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Abstract

Organisms are composed of various cell types with specific states. To obtain a comprehen-

sive understanding of the functions of organs and tissues, cell types have been classified

and defined by identifying specific marker genes. Statistical tests are critical for identifying

marker genes, which often involve evaluating differences in the mean expression levels of

genes. Differentially expressed gene (DEG)-based analysis has been the most frequently

used method of this kind. However, in association with increases in sample size such as in

single-cell analysis, DEG-based analysis has faced difficulties associated with the inflation

of P-values. Here, we propose the concept of discriminative feature of cells (DFC), an alter-

native to using DEG-based approaches. We implemented DFC using logistic regression

with an adaptive LASSO penalty to perform binary classification for discriminating a popula-

tion of interest and variable selection to obtain a small subset of defining genes. We demon-

strated that DFC prioritized gene pairs with non-independent expression using artificial data

and that DFC enabled characterization of the muscle satellite/progenitor cell population.

The results revealed that DFC well captured cell-type-specific markers, specific gene

expression patterns, and subcategories of this cell population. DFC may complement DEG-

based methods for interpreting large data sets. DEG-based analysis uses lists of genes with

differences in expression between groups, while DFC, which can be termed a discriminative

approach, has potential applications in the task of cell characterization. Upon recent

advances in the high-throughput analysis of single cells, methods of cell characterization

such as scRNA-seq can be effectively subjected to the discriminative methods.

Author summary

Statistical methods for detecting differences in individual gene expression are indispens-

able for understanding cell types. However, conventional statistical methods, such as dif-

ferentially expressed gene (DEG)-based analysis, have faced difficulties associated with the

inflation of P-values because of both the large sample size and selection bias introduced by
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exploratory data analysis such as single-cell transcriptomics. Here, we propose the concept

of discriminative feature of cells (DFC), an alternative to using DEG-based approaches.

We implemented DFC using logistic regression with an adaptive LASSO penalty to per-

form binary classification for the discrimination of a population of interest and variable

selection to obtain a small subset of defining genes. We demonstrated that DFC priori-

tized gene pairs with non-independent expression using artificial data, and that it enabled

characterization of the muscle satellite/progenitor cell population. The results revealed

that DFC well captured cell-type-specific markers, specific gene expression patterns, and

subcategories of this cell population. DFC may complement differentially expressed gene-

based methods for interpreting large data sets.

Introduction

Organisms are composed of various cell types with specific functions. The cell types also

include undifferentiated cells, such as stem cells and progenitor cells, or cells in transition dur-

ing differentiation. Understanding cell types as the functional or structural units of an organ-

ism can confer a comprehensive understanding of the functions of organs and tissues, as well

as their origins. The classification and definition of cell types have been based on the identifica-

tion of specific marker genes that define them. Marker genes have been identified by compre-

hensive analysis of gene expression. Statistical tests are particularly important in the

identification of marker genes, for which evaluation of differences in the mean expression lev-

els of genes is often used.

Cell-type-specific genes/proteins are responsible for cell-type-specific functions. Therefore,

to identify marker genes, comparisons have been performed between the cell types of interest

and control groups to extract specifically expressed genes. The use of differentially expressed

genes (DEGs) is a widely accepted way of defining marker gene candidates, the validity of

which has been confirmed by biological experiments. However, the risk of false positives is

increased by the tens of thousands of statistical tests associated with comprehensive analysis.

Therefore, methods of correcting for multiple testing, such as Benjamini–Hochberg’s false dis-

covery rate (FDR) [1], Storey’s q-value [2,3], and Efron’s local FDR [4], have been widely

employed. Along with the increasing demand for multiple testing and correction methods,

DEG detection methods in the field of biostatistics for high-dimensional data have also been

developed. In particular, limma [5], using Bayesian statistics, edgeR [6], and DESeq1-2 [7,8]

have been developed to improve the statistical power (sensitivity) of DEGs while suppressing

false positives. These methods have often been applied to cases in which only a small number

of samples can be obtained because of the experimental scale and cost limitations [9].

Nevertheless, with the development of comprehensive gene expression analysis, especially

single-cell analysis [10], new challenges have arisen as a result of the rapid increase in the num-

ber of samples [11] and the involvement of exploratory analysis schemes. The presence of a

large sample size along with the application of exploratory analysis inducing selection bias can

lead to an overly small P-value, impeding the application of conventional methods to call dif-

ferentially expressed genes (DEGs) for bulk RNA-seq [12]. In particular, because a larger sam-

ple size can detect increasingly small differences, with a fixed difference, a larger sample size

usually gives smaller P-values, resulting in the unnecessary expansion of candidate genes (e.g.,

the definition of the t-statistic is proportional to
p
n). Therefore, efforts to improve the ability

to detect DEGs are still being made to adapt to scRNA-seq data with the characteristics of low

coverage and large sample size. That is, one of the major problems to be solved in this field is
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gene prioritization, namely, the selection of a small list of genes that should be validated and

interpreted as a priority.

Here, we propose discriminative feature of cells (DFC), an alternative approach to the use of

DEGs for characterizing cell populations by discrimination and variable selection. Ntranos et al.

