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Epigenomic profiling of primate lymphoblastoid cell
lines reveals the evolutionary patterns of epigenetic
activities in gene regulatory architectures
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Changes in the epigenetic regulation of gene expression have a central role in evolution. Here,
we extensively profiled a panel of human, chimpanzee, gorilla, orangutan, and macaque
lymphoblastoid cell lines (LCLs), using ChlP-seq for five histone marks, ATAC-seq and RNA-
seq, further complemented with whole genome sequencing (WGS) and whole genome
bisulfite sequencing (WGBS). We annotated regulatory elements (RE) and integrated
chromatin contact maps to define gene regulatory architectures, creating the largest catalog
of RE in primates to date. We report that epigenetic conservation and its correlation with
sequence conservation in primates depends on the activity state of the regulatory element.
Our gene regulatory architectures reveal the coordination of different types of components
and highlight the role of promoters and intragenic enhancers (gE) in the regulation of gene
expression. We observe that most regulatory changes occur in weakly active gE. Remarkably,
novel human-specific g with weak activities are enriched in human-specific nucleotide
changes. These elements appear in genes with signals of positive selection and human
acceleration, tissue-specific expression, and particular functional enrichments, suggesting
that the regulatory evolution of these genes may have contributed to human adaptation.
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hanges in chromatin structure and gene regulation play a

crucial role in evolution!2. Gene expression differences

have been extensively studied in a variety of species and
conditions3-?. However, there is still much unknown about how
regulatory landscapes evolve, even in closely related species.
Previous work has focused on the dynamics of the addition and
removal of RE with signals of strong activity during mammalian
evolution—mainly defined from ChIP-seq experiments on a few
histone marks!?-14, These analyses suggested that enhancers
evolve faster than promoters. The number of active enhancers
located near a gene—its regulatory complexity—has also been
reported to influence the conservation of gene expression in
mammals!?.

Moreover, in a selected group of primates—mostly chimpan-
zees and macaques—changes in histone mark enrichments are
associated with gene expression differences!>~18. Several studies
have also targeted the appearance of human-specific
methylation!%-23 patterns and active promoters and enhancers
in different anatomical structures and cell types!!-15, All these
studies have proven that comparative epigenomics is a powerful
tool to investigate the evolution of RE242%. However, a deeper
understanding of the evolution of gene regulation requires the
integration of multilayered epigenome data. Only such integra-
tion can provide the necessary resolution of regulatory activities
for investigating recent evolutionary time frames, as is the case
within the primate lineage. Here, we provide an in-depth com-
parison of the recent evolution of gene regulatory architectures
using a homologous cellular model system in human and non-
human primates. We observe different levels of correlation
between sequence and epigenetic conservation for RE with dif-
ferent activities and highlight the contribution of intragenic
enhancers (gE) to explain gene expression levels. We also report
the role that often understudied epigenetic states may have in
recent human evolution.

Results

Comprehensive profiling of primate lymphoblastoid cell lines
(LCLs). We have extensively characterized a panel of lympho-
blastoid cell lines (LCLs) from human, chimpanzee, gorilla,
orangutan, and macaque, including two independent biological
replicates for each species. This characterization includes chro-
matin immunoprecipitation data (ChIP-seq) from five key his-
tone modifications (H3K4mel, H3K4me3, H3K36me3, H3K27ac,
and H3K27me3) and deep-transcriptome sequencing (RNA-seq)
(Fig. 1). We integrate these datasets into gene regulatory archi-
tectures (Fig. 2a and Supplementary Figs. 1, 2) to (1) understand
how primate gene expression levels are controlled and how
expression changes between species occur and to (2) study pat-
terns of evolutionary conservation of RE in primates. To com-
plement this resource, we have also processed high coverage
whole-genome and whole-genome bisulfite sequencing data, as
well as chromatin accessibility data (Supplementary Tables 1-6
and Supplementary Data 1-4). Taken together, this is the most
extensive collection of great apes and macaque transcriptomic
and epigenomic data to date.

Annotation of RE. We used the signal of the ChIP-seq experi-
ments from the five histone marks to identify putative regulatory
regions with characteristic marks of promoters or enhancers
(Supplementary Figs. 1 and 2). We defined regulatory regions for
each cell line as those containing chromatin states (over-
represented combinations of histone marks detected by
ChromHMM?20) enriched in any regulatory-related histone mark
(Methods and Fig. 2a and Supplementary Fig. 1). We merged

overlapping regulatory regions in the two replicates of every
species to define species RE.

We classified the chromatin states of the RE based on a
hierarchy of functionally interpretable epigenetic states. This
hierarchy differentiates chromatin states into promoter (P) and
enhancer (E) states, with three different levels of activity each:
strong (s), poised (p), or weak (w) (Methods and Supplementary
Fig. 1). We improved these assignments by applying a linear
discriminative analysis (LDA) with normalized histone and open
chromatin enrichments (Methods and Supplementary Figs. 3 and
4). The refined classification results in more similar regulatory
landscapes between biological replicates (Wilcoxon signed-rank
test: P <0.05 in all species; Supplementary Fig. 5), increasing the
number of RE with the same state in all species (Wilcoxon
signed-rank test: P=0.03; Supplementary Fig. 6). At large,
promoters have a positive H3K4me3/H3K4mel ratio, whereas
H3K4mel is more abundant in enhancers than promoters. RE
with strong activities have an H3K27ac enrichment level similar
to that of H3K4me3 in promoters and H3K4mel in enhancers.
Poised RE have a characteristic enrichment of H3K27me3.
Finally, weak promoters and enhancers are associated with lower
intensity enrichments of all epigenetic signals and generally lack
H3K27me3 and H3K36me3 (Supplementary Fig. 3).

On average, we found ~11,000 and ~76,000 RE with promoter
and enhancer states per species, respectively (Fig. 2b), of which
69% and 33% are strong, 8% and 4% are poised, and 14% and 45%
are weak, respectively (Supplementary Fig. 7 and Supplementary
Data 1). Strong and poised activities are more associated with
promoter states, whereas weak activities are more frequently
associated with enhancer states (Chi-square test: P < 2.2 x 10716 in
all species). We associated RE with genes using 1D gene proximity
and existing high-resolution 3D chromatin contact data for one of
the human LCLs (Fig. 2a and Methods). On average, 70% of the
RE are associated with genes, of which an average across species of
93% of the RE are associated with protein-coding genes and 61%
of the RE are associated with one-to-one orthologous protein-
coding genes in all primate species (Fig. 2c). The set of RE
associated with a gene defines its regulatory architecture.

Altogether, this catalog of RE provides a comprehensive view
of the regulatory landscape of LCLs in humans and nonhuman
primates. In contrast to other commonly used definitions of
promoters and enhancers limited to strongly active regions, our
multilayered integration approach allows the additional annota-
tion of weak and poised activities!l13. These activities are of
particular relevance to improve the definition of elements in
regulatory gene architectures. In sum, a detailed primate
regulatory catalog enables the study of the evolution of these
regulatory activities using LCLs as a proxy of their regulatory
potential in other cell types or conditions.

The evolutionary dynamics of promoters and enhancers in
primate LCLs recapitulate previous observations in more dis-
tant mammals. Interspecies differences in regulatory regions can
be associated with genomic or epigenetic changes. Inconsistencies in
the quality of genome assemblies make it difficult to distinguish
actual interspecies genomic differences, an issue aggravated in
multispecies comparisons. To overcome this problem, we restricted
our analyses to unambiguous one-to-one orthologs between all
species. We detected 28,703 one-to-one orthologous genomic
regions in the five species with a promoter or enhancer state in at
least one species (Supplementary Fig. 8). Most of these orthologous
regulatory regions (~76%, Binomial test: P < 2.2 x 10716) are asso-
ciated with genes (Methods). In downstream analyses, we focused
on these regions integrating the regulatory architectures of protein-
coding and non-coding genes.
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Fig. 1 Overview of the study design and data generated. a One human and eight nonhuman primate lymphoblastoid cell lines (LCLs) were cultured to
perform a variety of high-throughput techniques, including whole genome sequencing (WGS), whole genome bisulfite sequencing (WGBS), chromatin-
accessibility sequencing (ATAC-seq), chromatin immunoprecipitation sequencing (ChIP-seq) targeting five different histone modifications (H3K27me3,
H3K4mel, H3K27ac, H3K4me3, and H3K36me3) and transcriptome sequencing (RNA-seq). We integrated previously published datasets from an
extensively profiled human LCL (GM12878) to balance the number of human samples. b Number of sequencing reads generated per sample and
experiment. Striped lines indicate data retrieved from previously published experiments’9:108,

We quantified the conservation of epigenetic states in
regulatory regions as the number of primate species with the
epigenetic state in the orthologous regions. In the regulatory
architectures of protein-coding genes, promoter states are more
conserved than enhancer states (Supplementary Fig. 9), with 73%
and 60% of regions with a promoter or enhancer state being fully
conserved across primates, respectively (two-tailed Fisher’s exact
testt P<2.2x 10716, OR=1.48). Less than 14% and 8% of
orthologous regulatory regions with a promoter or enhancer state
are specific to a primate species, respectively. These results for
protein-coding genes fall in line with the higher conservation of
promoters previously observed in mammals!'3. In contrast, for
non-coding genes, promoter states are less conserved than
enhancer states (two-tailed Fisher’s exact test: P<2.2x 1016,
OR = 0.39; Supplementary Fig. 9), with 46% and 69% of fully
conserved and 26% and 3% of species-specific elements,
respectively.

