. Performance comparison on drug indication prediction among the inverse signature, XSum and multitask learning methods with and without tensor de-

composition. The top panel shows the AUC score calculated using all prediction scores for all drug–disease pairs. The middle panel shows the average of AUC

scores calculated using all prediction scores for individual diseases. The bottom panel shows the missing rate in each cell line. Cell lines are listed in increasing

order of missing rates

i198 M.Iwata et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz313#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz313#supplementary-data
http://labo.bio.kyutech.ac.jp/~yamani/ismb2019/
http://labo.bio.kyutech.ac.jp/~yamani/ismb2019/


gene expression profiles are not always measured for all combina-

tions of drugs, cell lines, and time points, which has been a serious

obstacle in practice. In fact, the recently established LINCS database

stores numerous gene expression profiles across various cell lines,

but the numbers of cell lines and drugs for which gene expression

profiles are measured are considerably limited. The completion of

drug-induced gene expression profiles would facilitate drug reposi-

tioning in cell-specific and time-dependent manners.

We demonstrated the usefulness of the tensor decomposition

method in an analysis of drug-induced transcriptome data; however,

this method is applicable to any transcriptome data with missing

values. Recent transcriptome data tend to be represented by a tensor

structure rather than a matrix data structure. For example, the dis-

ease transcriptome data could be represented by a tensor, where the

first, second, third and fourth axes of the tensor correspond to dis-

eases, genes, organs and time points, respectively. The findings of

this study provide some clues for the best use of existing transcrip-

tome data with unobserved parts and missing values. The proposed

TT-WOPT algorithm works better than existing tensor decompos-

ition methods such as CP-WOPT (Acar et al., 2011) in terms of ac-

curacy, particularly for higher-order tensor data with large missing

rates. The performance of the TT-WOPT algorithm depends on

some hyper-parameters (e.g. TT-ranks). Therefore, the development

of a well-established approach for finding optimal parameters

would improve the performance of data completion.
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