[13] incorporated logistic regression to detect isoform changes of transcript from scRNA-seq

data. We further pursue the applicability of a discriminative approach for characterizing cell

groups, especially for tissue scRNA-seq data in which gene expression levels are correlated and

revealing the heterogeneous subpopulations within a specified population of interest (POI). We

demonstrated that DFC succeeded in selecting a small set of genes that characterize a group of

cells of interest, while avoiding the problem of a large candidate gene list due to the large sample

size of scRNA-seq. DFC is also shown to have the potential to provide biological insights that

are difficult to make using DEGs, such as detecting genes that characterize small subpopulations

and specific combinations of genes that are functionally linked to each other.

Results

We focused on the discriminative method to characterize a POI in cells (e.g., stem cell popula-

tion), using scRNA-seq data from samples that contain a large number of cell types, such as tis-

sues. In the discriminative method, each cell is considered as a data point in the gene

expression space, and the decision boundary surface that separates the two groups is deter-

mined. The boundary surface is confined to a small dimension of the space by variable selec-

tion, which suggests the idea of characterizing cell populations by a selected subset of gene

expression patterns as DFC (Fig 1A). While the conventional concept of using a DEG-based

approach involves the comparison of group means of individual gene expression levels in two

cell populations, the POI and a control group, DFC obtains a group of genes that are useful to

discriminate the POI from the control group. Thus, DFC is supposed to provide a highly selec-

tive gene list of only the number of genes needed for discrimination, while simultaneously

using information from all genes. In this study, we implemented the method for determining

DFC using binary classification by logistic regression and variable selection by adaptive

LASSO [14]. Specifically, we performed adaptive LASSO–logistic regression with the objective

variable of belonging to the POI (1 or 0) and the explanatory variable of gene expression level;

the genes whose weights were not 0 were considered as DFC.

First, we explored which characteristics of the POI are considered important by DFC.

Because DFC could be related to multiple variables, it could potentially distinguish correlated

gene pairs or mixed subpopulations. Therefore, we generated artificial scRNA-seq data assum-

ing the above two scenarios of gene expression pattern that may be prioritized in DFC. We

applied variable selection using adaptive LASSO–logistic regression on these artificial data to

examine the characteristics of gene expression patterns of cell populations that tend to be

DFC.

DFC calls a pair of genes with dependences in their expression

In the first case, we tested the possibility that adaptive LASSO would prioritize correlated gene

pairs. As the gene expression pattern of a simulated cell population, the expression levels of

four genes were generated from a normal distribution with equal differences in group means

and identical variances (Fig 1B). Therefore, all genes are equivalent as DEGs (i.e., they have the

same P-value in the two-tailed t-test). However, only the gene pair X3–X4 is correlated (r = 0.7)

within the two groups, while all other pairs are uncorrelated (r = 0). The expression of these

hypothetical genes is shown in Fig 1C as a scatter plot. The process of variable selection

(LASSO solution path) is shown in Fig 1D, indicating that, in the process of increasing the
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* *

Fig 1. The dependent pairs of gene expression selected as the DFC. (a) Different concepts for gene selection of DFC

and DEG. The common goal is to extract a set of genes that characterizes the population of interest (left). A DEG-

based approach involves a list of genes with statistically significant differences between the studied groups. In contrast,

the DFC-based approach involves a subset of genes that distinguish between two populations (top-right). DFC is

expected to feature a small set of genes selected by taking into account the relationships among genes (bottom-right).

(b–d) Artificially generated data set in which DFC has priority over DEG; case 1: correlation. (b) Schematic of the

synthesized data design. Only the pair X3 and X4 has intra-group correlation; the other pairs are independent. All
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parameter λ, which adjusts the sparsity (the strength of variable selection), the correlated X3–

X4 pair is finally selected (Fig 1D). This correlated pair has the clearest boundary between the

groups (Fig 1C, bold box), and it can be intuited that the two selected variables are useful for

differentiating groups A and B. To calculate the slope and intercept of the decision boundary

in Fig 1C, we used the minimum value of λ that gives two variables are selected. In addition,

the accuracy of the discrimination using all four variables is 0.999, while the accuracy using

only the two selected variables is 0.995, indicating that the model maintains adequate perfor-

mance. These results indicate that gene pairs that are correlated within a group are likely to be

selected as DFC. This suggests that DFC can select a set of genes that have direct or indirect

dependences as useful features for discriminating groups.

We also investigated the nature of DFC using simulated data that more closely resemble

real scRNA-seq data. We used ESCO [15], a simulator that takes drop-out into account, to

generate the data. We designed the data with two cell populations and 15 genes. The two cell

populations each have two marker genes. Two sets were generated and combined to create a

data set containing gene sets derived from the two gene correlation networks (GCN) (500 cells

for groupA and 493 cells for groupB) (S1A Fig). Gene1_1, Gene6_1, Gene7_1, and Gene8_1

were marker genes generated from GCN1, while Gene1_2, Gene4_2, Gene5_2, and Gene7_2

were ones generated from GCN2. The correlation between marker genes generated from dif-

ferent GCNs is low. Using these data, we extracted the DFC for Group1. In this case, we con-

trolled the sparsity (λ) and limited the number of variables to be extracted to four. As a result,

Gene1_1, Gene6_1, Gene1_2, and Gene4_2 were extracted. From the scatter plot, we can see

that the pairs of Gene1_1 and Gene6_1, and Gene1_2 and Gene4_2 are highly correlated

within the class and have high separability. Therefore, through the simulation by ESCO, we

can show that the gene pairs with the same relationship as in Fig 1B, 1C and 1D are preferen-

tially extracted.