Intrigued by the different epigenetic conservation patterns in
protein-coding and non-coding genes, we studied the repurpos-
ing and acquisition of RE. We defined recently repurposed
promoters—or enhancers—as regulatory regions with a promoter
state in only one species and enhancer states in the remaining
species—or vice versa. Similarly, recently gained promoters or
enhancers are those regions with a promoter or enhancer state in
one species and without regulatory states in any other species.

In agreement with previous studies in more distant species?’-28,
nearly all (93%) recently evolved promoter states are acquired
through repurposing events, whereas the majority (90%) of
recently evolved enhancer states are gained (Chi-square test: P <
2.2 x 10~16; Methods and Supplementary Fig. 10). The regulatory
architectures of protein-coding and non-coding genes—the latter
evaluated in human due to underrepresentation of non-coding
gene annotations in nonhuman species—show this same pattern
(two-tailed Fisher’s exact test: P< 2.2 x 1071, OR =Inf, and P =
6.6 x 1077, OR = 137 respectively; Supplementary Fig. 10).

Our results confirm those found in more distant species!327
and reinforce the generality of these evolutionary dynamics in
protein-coding genes. The acquisition of regulatory states in the
regulatory architectures of non-coding genes resembles that of
protein-coding genes. However, the lower conservation of
promoter states associated with non-coding genes suggests that
their overall higher conservation is not an intrinsic characteristic
of promoter states and that it depends on their specific regulatory
relevance in different genes.

The activity of promoters and enhancers influences their epi-
genetic and sequence conservation. Taking advantage of our
classification of promoters and enhancers into three different
activities (strong, poised, and weak), we further explored the
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patterns of evolutionary conservation of the different regulatory
states. Globally, orthologous regulatory regions conserve their
regulatory state (Randomization analyses: 1000 simulations, P <
0.05; Supplementary Table 7), but different promoter and
enhancer activities show characteristic patterns of conservation
(Kruskal-Wallis test: P <2.2 x 10716; Fig. 3a and Supplementary
Fig. 11).

Strong promoters are the most conserved activities: 80% of
them are fully conserved in primates. On the contrary, poised and
weak promoters are poorly conserved (Fig. 3a). All enhancer

activities show a similar pattern of evolutionary conservation
(Fig. 3a). Enhancer states with strong activities are second in
conservation after strong promoters. Nearly 40% of the
orthologous regulatory regions with strong enhancer states are
fully conserved. Poised enhancers follow closely, with 36% of
them conserved in the five species. Lastly, around 21% of the
regions with a weak enhancer conserve their activity across
primates. The regulatory regions associated with protein-coding
and non-coding genes show the same conservation trends
(Supplementary Fig. 12). However, strong activities in promoter
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Fig. 2 Epigenetic and regulatory characterization of RE annotated in primates. a Approach followed to annotate and classify RE. In short, we classify RE in
promoter and enhancer states with three activity levels (strong, poised, or weak) based on a combination of chromatin marks and ATAC-seq signals. Bars
represent relative enrichment of epigenetic signals in RE, from left to right: H3K4me3 (dark blue), H3K4me (light blue), H3K27ac (green), H3K36me3
(yellow), H3K27me3 (red), and open chromatin (gray). Promoters have a positive H3K4me3/H3K4mel ratio, whereas H3K4me1 is more abundant in
enhancers. RE with strong activities are associated with high H3K27ac levels and poised RE have a robust enrichment in H3K27me3. RE are then linked to
genes based on 1D gene proximity and 3D published chromatin maps for LCLs. RE not associated with any gene are referred to as orphan RE. See Methods
and extended representation in Supplementary Fig. 1. b Number of RE with promoter and enhancer epigenetic states in each species. aP and aE refer to
ambiguous promoters and enhancers, respectively. Ambiguous RE are defined as those with a consistent state but different activities between replicates.
Dashed lines indicate the average number of RE with promoter and enhancer states annotated across species. € Number of RE associated with genes and
orphan RE in each species. Genes are divided into one-to-one orthologous protein-coding (1-1 orth PC), protein-coding (PC), and non-protein-

coding genes.
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Fig. 3 Different regulatory activities have different patterns of epigenetic and sequence conservation. a Bar plots show the average number of
orthologous regulatory regions across species with the corresponding color-coded epigenetic state conserved in 1, 2, 3, 4, or 5 species. Points indicate
average values and the error bars represent the s.d. (n=75 species). b Distribution of the sequence conservation scores (calculated as Z-scores of the
distribution of phastCons30way?2? values for non-coding regions in the same TAD85; Methods) of human orthologous regulatory regions with different
epigenetic states conserved in 1, 2, 3, 4, or 5 of our primate species. Box plots show medians and the first and third quartiles (the 25th and 75th
percentiles), respectively. The upper and lower whiskers extend the largest and smallest value no further than 1.5 x IQR.

states are less common for non-coding than for protein-coding
genes, leading to lower conservation of promoter compared to
enhancer states. This shows that differences in activity composi-
tion can lead to differences in the conservation of the regulatory
architectures.

The epigenetic states in a given cell type and their evolutionary
conservation reflect the specific function of the regulatory regions

in this cell type. These regions are expected to show different
epigenetic states in other cell types, and so their evolutionary
patterns might also be different. To investigate whether changes
in activity are likely to affect the epigenetic conservation of RE, we
assessed the association between epigenetic and sequence
conservation—which is cell type-independent. First, we observed
that epigenetic conservation significantly correlates with the
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conservation of the underlying sequence—quantified as Z-scores
of background normalized PhastCons values**—in all epigenetic
states but weak promoter states (Fig. 3b, Methods, and
Supplementary Figs. 13 and 14). These correlations are seen in
the architectures of protein-coding but not in non-coding genes
(Randomization analyses: 1000 simulations; Fig. 3b and Supple-
mentary Fig. 15). Of note, orthologous regulatory regions with
fully conserved epigenetic states show significant differences in
sequence conservation (Kruskal-Wallis test: P<2.2x 10716
Supplementary Fig. 16). In particular, strong and weak promoters
are associated with higher and lower sequence conservation
scores, respectively, whereas all enhancer states range in between
these values (Dwass—Steel-Critchlow-Fligner test). The sequence
conservation scores associated with strong and poised enhancers
are not significantly different. Orthologous regions associated
with non-coding genes are fewer and less epigenetically conserved
(Supplementary Figs. 12 and 14), which could explain the lack of
correlation between the conservation of the sequence and the
epigenetic state observed in all but strong enhancers (Supple-
mentary Fig. 15).

These results demonstrate that a detailed classification of
promoters and enhancers with different activities into regulatory
architectures provides a deeper understanding of their evolu-
tionary constraints and dynamics, expanding previous observa-
tions in mammals!? that could mostly be made for active
regulatory activities. The consistent association of epigenetic and
sequence conservation also suggests that the epigenetic conserva-
tion observed in LCLs is a good proxy for the conservation of the
regulatory activity of these elements in our primate species.

Definition of different types of components in the regulatory
architectures. To characterize the evolution of RE based on their
specific role in gene expression, we classified RE into five different
components according to their role in the gene regulatory
architectures (Fig. 4a, Methods). We first classified RE based on
their proximity to a gene into three types of components: genic
promoters (gP), gE, and proximal enhancers (prE). As gene
expression is controlled by a combination of short- and long-
distance regulatory interactions3?, we used available 3D chro-
matin contact maps for human LCLs31-33 to link interacting RE
to their target gene/s and define two additional types of compo-
nents: promoter-interacting enhancers (PiE) and enhancer-
interacting enhancers (EiE) (Fig. 4a).

We were able to link to genes and classify, on average, nearly
3500 otherwise orphan distal RE per species (Supplementary
Fig. 17). We annotated ~12,500 gP, ~35,000 gE, ~6700 prE, ~6200
PiE, and ~1800 EiE per species (Fig. 4b and Supplementary
Fig. 18), of which 48%, 69%, 40%, 62%, and 61% are associated
with one-to-one orthologous protein-coding genes in all primate
species (Fig. 4c).

To assess the consistency of our classification of regulatory
components, we focused on one-to-one orthologous protein-
coding genes considering all their associated RE (i.e., 6 epigenetic
states x 5 components = 30 regulatory subcategories). We found
high concordance between the epigenetic state (based on ChIP-
seq and ATAC-seq data, Fig. 2a) and the component (based on
the type of association with the gene, Fig. 4a) of the RE. On
average, 75% of gP have a promoter state, and 90% of gene-
associated enhancers have an enhancer state (two-tailed Fisher’s
exact test: P<22x10716 in all species, average OR=64;
Supplementary Fig. 19). This concordance is also consistent
across species (Chi-square test: P<2.2x 10716 in all species;
Fig. 4d). gP are enriched in RE with strong promoter and poised
promoter and enhancer states. Strong enhancers are mostly

enriched at gE and PiE, whereas weak enhancers are strongly
associated with prE (Supplementary Fig. 19).

Gene expression levels are positively associated with the presence
of strong activities in their regulatory architectures and are
negatively associated with the presence of poised or weak activities
(Kruskal-Wallis test: P<0.05 in all species and regulatory
components; Supplementary Fig. 20). These associations are
particularly strong in gP and gE (Dwass-Steel-Critchlow-Fligner
test; Supplementary Fig. 21). Despite the consistency between the
components’ activities and gene expression, our results suggest that
different types of components might contribute differently to gene
expression regulation.

Regulatory components influence gene expression and its
evolution differently. To explore the ability of our classification
of components to discriminate different regulatory roles, we
disentangled the underlying network of regulatory co-
dependencies between the different regulatory components and
gene expression in our cell-type. For this, we used Sparse Partial
Correlation Analysis (SPCA)3* of the normalized RNA-seq and
histone mark enrichments (aggregated by promoter and enhancer
state in every type of regulatory component) (Methods). This
approach establishes a stringent protocol (Benjamini-Hochberg’s
correction, P<1.8x 10722 for all selected partial correlations)
that selects informative partial correlations34.

To unravel the contribution of each type of component to gene
expression, we defined their consensus signal (or eigencompo-
nents) inspired by the notion of eigengenes’®> (Methods). An
SPCA based on the eigencomponents shows a consistent global
structure of regulatory interactions. gP and gE directly regulate
gene expression coordinately, PiE are connected with gPs and EiE
with PiE (Fig. 4e and Supplementary Data 5). This regulatory
scaffold is consistently observed for the residuals of the histone
marks for these eigencomponents (Supplementary Fig. 22 and
Supplementary Data 6) when SPCA was performed for all the
histone marks together (Supplementary Data 7) and for each of
them separately (Supplementary Data 8). To account for the
possibility of incompleteness in some of our architectures, we
replicated all the analyses using only genes with full regulatory
architectures (i.e., genes associated with regulatory components of
every type), obtaining consistent results (Supplementary Fig. 23
and Supplementary Data 8).

In agreement with the structure of regulatory interactions
recovered by our SPCAs, a generalized linear model of gene
expression based on H3K27ac, H3K27me3, and H3K36me3 signals
at gP and gE and their interactions (15 variables) explains ~67% of
gene expression variability (Supplementary Table 8). Remarkably,
this is only 6% lower than an exhaustive naive model, including the
signal from all histone marks at all types of regulatory components
with all possible interactions (1225 variables) (Supplementary
Data 9). These results suggest the epigenetic activities of putatively
strong and poised gP and gE and their interactions likely have a
large influence on gene expression regulation in our regulatory
architectures. However, their co-dependency with the other
components suggests that they are dependent, in turn, on the
coordination of the whole architecture. Although we cannot infer
causality from our SPCA analysis, these networks reflect that
regulatory co-dependencies between components depend on the
distance of the elements in the network of chromatin contacts (with
gP and gE being in the gene locus, PiE interacting directly, and EiE
interacting indirectly with it). The robustness of these networks of
direct co-dependencies, their ability to explain gene expression, and
their correspondence with the spatial disposition of the elements
show that these components reflect specific regulatory roles.
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Previous studies have found that gene expression evolution is
associated with changes in the regulatory complexity of a gene
(the number of nearby RE)!0, Since we could classify the RE of a
gene into different components (Supplementary Fig. 24), we were
able to investigate the association of gene expression changes
(Supplementary Fig. 25) with the evolutionary differences in the
complexity of each type of component. We found that the effect
of changes in complexity on gene expression levels depends on
the epigenetic state gained or lost and the type of regulatory
component affected (Supplementary Fig. 25). Evolutionary

changes that alter the epigenetic state at gP, specifically the
presence of either a strong promoter or poised enhancer, as well
as the number of gE with either strong or poised enhancer states,
show the most robust associations with gene expression
differences. The number of prE in any enhancer epigenetic state
and strong promoters and strong and poised enhancers in PiE
also show significant though modest effects. These results
highlight that the additive nature of gene regulation depends on
regulatory architectures. This dependency can be captured either
by the aggregation of histone enrichment signals (as in our
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SPCAs) or by quantifying the number of regulatory components
with specific activities. Moreover, they confirm that our
regulatory components represent different regulatory roles with
a different contribution to gene expression evolution and which
evolutionary relevance should be investigated separately.

Different regulatory components with poised and weak
enhancer states appear in LCL-unrelated genes and functions.
We next explored the functional implications that both conserved
and species-specific regulatory states in certain components could
have (overrepresented combinations in Supplementary Fig. 26).
For this, we examined their functional role and tissue-specific
expression (GTEx data3%, Supplementary Table 9). We find sig-
nificant enrichments for the genes targeted by conserved strong
promoter states in gP, conserved strong and weak enhancer states
in gE, and conserved poised enhancer states in gP and prE (one-
tailed Fisher’s exact test: Benjamini-Hochberg’s correction, false
discovery rate (FDR) < 0.05; Methods, Fig. 5a, Supplementary
Fig. 27 and Supplementary Data 10). Remarkably, among the
genes associated with any species-specific epigenetic state, only
those linked to human-specific weak enhancers in intragenic
enhancers (hereafter referred to as hswEgE) have significant
functional enrichments.

These enrichments show the expected association of conserved
strong epigenetic states (strong promoter states in gP and strong
enhancer states in gE) with genes involved in relevant cellular
processes, such as metabolism, chromatin organization, and
regulation of the cell cycle (Fig. 5a, Methods, Supplementary
Fig. 27, and Supplementary Data 11 and 12). Functions specific to
LCLs like those involving viral processes are specifically enriched
in strong enhancers3’. Moreover and regardless of whether there
is a functional enrichment, the components with strong
epigenetic states show similar expression profiles across tissues
(Fig. 5b and Supplementary Figs. 28-30), with high expression
levels in LCLs and most other tissues and wide expression
breadth (Fig. 5c and Supplementary Fig. 31).

In contrast, conserved poised enhancer states in gP and prE
target genes enriched in developmental and proliferative func-
tions, echoing their known implication in these processes3’-40
(Fig. 5a, Supplementary Fig. 27, and Supplementary Data 13 and
14). Surprisingly, genes with conserved poised enhancer states in
their gP are also enriched in neuronal functions and have higher
expression levels in brain (Fig. 5b, ¢ and Supplementary Figs. 27-
29). Genes associated with both types of conserved poised
enhancer states show overall minimal expression levels but high
tissue-specificity (median tissue specificity index (7, Tau) > 0.85 in
both; Methods and Supplementary Fig. 31).

Protein-coding genes targeted by gE with conserved weak
enhancer states are enriched in various functional annotations,
including neuronal ones, such as cell projection and synapse
(Fig. 5a, Supplementary Fig. 27 and Supplementary Data 15).
This gene set shows low expression in LCLs and high expression
in the brain, which is in agreement with its observed
functional annotation (Fig. 5b, c). Also, the tissue-specificity of
this group is higher than that of conserved strong regulatory
activities both in promoters and enhancers (median 7=0.72,
Dwass—Steel-Critchlow-Fligner test: P<2.2 x 1071 in the three
tests; Supplementary Fig. 31). This apparent brain-specificity is
not found in genes associated with conserved weak enhancer
states in other regulatory components, which have overall higher
expression levels and not particular tissue-specificity, as would be
expected from weak epigenetic states*! (Supplementary Figs. 30
and 31).

Finally, we focused on genes targeted by hswEgE. These
genes are solely enriched in neuron parts and synapse (Fig. 5a

and Supplementary Data 16). Similar to genes associated with
their analogous conserved group (conserved weak enhancers
states in gE), these genes are typically expressed at low levels
with their highest expression in tissues unrelated to LCLs,
particularly brain, tibial nerve, and testis, while having marginal
or no expression in numerous other tissues, including LCLs
(Wilcoxon-Nemenyi-McDonald-Thompson test: P< 1 x 1074
Rank-biserial correlation effect size between brain and LCLs =
0.633; Fig. 5b, ¢, Supplementary Figs. 28 and 29, and
Supplementary Data 17). Remarkably, these genes have higher
tissue-specific expression than those with conserved strong
activities in  their = components (median 7=0.84,
Dwass—Steel-Critchlow-Fligner test: P<4.5x 10~!% Supple-
mentary Fig. 31).

Intrigued by the high tissue-specificity of the genes with
hswEgE, we sought to identify the tissues driving this tissue-
specificity taking its analogous conserved group as reference.
Testis and brain are the tissues with the highest number of tissue-
specific genes (Trissue > 0.8), but most interestingly, whereas the
fraction of testis-specific genes is comparable between gene sets
(two-tailed Fisher’s exact test: P> 0.05, OR = 1.20), brain-specific
genes are more than twofold enriched in genes with human-
specific gE (two-tailed Fisher’s exact test: P=0.02, OR =2.29;
Supplementary Fig. 31).

Our results show that conserved strong epigenetic states are
involved in the regulation of important genes highly expressed in
LCLs and other tissues. However, poised and weak enhancer
states, either conserved or human-specific, are involved in the
regulation of genes marginally expressed in LCLs, but with
particular functional roles and tissue-specific expression patterns.
These unexpected associations, along with the evolutionary
conservation patterns of poised and weak enhancer states, suggest
that these epigenetic states might be indicative of putative RE in
other cell types different from LCLs.

Genes with novel human-specific intragenic weak enhancers
are targeted by signals of adaptation and nucleotide changes.
The unexpected association of the genes targeted by hswEgE with
neuronal functions prompted us to study the relationship these
genes might have with signals of positive selection or accelerated
evolution in the human genome. In fact, among the genes asso-
ciated with hswEgE (153 hswEgE in 134 genes, Supplementary
Data 18), we found several genes previously proposed to have
been subjected to different evolutionary forces. Some of these
genes are FOXP2, PALMD, and ROBOI, which have known
brain-related functions*>~4> or ADAMI18%, CFTR*-8, and
TBX15%.