Next, we examined the ability of DFC to detect mixed subpopulations. Here, we assume a

situation that includes multiple subpopulations with different expression patterns in one

group (Fig 1E). As in the previous scenario, all genes are equivalent as DEGs, that is, they have

the same variance, and the group means are the same for all variables (see Materials and Meth-

ods). Here, genes X1 and X2 are strongly expressed in only one-third of the cells in group B.

Furthermore, the expression of X1 and that of X2 are mutually exclusive. Therefore, X1 and X2

are not statistically independent. In addition, because group B is composed of multiple sub-

populations, the distributions of gene expression of both X1 and X2 are multimodal (Fig 1F).

The slope and intercept of the decision boundary were obtained in the same way as in Fig 1C.

In this example, adaptive LASSO also prioritized the non-independent variable pair X1 and X2

(Fig 1G). This suggests that DFC is generally prone to selecting non-independent pairs of

genes. In this scenario, the condition for being in cell group A is the expression of both X1 and

variables have the same variance, and the differences in means are the same for all pairs (see Materials and Methods for

details). (c) Pairs that are easier to classify are given priority to become DFC. The lower triangle shows the plot of each

pair of variables; the diagonal elements show the distribution of each variable and the upper triangle shows the

correlation coefficient within the cluster of each two variables. The decision boundary in the plain of the selected

variable pair X3 and X4 is shown as a solid line. (d) The process of selecting discriminative variables; solution path. This

indicates transition of the weights (partial regression coefficients) of each variable when regularization parameter λ
(sparsity) is varied. (e–g) Synthesized data set in which DFC has priority over DEG; case 2: exclusive. (e) Schematic of

the synthesized data design. In one-third of the group A cells, the expression of X1 and that of X2 are mutually

exclusive. The variances and the means of variables are designed as in case 1. In other words, this simulates a logical

product relationship such that cells that express X1 and X2 simultaneously are equivalent to the population of group A.

(f) An example of logical relationships of case 2, shown in a scatter plot as in (c). (g) The solution path in case 2 as

shown in (d).

https://doi.org/10.1371/journal.pcbi.1009579.g001
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X2 at the same time, that is, the logical AND (&) relation, which cannot be realized by consid-

ering either X1 or X2 alone.

These results suggest that DFC may provide useful insights when considering cellular func-

tions, not simply as a candidate list of differentially expressed genes, but as a set of genes that

well defines characteristics of a cell population, including dependences such as correlations

among multiple genes and mixtures of different populations.

Small gene set of DFC determined by a unique criterion that differs from

DEG-based analysis

Next, to demonstrate the practicability of DFC, we performed scRNA-seq data analysis and

compared the yielded gene lists of DEG and DFC. The data were obtained from scRNA-seq

data of mouse tibialis anterior (TA) muscle tissue injured by notexin at days 0, 2, 5, and 7 dur-

ing the regeneration of skeletal muscle [16]. Skeletal muscle satellite cells (MuSCs) are known

to be an essential cell population for muscle regeneration, and are activated upon muscle

injury and undergo multiple progenitor cell stages until differentiating into myofibers. In this

process of muscle regeneration, there is also a self-renewing state in which MuSCs again tran-

sition to a quiescent state and refill the MuSC pool [17,18]. Therefore, we attempted to charac-

terize heterogeneous cell populations of MuSCs with multiple transient states by DFC, which

have been difficult to capture by a DEG-based approach.

Fig 2A shows the procedure for defining the POI and the determination of DFC. First, pub-

lic data of scRNA-seq (GSE143437) [16] were obtained. Then, the genes expressed in very few

cells (fewer than 10 cells) were filtered (see Materials and Methods for details). Next, UMAP

was used to visualize the data in two dimensions. The 12th cluster obtained by Louvain cluster-

ing (Fig 2B) was designated as the POI for this analysis, and all other clusters were designated

as the control group (Fig 2C). Cluster 12 was selected according to the expression levels of

Pax7, a marker gene for MuSCs, and Myod1, a transcription factor that functions in progenitor

cells and activated satellite cells. The specific expression of the genes indicated that cluster 12

represents the satellite/progenitor cell cluster (Fig 2D and 2E).