To assess whether genes with hswEgE have been particularly
targeted by evolutionary forces, we investigated their co-
occurrence in genes associated with signals of positive
selection®0—>% and acceleration®=>7, hereafter referred to as
putatively selected or accelerated regions (Methods). We find
that 41% of the genes with hswEgE (56 genes) are also showing
such signatures (one-tailed Fisher’s exact test: P=3.33 x 10~11,
OR = 3.5). The results of our nested analysis (Fig. 6a) show a
significant association of genes targeted by gE (but not in any
other component type), genes targeted by gE with weak enhancer
states (but not strong or poised enhancer states), and genes
targeted by gE with human-specific weak enhancer states (but not
with fully conserved or any other epigenetic states in nonhuman
primate species). In addition, no enrichment is observed for genes
with gP with conserved poised enhancer states (one-tailed
Fisher’s exact test: P>0.05, OR=1.1), even though they also
seem to be associated with brain-specific and neuronal functions
(Fig. 5).
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Finally, we explored whether hswEgE could also be associated
with human-specific sequence changes. For this, we collected a set
of over 2.8 million single nucleotide changes fixed in humans
(hSNCs) that differ from fixed variants in the genomes of the
remaining nonhuman primates (Methods). Around 22% of the
hswEgE-containing genes (30 genes) harbor at least one hSNC in
their hswEgE. Also, the density of these human-specific changes
is higher in hswEgE compared to gE with conserved weak
enhancer states (Mann-Whitney U-test: P=0.01; Methods and
Supplementary Fig. 32). This observation is not driven by GC-
biased gene conversion (gBGC), as the derived nucleotides in
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lower whiskers extend the largest and smallest value no further than 1.5 x IQR.

humans are not enriched in W to S mutations compared to the
ancestral state (one-tailed Fisher’s exact test: P> 0.05, OR = 0.9).
Taken together, roughly 10% of the hswEgE-containing genes
are in putatively selected or accelerated regions and also harbor
hSNCs in these enhancers (14 genes) and the co-appearance of
both features is not significantly enriched (one-tailed Fisher’s exact
test: P>0.05, OR= 1.3, Fig. 6b). This observation indicates that
even though putatively selected or accelerated regions and human-
specific mutations are both associated with hswEgE, they are not
mutually conditioned. As such, it implies that none of these
signals alone is required to explain the appearance of hswEgE.
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Among the 14 genes with both human-evolving signals and
hSNC:s (Fig. 6b), there are several interesting candidates for adaptive
evolution associated with different traits. Many of these genes are
associated with neuronal functions (ROBOI1, CLVSI1, SEMA5A,
KCNH7, SDKI1, and ADGRL2), but also with pigmentation
(LRMDA) or actin organization in cardiomyocytes (FHOD3).
Other interesting genes include instances of hswEgE-containing
genes that also are targeted by putatively selected or accelerated
regions (FOXP2, ASTN2, NPAS3, or NTM) or carry hSNCs in these
enhancers (PALMD, VPS13C, IGSF21, or CADM?2). Interestingly,
we found only one antisense RNA gene, MEF2C-ASI, showing
both. This gene has been associated with ADHD?$, and its target
gene MEF2C is a very well-known target of genetic alterations
(many of them also affecting MEF2C-AS1) associated with severe
intellectual disability®®, cerebral malformation®®, or depression®>%0.

Remarkably, three hswEgE accumulate more hSNCs than
expected (Randomization test: 10,000 simulations, Bonferroni
correction, P<0.02 in all cases; Methods and Supplementary
Fig. 32), a number of hswEgE which is also significantly higher
than expected (Randomization test: 10,000 simulations, P = 8 x
10~% Supplementary Fig. 32). Two of these genes are protein-
coding genes with known functions in brain cell types and with
signals of human adaptation. CLVSI is a protein-coding gene
with brain-specific expression (Tppj, = 0.964) required for the
normal morphology of endosomes and lysosomes in neurons®l.
ROBOI is a broadly expressed integral membrane protein that
participates in axon guidance and neuronal migration (7=
0.388)92:63 that has also been associated with human speech and
language acquisition since the split from chimpanzees*3. The
third enhancer is included in AC005906.2, a long intergenic non-
protein-coding gene specifically expressed in brain (Tpp, =1).
Interestingly, this gene overlaps with KCNAI, a voltage-gated
potassium channel with the same brain-specific expression
pattern (Tpan =0.995) and for which mutations have been
associated with neurological malfunctions®4.

We show that hswEgE target neuron-related brain-specific
genes that are associated with putative signals of positive selection
and acceleration and an excess of hSNCs. These human-specific

nucleotide changes are especially concentrated in three of them.
Two of these genes, CLVSI and ROBOI, exemplify the confluence
of signals of human adaptation and hSNCs in protein-coding
genes that are important for normal neuronal structure,
migration, and axon guidance in the human brain.

Discussion

The evolution of human and nonhuman primates is an area of
major interest, but ethical, legal, and practical constraints often
limit access to direct biological material. In this study, we have
generated a comprehensive and unified dataset of epigenomic
landscapes in LCLs for human and four nonhuman primate
species. Despite the artificial nature of our cellular model®>-7,
previous studies have shown the value of LCLs as an experi-
mentally convenient model of somatic cells that accurately
resembles the phenotype of its cell type of origin® and which can
be robustly used for comparative studies in humans and
primates'$9-71 Moreover, its clonality ensures a cell type-
specific experimental system reducing the confounding factors
associated with cell population diversity in bulk tissue samples.

Using this cell model, we reproduced previous observations on
the dynamics of the evolution of RE reported in more distant
species!®13:27 which we show can be extrapolated to closely
related species (at least for great apes and macaques). Moreover,
we have expanded these observations to explain how these
dynamics result from the different evolutionary constraints
associated with their epigenetic activities. Therefore, we show that
considering weak and poised activities is of major relevance to
fully understand the evolution of regulatory regions.

We also observed that different epigenetic activities have
characteristic evolutionary patterns with higher conservation for
strong promoter and strong and poised enhancer states. The
correlations between epigenetic and sequence conservations are
also different for each epigenetic state, with higher correlations
for strong and poised promoter and enhancer states. These dif-
ferences are likely due to their different influence on gene
expression. Therefore, the previously reported higher conserva-
tion of promoters probably reflects its often greater influence on
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gene expression. We are also able to confirm this hypothesis with
the lower conservation of promoter states in the regulatory
architectures of the non-coding genes where strong promoter
states are scarce.

We further classified the RE in five different components of
gene regulatory architectures. These components are genic pro-
moters (gP) and intragenic, proximal, promoter-interacting,
and enhancer-interacting enhancers (gE, prE, PiE and EiE,
respectively). By studying their regulatory co-dependencies, we
observe that the epigenetic activity of each type of component
influences gene expression differently. In brief, coordinated epi-
genetic activities in gP and gE form the core of these architectures
and are strongly correlated with gene expression levels. Reg-
ulatory activities in PiE are also coordinated with promoter
components, and activities in EiE are associated with PiE. With
these results, we show that the impact of regulatory components
on gene expression reflects the structure of the regulatory
architecture.

We find that gene expression changes are associated with the
regulatory complexity of gene architectures and with the epige-
netic activity of the different regulatory components. Namely, we
report that gene expression changes between primate species
occur through the addition or removal of strong promoter
activities in promoter components or strong and poised enhancer
activities in gE. The remaining components show fewer changes
directly linked to expression differences, but they can still be
instrumental for gene expression evolution, probably through
their influence on gP and gE. The gene architectures we present
provide a starting point for future in-depth investigations on the
interdependence of different regulatory regions and mechanisms
in the evolution of gene regulation. In this sense, we stress the
importance of considering promoter and enhancer activity states
in the different types of gene components to achieve a more
detailed description of the regulatory processes.

Despite the large influence of strong activities on gene reg-
ulation, our results in LCLs suggest that unforeseen information
can be drawn from the analysis of elements with a repressive or
negligible regulatory role in our cell model. Functional enrich-
ment analyses show that genes with conserved poised activities
are enriched in cell proliferation and differentiation, as shown by
others37-40, In the case of poised enhancer states in gP, these
genes are specifically expressed in brain. Moreover, we find that
recently evolved weak gE in the human lineage (hswEgE) occur in
genes showing patterns of brain-specific gene expression and
enriched in neuronal functions. This tissue-specific activity is
consistent with what has been recently reported for gE’2. These
genes are also associated with signals of positive selection and
acceleration, suggesting they may have contributed to human
adaptation in several traits. However, we acknowledge that these
evolutionary signals could also be explained by relaxed
selection”3. These evolutionary patterns are unique to hswEgE
and not found in conserved poised enhancers in gP even though
these elements also target genes with brain-related functions.
Moreover, we show that hswEgE accumulate more human-
specific sequence changes than expected. These changes could
potentially alter the activity of the enhancer, as has been recently
shown’4. We highlight two interesting protein-coding genes that
show the convergence of both signals and an excess of human-
specific mutations which have key functional roles in neuronal
structure, migration, or axon guidance: CLVSI and ROBOI.