Next, to elucidate the differences in the criteria for selecting genes in DFC and DEG in the

data, we compared their gene lists. For DEGs, the criterion of FDR< 0.01 in DESeq2 was

used. As a result of applying this criterion, the number of DEGs was 7,495, which was nearly

half of the total (42%) of 16,351 mouse genes. Among the DFC, most of the genes (96/108)

overlapped with the DEGs, but there were also 12 DFC-specific genes (Fig 2F). Next, we exam-

ined whether genes in DFC could be obtained by adjusting the gene selection criteria such as

the P-value and log2 fold change in DEGs. Fig 2G shows the position of genes selected as DFC

among all DEGs by a volcano plot. The large sample size of scRNA-seq and the statistical test

on the clusters, which were also determined using the same scRNA-seq data, resulted in overly

small FDRs. In addition, the genes selected as DFC among the DEGs were scattered irregu-

larly. The results suggested that genes in DFC were selected independently of the DEG criteria.

Similarly, in the MA (log ratio vs. abundance) plot (Fig 2H), genes in DFC were found to be

scattered among the DEGs, indicating that the DFC selection was also independent of the gene

expression levels. These results indicate that DFC selects genes according to its own criteria

and also selects genes that are more useful for discrimination of the POI among the DEG

candidates.

S1 Table summarizes the averages of the computational time and the number of extracted

genes for DFC and DEG extraction for each method. In addition to the Sampling + adaptive

LASSO–logistic regression and Wald test (DESeq2) used in this study, the results of the same

analysis using five other methods are also shown. For DFC extraction, we repeated the analyses

PLOS COMPUTATIONAL BIOLOGY Discriminative feature of cells characterizes cell populations of interest

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009579 November 19, 2021 6 / 18

https://doi.org/10.1371/journal.pcbi.1009579


ten times for averaging the effect of subsampling and cross-validation. For the other option to

detect DEGs, limma [5] is known to be effective for DE analysis in single-cell RNA-seq data

[10], the large number of genes was extracted as in DESeq2. For the DFC set extracted by each

method, we created UpSet plots (S1C Fig) and analyzed the association between genes using

the STRING database (S1 Table). The UpSet plots show that LASSO extracted a large number

300

200

100

0
20-2-4 4

Fig 2. Smaller gene set of DFC was selected by a unique selection criterion. (a) Procedure of DEG and DFC extraction from scRNA-seq

data. (b–e) The determined POI is compared with all other cell clusters in the muscle tissue. Embedding the scRNA-seq data into two-

dimensional space with UMAP. (b) The clusters determined by the Louvain algorithm. The 12th cluster corresponds to the cluster of muscle

stem cells and their progenitors. (c) The 12th cluster is set as the POI, and the other clusters are assigned as the control group, “Others.” (d, e)

Single-cell expression levels for Pax7 and Myod1. (f) Some of the DEGs are selected as DFC. Venn diagram indicating the overlap of DEGs

and DFC. (g) Genes in DFC not selected by the DEGs’ criteria. Volcano plot of DEGs and (h) MA plot of DEGs.

https://doi.org/10.1371/journal.pcbi.1009579.g002
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of genes and contained many specific genes, and that there were many genes in common

between Sampling + adaptive LASSO and SIS + adaptive LASSO. In addition, Sampling

+ adaptive LASSO showed the highest average number of edges (associations), while con-

versely this number was relatively low in SCAD. These results suggest that adaptive LASSO

can extract a more biologically meaningful gene set in terms of the gene associations (e.g., co-

expression, PPIs, pathways) than other discriminative methods.

In the extraction of DFC, the performance of SIS + adaptive LASSO was better than that of

Sampling + adaptive LASSO in terms of computational time and the cross-validation error.

Therefore, the use of SIS may be a promising option to reduce computational costs. However,

in this study, we decided to use all genes by sampling cells to search a wide range of feature

genes. The best hyper parameter γ between 0.5 and 2.0 [14], which controls the size of the

ridge penalty for adaptive LASSO, was determined using the faster SIS + adaptive LASSO. The

number of selected genes decreased as the γ increased, but the selected genes showed consis-

tency (S1C Fig). In addition, the cross validation error was minimized at γ = 1. Therefore, we

fixed at γ = 1.

The sample size ratio of POI to Other is 11.5, reflecting imbalanced data. This imbalance

may cause a decrease in the performance of the discriminative model. We therefore evaluated

the AUC of the precision–recall (PR) curve. The AUC was ~1 (S1D Fig), indicating that an

appropriate model for discrimination had been created. We further examined the effect of

increasing the imbalance between the sizes of POI and Other by training the discriminative

model (extraction of DFC) using SIS + adaptive LASSO–logistic regression with a subsample

of gradually decreasing POI size (S1D Fig). Even with a 10% subsample, the AUC was about

0.98, indicating that the model has sufficient ability to discriminate between groups. This can

be attributed to the fact that we selected well-separable populations in this case of comparison

after clustering. In line with the principles of logistic regression analysis for imbalanced data, it

is worth checking the predictive performance using PR curves to be aware of any problem of

overfitting. Such an overfitted model would overlook the characteristics of the POI.