Using LCLs as our model system, we have seen that poised and
weak enhancer activities may carry information about gene reg-
ulation in unrelated cell types. Notably, we find that genes in
putatively selected or accelerated regions also harbor human-
specific epigenetic and sequence innovations. Given the tissue-
specificity and functional enrichments of these genes, which are

marginally expressed and unrelated to LCLs, we hypothesize that
functionally relevant regulatory innovations that appear in a
given cell type could be echoed as weaker activity signals in a
different cell type. This could explain our observations in LCLs.
As such, our results suggest that human-specific weak enhancer
activities could provide an unexpected window for the study of
regulatory evolution in the human lineage. Further research will
be needed to clarify the specific role of these elements in different
tissues and cell types.

Taken together, this work shows that the evolution of gene
regulation is deeply influenced by the coordination of epigenetic
activities in gene regulatory architectures. Our insights call for the
incorporation of better integrative datasets and refined definitions
of regulatory architectures in comparative evolutionary studies to
fully understand the interplay between epigenetic regulation and
gene expression.

Methods

Cell line acquisition and cell growth. Lymphoblastoid cell line (LCL) GM19150
(Yoruban male) was purchased from the Coriell Institute. Chimpanzee, gorilla, and
orangutan LCLs”> were kindly provided by Dr. Antoine Blancher. Macaque
LCLs’%77 were kindly provided by Dr. Gaby Dioxiadis.

Cell lines were grown in suspension at a confluency of 200,000 cells/mL to 1 x
109 cells/mL, at 37 °C and 5% CO,, in RPMI 1640 media (Invitrogen 42401-018)
with 15% fetal bovine serum (FBS Invitrogen 10270-106), 1% penicillin-
streptomycin (Invitrogen 15140-122), and supplemented with 2 mM L-glutamine
(Sigma G7513-100ML).

DNA and RNA extractions. For DNA and RNA extractions, ~5 million cells were
pelleted and washed with PBS (Sigma D8537).

DNA extractions were performed using a phenol-chloroform protocol. Briefly,
cell pellets were resuspended in a lysis buffer (10 mM Tris-HCI pH 8, Life
Technologies 15568-025; 10 mM NaCl, Sigma 71386; 0.2% IGEPAL CA-630, Sigma
18896) and incubated in ice for 30 min. Next, cells were washed and incubated at
37°C for 30 min in NEB2 buffer (New England Biolabs B7002S), supplemented
with 10% SDS (Life Technologies AM9820) and 5 pL of RNAse A (QIAGEN
79254), followed by an overnight incubation at 65 °C with 10 pL Proteinase K (Life
Technologies AM2546). Two successive phenol-chloroform extractions were
performed the day after. DNA was precipitated with NaAc 3 M and washed twice
with 70 and 100% EtOH, respectively. DNA integrity was checked in an agarose
gel. Extracted DNA was used for WGS and WGBS libraries. Libraries were
prepared using the TruSeq DNA PCR Free Library Preparation Kit and TruSeq
DNA Methylation Kit, respectively, following Illumina’s standard protocol. One-
fifty base pair paired-end (150PE) reads were sequenced in a HiSeqX machine.

RNA was extracted using the miRNeasy Mini kit (QIAGEN 217004) following
the manufacturer’s instructions. The TruSeq Stranded Total LT Samples Prep Kit
with Ribo-Zero was used for library construction, following Illumina’s standard
protocol. Library preparation and sequencing were performed at Macrogen (Seoul,
Korea). Three technical replicates (R1, R2, and R3) were sequenced per sample. All
nine libraries per technical replicate were pooled and loaded into one lane. About
101 bp paired-end reads (101PE) were sequenced in a HiSeq4000 machine.

Chromatin immunoprecipitation. For ChIP-seq experiments, LCL primate cell
lines were harvested and washed with PBS (Sigma D8537). Cells were fixed by
incubating in 1.5% formaldehyde (Sigma F8775) PBS buffer at room temperature
for 10 min. Formaldehyde was quenched with 125 mM glycine (Invitrogen 15527-
013) at room temperature for 5 min, after which the samples were placed on ice for
15 min. Cells were then washed twice in cold PBS, aliquoted, and pellets of ~20
million cells were frozen at —80 °C. ChIP experiments were carried out following a
standard protocol in the lab’8. Briefly, crosslinked cell pellets were resuspended in
500 uL ice-cold ChIP buffer (50 mM Tris-HCI pH 8, 100 mM NaCl, 5mM EDTA,
0.33% SDS, 1.67% Triton X-100) with Protease inhibitors (cOmplete™ EDTA-
free, SIGMA) and 1 mM PMSF. Lysates were sonicated in a Bioruptor (Diagenode)
to obtain an average fragment size of 250 bp and centrifuged for 20 min at full
speed. An aliquot of the soluble chromatin was taken, reverse cross-linked, purified
using the Qiagen PCR purification kit (Cat No./ID: 28104), and quantified by
Nanodrop. For each ChIP, 30 ug of soluble chromatin, 0.75 ug of mouse E14TG2a
(as spike-in control), and 5 pg of the corresponding histone modification antibody
were incubated overnight at 4 °C. ChIP DNA was recovered by incubating with 42
uL protein A bead slurry (Diagenode) for 2 h, washed three times with low salt
buffer (50 mM HEPES pH 7.5, 140 mM NaCl, 1% Triton X-100) and one time with
high salt buffer (50 mM HEPES pH 7.5, 500 mM NaCl, 1% Triton X-100). DNA
complexes were decross-linked at 65 °C overnight with proteinase K (Invitrogen)
and DNA was purified using the PCR purification kit (Qiagen, 28104) and
quantified by Nanodrop. We used commercially available antibodies against
H3K4me3 (Diagenode, C15310003), H3K4mel (Abcam, ab8895), H3K36me3
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(Abcam, ab9050), H3K27me3 (Millipore, 07-449), and H3K27ac (Millipore 07-
360).

A total of 63 ChIP-seq libraries were constructed: 45 libraries for the ChIP-seq
experiments (one per sample and histone modification) and 18 libraries for Input
samples (Inputl for histones H3K4me3, H3K4mel, H3K36me3, and H3K27me3;
Input2 for H3K27ac). Prior to library preparation, ChIP-qPCR validations were
performed using primer pairs of known active and repressed genes in human LCLs
(active: CEP250, GAPDH, Beta-Actin; repressed: Sox2) and a negative intergenic
region as a control for the histone modifications studied. About 2-10 ng of ChIP
DNA were used to prepare the sequencing libraries using the NEBNext Ultra DNA
Library Prep Kit for Illumina (NEB, E7370L) as per the manufacturer’s
instructions. ChIP-seq libraries were size selected to remove fragments below 100
bp and amplified for 10 PCR cycles. Four to five libraries were pooled and loaded
into a total of 13 lanes. About 50 bp single-end reads (50SE) were sequenced in an
Ilumina HiSeq2500 machine, using v4 chemistry.

Assay of transposable chromatin. ATAC-seq libraries for nine lymphoblast cell
lines were generated following the Buenrostro et al. protocol’?. Briefly, 50,000 cells
were harvested, washed in cold PBS and resuspended in 50 mL of cold lysis buffer
(10 mM Tris-HCI pH 7.4, 10 mM NaCl, 3 mM MgCl,, 0.1% (v/v) Igepal CA-630).
Samples were spun down for 10 min at 500 x g, 4 °C. Pellets were resuspended in
the transposition reaction mix and incubated at 37 °C for 30 min. Samples were
purified using the Qiagen MinElute PCR purification kit. Transposed DNA was
eluted in 10 pL of elution buffer and subjected to PCR amplification for eight cycles
using barcoded primers and NEBNext High Fidelity PCR master mix. ATAC-seq
libraries were purified using 1.8X volumes of AMPure XP beads to remove frag-
ments below 100 bp. Library quality was assessed using a Bioanalyser High Sen-
sitivity DNA analysis kit (Agilent). All nine libraries were pooled and loaded in a
total of three lanes. 50 bp paired-end reads (50PE) were sequenced on a HiSeq 2500
platform (Illumina), using v4 chemistry.

Definition of RE. This analysis was performed to identify putative RE in each
primate species. We used ChromHMM to jointly learn chromatin states across
samples and segment the genome of each sample?0. ChromHMM implements a
multivariate Hidden Markov Model aiming to summarize the combinatorial
interactions between multiple chromatin datasets. Bam files from the five histone
modifications profiled were binarized into 200 bp density maps. Each bin was
discretized in two levels, 0 or 1, depending on their enrichment computed by
comparing immunoprecipitated (IP) versus background noise (input) signal within
each bin and using a Poisson distribution. Binarization was performed using the
BinarizeBam function of the ChromHMM software?®. A common model across
species was learned with the LearnModel ChromHMM function for the con-
catenated genomes of all samples but O1 (orangutan sample 1) due to its anom-
alous methylation profile (Supplementary Fig. 43). Several models were trained
with a number of chromatin states ranging from 8 to 20. To evaluate the different
n-state models, for every sample, the overlap and neighborhood enrichments of
each state in a series of functional annotations were explored. A 16-state model was
selected for further analysis based on the resolution provided by the defined
chromatin states, which capture the most significant interactions between histone
marks and the state enrichments in function-annotated datasets (Supplementary
Fig. 2). The genomic coordinates of RE were defined for each sample by merging all
consecutive 200 bp bins excluding elongating (E1 and E2), repressed hetero-
chromatin (E16), and low signal (E15) chromatin states. Species RE were defined as
the union of sample RE. For orangutan, we did not include RE specific to O1.