DFC is useful to identify the combinatorial patterns of gene expression and

minor subpopulations

Next, we investigated whether DFC can extract the biological function of the POI. To evaluate

this, we interpreted how genes in DFC help to discriminate the POI by referring to known

marker genes of MuSC or muscle progenitors. First, we classified the DFC genes into three

groups according to the specificity of expression in each cluster: The “Strong” feature refers to

the genes expressed in 25% or more of the cells in one or two clusters. The “Weak” feature

refers to the genes expressed in three or more clusters, as depicted in Fig 3A. The “Niche” fea-

ture is defined as genes with minor expression in less than 25% of the cells in all clusters (Fig

3B for the annotation of clusters, S2 Fig for the original annotation by the authors of the

scRNA-seq data, and S4 and S5 Figs for highlighted expression of all genes in DFC as visual-

ized using UMAP).

Genes belonging to the Strong feature included many of the genes known as markers of

MuSCs and activated satellite cells (Figs 3C and S4A). M-cadherin (Cdh15) [19] was expressed

almost universally in the POI. The results of GO enrichment analysis using only the Strong fea-

ture showed that many genes are related to skeletal muscle cells in muscle tissue (Fig 3D). In

addition, Myf5 is a representative feature of the group of cells that are not represented by Myog
and Myod1 in the POI (S4A Fig). Thus, it can be interpreted that Myf5 plays a different role

from other myogenic regulatory factors [20]. These results indicate that DFC can select genes

that correspond to single biomarkers, similar to DEG.
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Fig 3. Biological significance of genes in DFC revealed by the discriminative ability. (a) According to the specificity

of the expression, the genes in DFC are classified into three groups. The three groups are named Strong (specific to 1–2

clusters), Weak (>2), and Niche features (none of them). (b) The data are from samples collected at 0, 2, 5, and 7 days

after skeletal muscle injury. In addition, the clusters of fibro/adipogenic progenitors (FAPs), mature skeletal muscle
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The Weak feature (S5 Fig) included Kai (Cd82) [21–23] and a group of genes used as quies-

cent satellite cell markers such as syndecan-4 (Sdc4). In contrast, the negative LASSO weight

of Col6a2, which is selectively expressed in fibro/adipogenic progenitors (FAPs), helps to char-

acterize the POI as non-FAPs (Fig 3E). Furthermore, a notable property of the Weak feature

involved the combined expression pattern using multiple genes. For example, Des is expressed

in both a part of the POI and the mature SKM population, which is a part of Others. This

means that Des itself cannot characterize the POI (Figs 3F and S5). Therefore, to exclude the

character of mature SKM from the POI, the condition of Sepw1(-), which is significantly

expressed in mature SKM, is additionally imposed (Fig 3G). Thus, DFC can be used as a

molecular marker to identify specific cell types for immunostaining and cell sorting, for exam-

ple, Des(+)Sepw1(-)Col6a2(-).

The Niche feature detects minor subpopulations scattered within the POI (Figs 3H and

S4B). These genes in DFC are difficult to prioritize in the list of DEG (i.e., they tend to have

larger P-values). In fact, Calcr, which is ranked lower than 5,000th in the order of P-values in

the DEGs, is known to be expressed transiently in a quiescent state [24,25]. We also detected

Edn3[24], which has prominent localization on day 7 after injury in the POI, and Gm12603
(Wincr1; WNT-induced noncoding RNA), a gene expressed in a different cell group from

Calcr and Edn3.

These binary combinations (+/-) of multiple genes and minor cell groups would appear as

the representative cases in Fig 1F. Therefore, DFC can characterize the best combinations of

genes for determining cell type and even small subpopulations caused by transient expression

or state changes, even using a small list of genes, and even upon comparison with the heteroge-

neous control group of cells in tissue.

To validate this discriminative approach of cell characterization with other data, we

obtained the data of bone marrow, a tissue composed of relatively similar cells with the same

lineage, as most of the cells in the bone marrow are differentiated from hematopoietic stem

cells. Therefore, we thought that DFC could provide a more detailed evaluation. After visuali-

zation by UMAP and clustering by the Louvain algorithm, the hematopoietic precursor cell

population was set as the POI (target) for analysis (S3A and S3B Fig). 31 genes were extracted,

of which 14 were Strong features, 14 were Weak features, and 3 were niche features. Next, we

attempted DE analysis by limma, and found 877 DEGs, of which two genes overlapped with

DFC. Compared to the analysis of muscle tissue, the number of DEGs is small, but this may be

due to the similarity of the cells that make up Bone marrow. Furthermore, these extracted

genes were analyzed in detail by GO enrichment analysis. The GO enrichment analysis using

strong features showed accumulation of myeloid cell differentiation-related terms such as

interferon gamma production and T cell differentiation (S3C Fig). This result also suggests

that POI is a population of hematopoietic progenitors related to lymphoid. In addition, three

(SKM), and lymphocytes (LYM) are shown. (c) Genes specifically expressed in the POI are assigned to the Strong

features. For the Strong feature Cdh15, its expression level for each cluster shown in Fig 2B is plotted. The medians,

25th/75th percentiles, and 1.5 interquartile range (IQR) are employed to draw the box plots. (d) The Strong features

contain many genes that act as markers of skeletal muscle. The results of GO enrichment analysis for the Strong

features. GOs are ordered by the proportion of their inclusion in the Strong features. (e) Genes expressed in some

clusters are assigned to the Weak features. For the Weak feature Col6a2, its expression level is plotted in the upper

panel, and the single-cell expression level visualized by UMAP is plotted in the lower panel. (f, g) The expression levels

of Sepw1 and Des, two of the Weak features, are plotted as (e). (h) Genes with low expression levels that are expressed

in a minor subpopulation of the POI are assigned to the Niche features. For the Niche feature Calcr, its expression level

is plotted as (c). (i) Cells expressing Niche features (Calcr, Edn3, and Gm12603) are highlighted. (j) DFC has the

property of capturing interrelated genes. STRING is used to connect related DFC. (k) Ribosomal proteins are a

notablef example of Weak features in DFC that are difficult to interpret in the context of binary combinations.