Assignment of a regulatory state to RE. This analysis was performed to assign
each RE a regulatory state based on their epigenetic signals. We did so using a two-
step approach. First, we classified RE based on the chromatin states found in them.
Second, we refined this classification based on their underlying histone modifica-
tions and open chromatin signals.

RE were assigned a chromatin-state based annotation. Combining the
information gathered through the overlap and neighborhood enrichment analyses
in functionally defined regions, we established a hierarchy to designate poised (p),
strong (s), and weak (w) promoter and enhancer states. Chromatin states E8, E9,
and E11 defined promoter states (P); E8 and E9 were strongly enriched at TSSs,
CGIL, UMR (unmethylated regions), and open chromatin regions, while E11 was
mostly located downstream the TSS; the presence of E14 defined poised promoter
states (pP); absence of E14 and presence of E9 or E11 defined strong promoter
states (sP); remaining P were classified as weak promoter states (wP). Non-
promoter RE were assigned an enhancer state (E). The presence of E14 defined
poised enhancer states (pE); absence of E14 and presence of E3, E4, E5, E6, and E12
defined strong enhancer states (sE): E5 and E6 were strongly enriched LMRs (low
methylated regions) whereas E3, E4, and E12 were highly abundant at introns;
remaining E were classified as weak enhancer states (WE) (Supplementary Figs. 2
and 33).

One of the limitations of chromatin states is that bin assignments are based on
the presence or absence of particular epigenetic marks. However, oftentimes, the
lines separating different RE are blurry: e.g., the distinction between promoter and
enhancer states generally resides in the H3K4me3/H3K4mel balance. Hence, some

misclassifications are expected due to an insufficient precision of the qualitative
classification. Considering the quantitative relationship between co-existing histone
modifications can help to accurately annotate epigenetic states in RE. We used
linear discriminant analysis (LDA)30 to refine chromatin-state based annotations.
This method is commonly applied to pattern recognition and category prediction.
LDA is a technique developed to transform the features into a lower-dimensional
space, which maximizes the ratio of between-class variance to the within-class
variance, thereby granting maximum class separation. We performed LDA analysis
using the lda function in the R package MASS (version 7.3-47)8!. The predictor
variables were the background-noise normalized IP signals from the five different
histone modifications profiled and the chromatin accessibility signal at species RE.
The categorical variable to be predicted based on the underlying enrichments was
the chromatin-state-based annotation. The regulatory state at the species level was
determined based on the regulatory state in each of the biological replicates. Thus,
the regulatory state of an element with different epigenetic states in the two
replicates (ambiguous) could be aP or aE, when both samples of a given species
were annotated as either P or E but differ in their activity; P/E, when a RE was
classified as P in one biological replicate and E in the other one; and P/Non-RE or
E/Non-RE, when the RE was detected only in one replicate (Supplementary Fig. 6
and Supplementary Data 1). Larger inter-sample variability is expected between
human replicates as H1 data were obtained from previously published datasets.
Hence, to control for interindividual variability, only RE with the same activity in
the two replicates were considered for downstream analyses.

Analysis of evolutionary conservation at orthologous regulatory regions. This
analysis was performed to explore the conservation patterns of RE across species.
We studied the evolutionary conservation of epigenetic signals at two levels. First,
we investigated the conservation of RE with promoter or enhancer epigenetic
states, regardless of their activity. Second, we investigated the evolutionary con-
servation of strong, poised, and weak promoters and enhancers.

To study the evolutionary conservation of promoters and enhancers, we focused
on a set of 21,753 one-to-one orthologous regions associated with genes, in which
at least one species showed a promoter or enhancer epigenetic state. To measure
the evolutionary conservation at each orthologous regulatory region, we count the
number of species (1, 2, 3, 4, or 5) in which the promoter or enhancer state is
conserved (Supplementary Fig. 9).

To study how evolutionary changes occur, we define recently repurposed
promoters as orthologous regulatory regions in which one species shows a
promoter state while the others show an enhancer state or vice versa. Similarly, we
refer as novel promoter or enhancer states to those orthologous regulatory regions
in which a given species showed a promoter or enhancer state while the others
showed no evidence of regulatory activity (classified as nonregulatory).

To study the evolutionary conservation of strong, poised, and weak promoters
and enhancers, we focused on the subset of 10,641 one-to-one orthologous regions
in which at least one species showed a strong, poised, or weak regulatory state (we
do not include orthologous regions including elements with ambiguities, i.e.,
different activities between biological replicates). To measure the evolutionary
conservation at each orthologous regulatory region, we count the number of
species (1, 2, 3, 4, or 5) in which each regulatory state (strong, poised, and weak
promoters or enhancers) is conserved (Supplementary Fig. 12). To statistically
assess the different evolutionary dynamics for the different regulatory states, we
first ran randomization analyses. We randomized (1000 randomizations) the
regulatory states associated with each species in the orthologous regulatory regions.
We calculate the P value as the number of randomizations with average
conservation equal to or above the observed conservation for each regulatory state.
We further explored the different patterns of conservation combining: (1)
Kruskal-Wallis test (kruskal.test R function)82 to test whether the global
distributions of the number of species in which each particular state was conserved
were different for the different regulatory states, (2)
Dwass-Steel-Critchlow—Fligner test to assess the significance of every pairwise
comparison (dscfAllPairsTest function from the R package PMCMRplus version
1.4.4)%3, and (3) Glass rank biserial correlation coefficient for Mann-Whitney U-
test to compute the effect sizes associated with all statistically significant pairwise
comparisons (wilcoxonRG function from the R package rcompanion version
2.3.25)84,

To study the patterns of evolutionary conservation of the sequence underlying
orthologous regulatory regions, we assigned each orthologous regulatory region a
conservation score. We computed this score based on the phastCons30way
sequence conservation track?®. To control for background sequence conservation
levels, we first computed the average and standard deviations phastCons30way in
TADs defined in the cell line GM128785° (Supplementary Fig. 13). Then, we used
these summary statistics to calculate the Z-score for each bp in every orthologous
regulatory region, using the average and standard deviations values of the TAD in
which each orthologous regulatory region was found. We averaged the Z-scores
within each orthologous regulatory region in bins of 200 bp that overlap 50 bp with
the next bin and assign each orthologous regulatory region the maximum Z-score
values associated with its bins. We computed the Spearman rho correlation
between the Z-scores and the number of species in which each orthologous
regulatory region was conserved, separately for each regulatory state. To determine
the statistical significance of these correlations we used randomization analysis. For
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each regulatory state, we created 1000 sets randomizing the Z-score associated with
each orthologous regulatory region and calculated the Spearman correlation in
each randomization. We determined the P value as the number of randomizations
with a Spearman rho correlation value equal to or above the observed correlation
(Supplementary Fig. 15).

Classification of RE in different types of components of gene regulatory
architectures. This analysis was performed to classify RE based on their putative
role in the regulation of gene expression.

We pre-classified each RE into a gene regulatory component based on their
genomic location with respect to their corresponding species ENSEMBL release
9186 gene annotations. RE found up to 5 Kb upstream to the nearest TSS were
classified as gP. Additional RE located up to 10 Kb to the nearest TSS were
classified as prE. RE that overlapped a gene were classified as gE. Other RE that
could not be linked to a gene based on their genomic proximity were initially
classified as distal enhancers (dE).

Then, we made use of available interaction data for the cell line GM12878
(HiC3!, HiChIP-H3K27ac?2, and ChIA-PET?3) to map interactions between RE.
Each interacting pair was mapped independently to hg38 coordinates using the
liftOver tool from the UCSCTOOLS/331 suite®’, and only interactions for which
both pairs could be mapped were kept. Subsequently, interactions were mapped to
the nonhuman primate reference genome assemblies. For interspecies mappings,
coordinates were mapped twice, going forward and backward, and only pairs that
could be mapped in both directions were kept. Interacting RE were defined as those
that overlapped with each pair of any given interaction. First-order interactions
were annotated between promoters and enhancers, allowing the definition of PiE.
Second-order interactions were annotated between enhancer components (gE, prE,
or PiE), allowing the definition of EiE (Fig. 4a and Supplementary Fig. 1).

Considering both their epigenetic state and regulatory component, RE were
separated into 30 (6 x 5) different subcategories. We used a Chi-square test to
identify the component-epigenetic state combinations enriched in orthologous
regulatory regions with fully conserved and species-specific epigenetic states
(Supplementary Fig. 26).

Gene expression levels and regulatory states in gene components. This ana-
lysis was performed to explore whether gene expression levels are associated with
the activity state of RE in each type of component.

To investigate the influence of the activity state of RE in each type of
component on gene expression levels, we classified one-to-one orthologous
protein-coding genes, separately for each species, into six mutually excluding
categories, one for each regulatory state within each type of component
(component-state combinations). Whereas genes can only be associated with one
genic promoter and hence, they can only be classified into one category for gP
depending on the corresponding epigenetic state of the RE, genes can be associated
with more than enhancer component (gE, prE, PiE, and EiE). In those cases, we
classified genes into a given component-state category accordingly to the presence
of at least one RE with a given epigenetic state in that component using the
following state hierarchy: pE > pP > sE > sP > wE > wP (Supplementary Fig. 20). To
statistically assess the influence of each state in each component, we used (1)
Kruskal-Wallis test (kruskal.test function as implemented in R)3? to test whether
the distributions of the expression levels of genes associated with each component-
state combination were different for the different regulatory states, (2)
Dwass-Steel-Critchlow-Fligner test to assess the significance of every pairwise
comparison (dscfAllPairsTest function from the R package PCMRplus version
1.4.4)83, and (3) Glass rank biserial correlation coefficient effect size for
Mann-Whitney U-test to compute the effect sizes associated with all statistically
significant pairwise comparisons (wilcoxonRG function from the R package
rcompanion version 2.3.25)% (Supplementary Fig. 21).