Eighteen ribosomal protein genes in DFC are averaged in each cluster as a heat map.

https://doi.org/10.1371/journal.pcbi.1009579.g003
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genes were classified as Niche features, and Socs1 was included as a characteristic gene (S3D

Fig). Socs1 has been reported to be a negative regulator of the JAK-STAT pathway [26], which

is involved in the regulation of myeloid cell differentiation and proliferation [27,28]. It was

thus suggested that Socs1 is a factor that characterizes a small subpopulation with suppressed

differentiation and proliferation.

DFC extracts genes with functional associations

Finally, we attempted to elucidate more complex functional associations between genes from

the obtained DFC. The artificial data in Fig 1 show that DFC selects the pair of genes with

dependences among DEG-equivalent genes. This suggests that DFC may tend to contain the

network of many-to-many gene relations that forms the unique characteristics of each cell

type.

First, we examined the correlation matrix of expression levels for the genes in DFC, and

found that the POI showed a more distinct hierarchical structure than the Others group (S6

Fig). We further evaluated the functional associations of 108 genes by STRING [29] (Figs 3J,

S7 and S8). The 104 genes in DFC were contained in the STRING database and had 257 associ-

ation edges, which is more than would occur by chance (87 edges), indicating that these are a

set of genes that are strongly related to each other (PPI enrichment P-value < 106).

Next, we attempted to interpret the network by referring to the characteristics of the adap-

tive LASSO–logistic regression. First, we examined the correspondence with the weights of

adaptive LASSO. We found that the two clusters of genes related to the function of FAPs with

negative weights and the clusters of genes related to the activation of MuSCs with positive

weights, such as MyoD and Myog, were linked via the proteoglycan Sdc4 (Fig 3J). Among

them, the most remarkable result was obtained for the ribosomal protein-coding genes, which

formed a dense cluster of ribosome subunit components. All of these genes are included in the

Weak feature. The expression patterns of these genes are not clearly segregated into clusters

and are difficult to interpret by binary combinations (S4 Fig), suggesting that they reflect a cer-

tain composition of ribosomal protein-coding genes that may have a critical functions in

MuSCs and their progenitors. To confirm the discriminative ability of the genes, we extracted

only the ribosomal protein-coding genes in the DFC, and visualized them by principal compo-

nent analysis. The results confirmed that the subset of DFC was sufficient to discriminate the

POI from the Others (S9A and S9B Fig). In more detail, the composition of these genes was

characterized by higher overall expression levels compared with the Others, with Rpl31 and

Rps37 being particularly highly expressed (Fig 3K). In contrast, the POI has a ribosomal pro-

tein profile closest to that of lymphocytes (LYM), but the negative weight of Rpl34 appears to

differentiate the POI from the lymphocyte population. Furthermore, these ribosomal protein-

coding genes clearly captured the temporal changes after muscle injury in the POI (S9C and

S9D Fig). This suggests that some ribosomal protein-coding genes are the critical factor in

stem cell functions, such as self-renewal [30–32], and supports their role in muscle regenera-

tion [33].

To further extend understanding of DFC for biological functions, we performed pathway

analysis with the Reactome database [34,35] using all DFC (S2 Table). We found pathways

enriched in ribosomal proteins such as rRNA processing and translation, and pathways

enriched in skeletal muscle marker genes such as myogenesis. These results are consistent with

the results of DFC set analysis by STRING (Fig 3J) and GO enrichment analysis using the

Strong feature. Therefore, pathway analysis is also useful for investigating the nature of DFC

or POI. We also examined how many DFC belong to esential genes, which are defined by

Dickinson et al. as genes essential for survival. According to this definition, 5,280 genes were
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essential genes [36], and 26.58% of DFC were essential genes in the data used in this study. In

contrast, the number of essential genes in DFC was 32 (32/108� 0.30). Therefore, there was

no tendency for essential genes to be selected as DFC. Genes that are essential for survival do

not need to be present as a characteristic of a particular POI. In conclusion, DFC can extract a

small set of genes that characterize a POI, including functional associations between genes.

Discussion

In this paper, we have proposed a new concept of characterizing the POI, which is an alterna-

tive to the DEG-based approach that uses lists of genes with differences in expression between

groups. DFC has the potential to identify subpopulations within the population of interest and

extract gene networks that regulate these subpopulations, in addition to the conventional iden-

tification of expression markers in cell populations, and is expected to significantly advance

our understanding of cell populations from gene expression analysis. Our method, which can

be termed a discriminative approach, has potential applications in the task of cell characteriza-

tion. In particular, given the recent developments of high-throughput biological measure-

ments, statistical models based on discrimination can be effective for the increased sample size

of scRNA-seq (capable cell number).

To select a small number of genes to characterize a cell, as in a DEG-based approach, rather

than to determine the cell type itself, a variable selection procedure was employed to select a

small set of genes that are effective for discrimination. Variable selection is a methodology that

selects a small number of M< N optimal combinations of variables from N input variables,

while preserving the predictive performance of the statistical model. Several methods of vari-

able selection with discriminative models have been developed, such as SVM [37], and logistic

regression with LASSO penalty. Among them, LASSO–logistic regression is a method that can

construct an interpretable linear model and perform variable selection in one step. However,

the gene clusters obtained by these discriminative methods have been mostly used as gene sig-

natures in cell-type classification [38,39] (e.g., a cell is normal or malignant), and no attempt

has been made to interpret these gene signatures themselves biologically by giving rationales

comes from the employed statistical method.

In this study, we compared two different population groups: the POI, which is specified

after nonlinear dimensionality reduction and clustering, and the rest of the population. In this

paper, this comparison was assumed to be the most frequently used procedure for profiling

unknown cell populations using scRNA-seq data. However, DE analysis after clustering has

been criticized for introducing selection bias, which results in excessively low P-values [12].

This exploratory data analysis of scRNA-seq makes the proper use of P-values more difficult,

while our method bypasses the use of P-values. In addition, it can be assumed that a control

group including heterogeneous populations will increase the variance in the group and lead to

large P-values. For this reason, DE may miss subtle changes of state or fail to discover minor

subpopulations within the cell groups of interest. In other words, calling DEGs may not be the

best strategy for exploratory discovery in a mixed cell population represented by tissue. Fur-

thermore, a simple two-group comparison of one vs. others is practical enough and thus is one

of the major advantages of our method. The reason why this easy comparison works well is

that DFC combines multiple Weak/Niche features to improve discriminative performance and

pick up even small populations. The advantage is derived from the linearity of the model

adapted in DFC; that is, the results can be interpreted as a superposition of features, as

described above.

As an implementation of the concept of DFC, we employed the framework of binary classi-

fication with logistic regression and variable selection with adaptive LASSO. In addition to its
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several beneficial statistical properties (e.g., consistency in variable selection), adaptive LASSO

has superior practical performance among the improved versions of original LASSO [40].

Although there are many methods for variable selection, such as best subset selection (L0)

[41], random forest [42], and SVM [37], in this study, we did not provide the benchmark tests

of each method. However, we believe that how the mathematical properties of each method

are used in the various scenarios of scRNA-seq data analysis is an important topic. In this

paper, we have discussed the usefulness of the discriminative method when the dependence

among all genes is included. We also found the discriminative approach to be useful, especially

in the analysis of tissue scRNA-seq data where gene expression correlations and subpopula-

tions within the same population are expected to be mixed. The further development of meth-

ods that focus on the interpretation of large-scale data is anticipated.

Materials and methods

Setting POI of scRNA-seq data

Normalized count matrix and the annotations of cells of scRNA-seq data were downloaded

from GEO (GSE143437). We filtered out genes that were expressed (> 0) in fewer than 10

cells. UMAP visualization was performed using the uwot R package (version 0.1.10) [43]. In

the embedded two-dimensional space, the clusters were determined by the Louvain algorithm

[44] implemented in the igraph R package [45] (version 1.2.6). In our analysis of scRNA-seq

data from muscle tissue, the POI was set as the cluster in which the majority of cells expressed

both Pax7 (53.3%) and Myod1 (42.6%).

Adaptive LASSO–logistic regression

The adaptive LASSO–logistic regression was performed using the glmnet [46] (version 4.1) R

package. To perform the adaptive LASSO, we followed the two steps of parameter estimation:

fitting the ridge and then fitting the LASSO regression with the penalty factor. These ridge

(first step) and LASSO (second step) regressions in the adaptive LASSO were performed by

setting the hyperparameter α in the glmnet::cv.glmnet function to 0 or 1, respectively. The

sparsity parameter λ was determined by 10-fold cross-validation (cv.glmnet) of binomial devi-

ance. The penalty factor was set to be 1/|βridge|, where βridge is estimated by ridge regression in

the first step. To reduce the computational cost in real scRNA-seq data, we obtained 30% sub-

samples of cells from each cluster (10,324 cells were extracted from 17,730 cells in total) in the

estimation of βridge. In the performance comparison of SIS, LASSO and SCAD, SIS [47] and

ncvreg [48] R packages were used (S1 Table).

Differential expression analysis

A raw count matrix was downloaded from GEO (GSE143437). The Wald test was performed

using the DESeq2 [8] (version 1.28.1) R package to identify genes that were differentially

expressed (DEGs) between the POI and the Others. The parameters were used with the default

settings. Genes with FDR< 1% were considered significantly differentially expressed.