Partial correlation analysis. This analysis was performed to understand in greater
detail how the epigenetic signals associated with RE with different epigenetic states
and in different components relate to each other and with gene expression.

To disentangle the network of direct co-dependencies between the different
components, regulatory states, histone marks, and gene expression, we performed a
series of partial correlation analyses3488. To tackle the diversity of architectures
detected for the different genes, we added up the calibrated signal of all the RE with
a given regulatory state (promoter or enhancer) in a given type of component for
any gene architecture. This decision was based on the observed relationship
between the number of strong elements in a gene architecture and the expression
level of its target gene. Separation of histone signals in each type of component
between those contributing to a promoter or to an enhancer was intended to reflect
the potential differences in their role in gene expression regulation. As a result of
this design, our system has 51 variables (RNA-seq signal 4 5 histone mark signals
x 2 regulatory states x 5 components) and 57,370 cases (5737 genesx 5 species x
2 samples).

All partial correlation analyses were performed using an adaptation of a recently
published Sparse Partial Correlation Analysis protocol** based on the continuous
values of the accumulated ChIP-seq signals (instead of their ranks) to take
advantage of their pseudo-quantitative nature. This protocol combines the recovery

of statistically significant partial correlations with a cross-validation process to filter
out those relationships leading to overfitted reciprocal linear LASSO models
(significant partial correlations unlikely to be biologically meaningful). In our case,
in every analysis, we recovered those partial correlations recovered in at least four
of the five species without leading to overfitting when determining the reciprocal
explanatory power in the remaining species. This protocol is intended to detect
biologically relevant co-dependences out of the set of significant partial correlations
and as a result, this approach filters out many significant partial correlations with
very low explanatory power. In fact, all the partial correlations recovered in any of
the analyses performed showed very low P values (Benjamini-Hochberg’s
correction®®, P< 1.8 x 10722). In our case, given the relatively small amount of
data, we focused on recovering those partial correlations that are likely to be
relevant in any species. For these analyses, we used a modified version of the R code
provided by the authors (http://spcn.molgen.mpg.de/code/sparse_pcor.R/) to
perform fivefold cross-validation analyses separating by species instead of the
original tenfold cross-validation protocol suitable for larger datasets. Network
visualizations were performed with Cytospace®.

In a partial correlation model, direct co-dependencies are established between
individual variables. However, we know that coordination of the different histone
marks within components is important to define the global epigenetic
configuration of a component (also captured in our epigenetic states), which itself
could be considered the relevant variable for this analysis. To better address this
situation in our analysis, we defined a consensus signal for every component
following the same approach established by WGCN? to define eigengenes as
representative variables of clusters of co-expressed genes. In brief, we defined
eigencomponents as the variables summarizing the common signals of the different
histone marks in a component (actually calculated as the first PCA component of
these five variables). So that eigencomponents keep the meaning of the activities,
they were defined as codirectional with H3K27ac signals in each component
(eigenvectors negatively correlated with H3K27ac signals were multiplied by -1).
We performed a Sparse Partial Correlation Analysis of these ten eigencomponents
and RNA-seq that recovers very clearly the structure of direct co-dependencies
between the epigenetic configuration of the different components and gene
expression (Fig. 4e and Supplementary Data 5).

In addition, we defined the remaining unexplained signal of every histone mark
by its eigencomponent as the residuals of a linear model of the original variables
and the corresponding eigencomponent. A Sparse Partial Correlation Analysis of
these residuals (Supplementary Fig. 22 and Supplementary Data 6) shows that even
these residuals reflect the same inter-component structure and highlights that our
eigencomponents miss some relevant information for the definition of this
regulatory coordination (mainly weaker co-dependencies involving promoter states
in intragenic and PiE and enhancer states in promoters).

To assess to what extent eigencomponents reflect the behavior of the whole
network of co-dependencies of the histone marks or of each of the specific histone
marks, we also performed SPCAs using the actual ChIP-seq enrichment signals. A
global partial correlation analysis considering all 51 variables shows a very clear
structure of direct co-dependencies with a strong intra-component contribution for
the two states of every single component and a clear but more modest exclusive
inter-component contribution (Supplementary Data 7). Analyses to determine the
Sparse Partial Correlation Network of each of the histone marks and RNA-seq
without considering the possible influence of the remaining histone marks
(Supplementary Data 8) retrieve very similar networks pointing to the common
backbone of inter-component co-dependences reflected in our SPCA of the
eigencomponents.

Our dataset of regulatory components shows a quite unbalanced contribution of
the components to the architectures, with gE being the most abundant type of
component and promoter-interacting and EiE being the least abundant
(Supplementary Fig. 18). These differences could be at least partially related to our
inability to recover some of the chromatin interaction-mediated regulatory
associations. More importantly, this imbalance, if not real, could affect the ability of
our partial correlation networks to reflect the contribution of those components
less represented in our datasets. To explore this point, we recovered the subset of
genes (an average of 1068 genes per sample) with full architectures (those with at
least one element in every type of component) and repeated all the Sparse Partial
Correlation Analyses explained above with this dataset of genes. In all the cases, we
obtained very similar results, recovering fewer relevant partial correlations due to
the smaller number of genes, but with no signal of any relevant difference in the
global structure of the coordinated network of components and gene expression
(Supplementary Fig. 23 and Supplementary Data 5-8).

All the components of the connected network can be very influential in gene
expression through their direct or indirect connection with gene expression.
However, our Sparse Partial Correlation Networks point consistently to the direct
co-dependency of RNA-seq with the genic promoter and gE components and the
co-dependency between them. To quantify the explanatory power of these
dependencies for gene expression, we performed a simple generalized linear model
(glm function as implemented in R82) for RNA-seq using H3K27ac, H3K27me3,
and H3K36me3 signals in gP and gE and the interactions between them. This
model was able to explain 67% of the gene expression variance (Supplementary
Data 8), a percentage 5% higher than the 62% explained by a naive model
including the signals of all histone marks in all the components but no interaction
between them (Supplementary Table 8), supporting that gP and gE contained
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nearly all the epigenetic information needed to define gene expression levels in
our data.

Differential gene expression analyses. This analysis was performed to find genes
with expression changes between species and investigate how these expression
changes are connected to changes in gene regulatory components with different
epigenetic states.

We identified genes with differential expression levels across species using the
iDEGES/edgeR pipeline in the R package TCC (version 1.12.1)°192 at an FDR of
0.1 and testing all species pairwise comparisons. Then, we determined the patterns
of differential expression, species, and direction of the gene expression change,
using a two-step approach. For every gene, the Q-values obtained in species
pairwise comparisons were ordered from smallest to largest. Different expression
labels were then assigned to each species according to the ordered Q-values. Once
all species had an assigned label, the average normalized expression values between
groups were compared to determine the directionality of the change. We separate
differentially expressed genes into two categories: genes with species-specific
expression changes and genes with non-species-specific expression changes.

To investigate the relationship between changes in gene expression and changes
in the regulatory architecture of a gene, for every type of regulatory component, we
run a Wilcoxon signed-rank test evaluating whether the number of RE with a given
regulatory state in that particular regulatory component was significantly
associated with higher expression levels, for strong and weak activities, or lower
expression levels, for poised activities. P values obtained for each regulatory role
were corrected for multiple testing using the Benjamini-Hochberg procedure®.

Over-representation analyses (ORA) of functional annotations. This analysis
was performed to explore the functional role of both conserved as well as species-
specific regulatory states in certain regulatory/gene components (overrepresented
combinations of regulatory states in specific components, Supplementary Fig. 26).
For that, we defined sets of genes associated with fully conserved and species-
specific component-epigenetic state combinations and explored their functional
enrichments. To ensure the representativeness of the functional enrichments, for
the gene lists associated with each type of component, we excluded genes associated
with components with different epigenetic states activities (i.e., genes associated
with both conserved strong and weak gE) or associated with both conserved and
species-specific components levels (i.e., genes associated with both a conserved and
a species-specific weak gE) and kept those gene lists with a minimum of 15 genes
for enrichment analyses. Of note, orangutan-specific component-epigenetic state
combinations were excluded from the analysis because they were defined using
only one LCL replicate (see above) and they are likely to be enriched in inter-
individual variable activities.