Synthetic data generation

The artificial data set consists of randomly generated data points (cells) with four variables

(genes). We set the variables as the equivalent genes in terms of DE. Because the statistical sig-

nificance of a DEG that is estimated by the z- or t-statistic is uniquely determined by variances

and the difference of means between groups, we only modified the relationships of the genes,

while maintaining the variance and difference of means. Specifically, the two cases of DE-
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equivalent genes were generated as follows. Case I: Correlated expression. All four variables

follow the Gaussian distribution with constant variance σ2 = 1 and difference of means | μA −
μB | = 2, where A and B indicate groups of cells (each of 1000 cells). All pairs of variables are

independent (r = 0), except for the pair (X3, X4) having a strong correlation (r = 0.7) in both

groups. Case II: Heterogenous population. All four variables have the same variance σ2 and the

same group means μA, μB. We set X1 and X2 of group B as having an exclusive relationship. We

divided group B into three subgroups (B1–3: each of 333 cells). Group B1 expresses X1, group

B2 expresses X2, and group B3 expresses neither of them. The others are independent Gaussian

variables. To equalize the variance and means in group B to those in the others, we used the

mixed distribution as the marginal distribution of X1 and X2 in B:

f ¼ pgðm1; s
2

1
Þ þ ð1 � pÞgðm2; s

2

2
Þ;

where g is the Gaussian probability density function and p is the proportion of subgroup rela-

tive to the size of group B. In general, the mean and variance of f are calculated as follows:

m ¼ pm1 þ ð1 � pÞm2

s2 ¼ ps2

1
þ ð1 � pÞs2

2
þ pð1 � pÞðm1 � m2Þ

2
:

We used the parameters: σ1
2 = σ2

2 = 1, μ1 = 0, μ2 = 5, p = 2/3, and hence μB = 5/3 and σ2 =

59/9 for all variables. We set μA = 5.

Computational environment

All calculations in this study were performed under the following environment.

• CPU: Intel Xeon Skylake-SP (2.3 GHz, 18 core) × 2

• Memory: 384 GB

Supporting information

S1 Fig. (a) Pairs of marker genes that are simulated by ESCO. The lower triangle shows the

plot of each pair of variables; the diagonal elements show the distribution of each variable and

the upper triangle shows the correlation coefficient within the cluster of each two variables.

The highlighted pairs are prioritized in DFC selection. (b) UpSet plot to compare DFC sets

extracted by each four methods (SCAD, SIS + adaptive LASSO, Sampling + adaptive LASSO

and LASSO). Each columns represents number of genes that are shared by only the marked

sets. (c) UpSet plot to compare DFC sets extracted by SIS + adaptive LASSO with γ = 0.5, 1, 2.

(d) As the ratio of A to B increases, the performance of the generated model deteriorates. The

PR curve when the sample size of POI is gradually decreased (100%, 90%,. . ., 10%).

(PDF)

S2 Fig. Original annotations of scRNA-seq data by the authors [GSE143437]. (a) Days after

muscle injury. (b) Cell type annotations.

(PDF)

S3 Fig. (a) The scRNA-seq data embedded into two-dimensional space with UMAP. (b)

”POI” and “Others” determined by the Louvain algorithm. POI corresponds to the cluster of

hematopoietic precursor cells. (c) The Strong features contain many genes that are the markers

of POI. The results of GO enrichment analysis for the Strong features. GOs are ordered by the

contained proportion of Strong feature genes. (d) Zoom in on the area indicated in Fig S3b.
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Cells expressing Niche features (Calcr, Edn3, and Gm12603) are highlighted.

(PDF)

S4 Fig. UMAP visualizations of (a) Strong and (b) Niche features. The markers colored in

red/blue indicate the sign of the weight (coefficient) estimated by adaptive LASSO.

(PDF)

S5 Fig. UMAP visualizations of Weak feature. The markers colored in red/blue indicate the

sign of the weight (coefficient) estimated by adaptive LASSO.

(PDF)

S6 Fig. The correlation coefficient matrix of genes in DFC shows a distinct hierarchical

structure within the POI. The matrixes in (a) POIs and in (b) Others are shown. Types of fea-

ture (Strong, Weak, or Niche) and the signs of LASSO weight are also indicated.

(PDF)

S7 Fig. Functional association of genes in DFC. The functional associations among 108 DFC

genes were annotated using STRING.

(PDF)

S8 Fig. Functional association of DEGs. The functional associations of the top 108 genes in

terms of P-value among the DEGs annotated by STRING.

(PDF)

S9 Fig. Some of the ribosomal protein-coding genes characterizing the POI. Scatter plot

showing the results of PCA performed using (a) ribosomal protein-coding genes in DFC and

(b) all ribosomal protein-coding genes. (c) PCA performed in the POI using genes in (a), and

in all cells (POI and others) using genes in (b).

(PDF)

S1 Table. Summarizing the performance of DFC and DEG extraction method and the

result of analyzing the association between DFC sets using the STRING database.

(XLSX)

S2 Table. Pathways enriched in DFC analyzed with Reactome database.

(XLSX)
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