Over-representation of Gene Ontology (GO) terms was performed using the
WebGestaltR function from the R package WebGestaltR (version 0.4.3; http://www.
webgestalt.org) with minNum = 25 and remaining default options. This function
controls the FDR by applying Benjamini-Hochberg procedure (default threshold
FDR = 0.05)8%93. Previous analyses have shown that recent enhancers tend to
occur in the same genes that already have highly conserved enhancers!?. To control
for the particular background of each component, we built different background
gene sets, including the set of human genes associated with at least one-to-one
orthologous regulatory regions of each type of component. This way, we have
specific and different backgrounds for gP, gE, and PiE. To represent and compare
enriched GO terms between component-state combinations, we performed a
clustering analysis of all significantly enriched GO terms using REVIGO%*. We
associated each GO term with the proportion of genes from each component-state
combination that overlapped that GO term. In the case of GO terms enriched in
more than one gene set, we chose the highest proportion of genes. We used this list
as input for REVIGO. Given that REVIGO only reports the clustering of ~350 GO
terms and our input list was larger than that, we used the R package GofuncR
(version 1.8.0)%° to retrieve the parent GO terms of the remaining unassigned GO
terms and add them to the corresponding group as defined by REVIGO. REVIGO
group names were manually assigned, taking into account the most representative
parent term (Supplementary Data 10).

Analysis of tissue-specific gene expression. The aim of this analysis was to
inspect the expression pattern and tissue-specificity of certain RE in particular
components (both conserved as well as species-specific) across different human cell
types or tissues. We defined sets of human genes associated with fully conserved
component-state combinations and human genes associated with human-specific
gains/losses of RE. Note that these gene lists are not mutually exclusive since a gene
can be associated with different types of conserved or species-specific component-
state combinations (e.g., a gene with both a human-specific intragenic enhancer
with weak activity and a fully conserved gE with a strong activity). We obtained
expression levels (median TPM values) across a collection of different tissues from
the latest GTEx release (v8)36. We only included tissues with at least 70 samples
and grouped tissue subregions into the same tissue category, as stated in Supple-
mentary Table 9. For each component-state combination, we followed a two-step
approach to remove consistently low-expressed genes across tissues. For that, we
first assigned a value of 0 to all genes with a median expression level below 0.1

TPM and then we excluded from the analyses those genes that had an accumulated
expression value in all tissues below 0.1xNumber of tissues (n =29 tissues). For
each component-state combination, differences in median expression across tissues
were assessed with the Friedman test using the friedman.test function as imple-
mented in R82. We used the Wilcoxon-Nemenyi-McDonald-Thompson test
implemented in the pWNMT function of the R package NSM3 (version 1.14)% to
assess whether expression levels were significantly different for all pairwise tissue
combinations. Then, we made use of the rank-biserial correlation to calculate the
effect sizes for all statistically significant pairwise tests with the wilcoxonPairedRC
function of the R package rcompanion (version 2.3.25)34,

We then evaluated the tissue-specificity of the genes associated with the
different component-state combinations. For this, we calculated the tissue
specificity index®” (r, tau) for each gene, which is defined as:

N
7= gl(l—x,-)/N—l (1)

where N is the number of tissues and x; is the expression value normalized by the
maximum expression value. This value ranges from 0, for housekeeping genes, to 1,
for tissue-specific genes (values above 0.8 are used to identify tissue-specific
genes)?8. Tissue-specificity indices were calculated for all genes included in the
latest GTEx release3®. Gene expression levels (median TMP) of grouped tissue
categories (Supplementary Table 9) were normalized within and across tissues
before calculating 7 as implemented in the R package tispec (version 0.99.0)%°. The
calcTau function from this package provides a tau value for each gene and also a
tau expression fraction for each tissue (which also ranges from 0 to 1) that indicates
the specificity of a given gene for that tissue.

After calculating 7 values, we compared their distributions between gene
datasets with the Kruskall-Wallis test and assessed the significance of every
pairwise comparison with the Dwass-Steel-Critchlow-Fligner test
(dscfAllPairsTest function from the R package PMCMRplus version 1.4.4)33. Glass
rank biserial correlation coefficient was used to compute the effect sizes associated
with all statistically significant pairwise comparisons using the wilcoxonRG
function from the R package rcompanion version 2.3.25% (P <0.05).

Association of genes containing gE with signals of positive selection and
accelerated evolution. The main objective of this analysis was to examine whether
hswEge-containing genes had been targeted by different evolutionary forces. We
built a database of human genomic regions with previously detected signals of
positive selection in humans®%->4 and human acceleration®>->’. In brief, for the
signals of positive selection, we retrieved Supplemental Files 1 and 2 from
Peyrégne et al. Table S5 from Racimo®! et al. Table S3 (regions >1600 genera-
tions) from Zhou5? et al. Table S19a.3 from Priifer5? et al. and Table S37 from
Green>* et al. For the datasets with different signals of human acceleration we took
haDHSs (Supplemental Table 2) from Gittelman®” et al. HARs (Supplementary
Info) from Lindblad-Toh56 et al., and CNSs (Table S1) from Prabhakar>? et al. To
account for the potential effect that gBGC could have in these regions, we filtered
out all those regions overlapping with gBGC tracts in the human genome!0. After
this filtering, BEDtools!%! was used to assign these regions to both protein-coding
and non-coding genes following similar criteria to those used for building the gene
regulatory architectures (Methods’ section Classification of RE in different types of
components of gene regulatory architectures). We assigned these regions to a
protein-coding gene if they were located within the gene or up to 5 Kb upstream of
its TSS. Then, we made use of available interaction data for the cell line GM12878
(HiC3!, HiChIP-H3K27ac??, and ChIA-PET?3) to assign this composite of posi-
tively selected regions and acceleration regions to their interacting genes. We ended
up with a set of 4747 genes associated with at least one positively selected region or
one accelerated region in the human lineage. We computed the overlaps between
this gene list and the lists of genes associated with the different component-state
combinations at different degrees and backgrounds. We used one-tailed Fisher’s
exact test to assess the enrichment significance.

Analyses of the density of human-fixed single nucleotide changes (hSNCs) in
gE with weak enhancer states. The purpose of this analysis was to assess the co-
occurrence of human-nucleotide changes in human-specific RE. In order to study
the distribution of these human-fixed changes, we first generated a dataset with
human-specific changes. We used sequencing data from a diversity panel of 27
orangutans, 42 gorillas, 11 bonobos, and 61 chimpanzees'2-104, as well as 19
modern humans from the 1000 genomes project!%%, all mapped to the human
reference assembly hgl9. We applied a basic filter for each site in each individual
(sequencing coverage >3 and <100) and kept sites where at least half of the indi-
viduals in a given species had sufficient data. Furthermore, at least 90% of the kept
individuals at a given site in a given species had to share the same allele; otherwise,
the site was labeled as polymorphic in the population. Indels and triallelic sites
were removed, and only biallelic sites were kept. We used data from a macaque
diversity panel!, applying the same filters described above. The allele at mono-
morphic sites was added using bedtools getfastal®! from the macaque reference
genome rheMac8. Since this panel uses the macaque reference genome, we per-
formed a liftover to hgl9 using the R package rtracklayer!?” and merged the data
with the great ape diversity panel.
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Lineage-specific changes were retrieved as polymorphisms with sufficient
information. Hence, human-specific changes (hSNCs) were defined as positions
where each species carry only or mostly one allele within their respective
population, the majority of individuals in each population have a genotype call at
sufficient coverage, and the human allele differs from the allele in the other
populations.

BEDtools!?! was used to annotate those hSNCs in conserved or hswEgE, and
the density of changes was calculated as the number of hSNCs present in each
enhancer divided by the length of the enhancer.

To determine which hswEgE were enriched in human-specific changes, we
compared their density to what would be expected at random. For that, we first
established the number of hSNCs that fall in human gE with weak enhancer states
associated with one-to-one orthologous regulatory regions (our universe of
enhancers). In each simulation, this number of mutations was randomly placed in this
universe, and we computed the density for each of the hswEgE (10,000 simulations).
With this approach, we corrected for the differences in the length of the enhancers.
The P value for each enhancer was computed as the number of simulations with a
density equal to or above the observed density for that particular enhancer. All P
values were corrected by multiple testing using the Bonferroni method with the
number of tests equal to the number of hswEgE.

We then assessed whether the number of enhancers that were statistically
enriched in hSNCs (or number of hits) was greater than what would be expected at
random. In order to do that, for each enhancer, we defined its mutation density
critical value adjusting by multiple testing and using the simulated values. For
example, in a hypothetical case of 100 enhancers and 10,000 simulations, for each
enhancer, we would order its simulated density of hSNCs from smallest to largest
and take the fifth value as the critical one (given that our chosen alpha equals 5%,
but it has to be corrected by 100 tests; therefore it becomes 0.05%). Once we
established a critical value for each human-specific intragenic weak enhancer, we
determined, for each simulation, how many enhancers had a density equal to or
above their corresponding critical value. Finally, we computed the P value
comparing the number of artificial hits in each simulation with the number of
observed hits.

Data availability

The raw fastq files from the genomic, transcriptomic, and epigenomic data generated and
used for the analyses in this study were uploaded to the Sequence Read Archive (SRA)
with the BioProject accession number PRINA563344. Data from human cell line
GM12878 used in the study was obtained from SRA: RNA-seq accessions SRR998197
and SRR998198, ChIP-seq for H3K4me3 accession SRR998194, H3K4mel accession
SRR998191, H3K27ac accession SRR998178, H3K36me3 accession SRR998187, and
H3K27me3 accession SRR998189; GM12878 ChIP-seq input accession and ATAC-seq
data accession. Interaction data available for GM12878: HiC accession GSE63525,
HiChIP-H3K27ac, and ChIA-PET accession GSM1872887. Expression data is available
from GTEx v8. The remaining data are available within the manuscript, Supplementary
Information, Supplementary Data or from the corresponding authors upon reasonable
request.
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