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Despite current strategies combining surgery, radiation, and chemotherapy, glioblastoma
(GBM) is the most common and aggressive malignant primary brain tumor in adults. Tumor
location plays a key role in the prognosis of patients, with GBM tumors located in close
proximity to the lateral ventricles (LVs) resulting in worse survival expectancy and higher
incidence of distal recurrence. Though the reason for worse prognosis in these patients
remains unknown, it may be due to proximity to the subventricular zone (SVZ) neurogenic
niche contained within the lateral wall of the LVs. We present a novel rodent model to
analyze the bidirectional signaling between GBM tumors and cells contained within the SVZ.
Patient-derived GBM cells expressing GFP and luciferase were engrafted at locations
proximal, intermediate, and distal to the LVs in immunosuppressed mice. Mice were either
sacrificed after 4 weeks for immunohistochemical analysis of the tumor and SVZ or
maintained for survival analysis. Analysis of the GFP+ tumor bulk revealed that GBM
tumors proximal to the LV show increased levels of proliferation and tumor growth than LV-
distal counterparts and is accompanied by decreased median survival. Conversely,
numbers of innate proliferative cells, neural stem cells (NSCs), migratory cells and
progenitors contained within the SVZ are decreased as a result of GBM proximity to the
LV. These results indicate that our rodent model is able to accurately recapitulate several of
the clinical aspects of LV-associated GBM, including increased tumor growth and
decreased median survival. Additionally, we have found the neurogenic and cell division
process of the SVZ in these adult mice is negatively influenced according to the presence
and proximity of the tumor mass. This model will be invaluable for further investigation into
the bidirectional signaling between GBM and the neurogenic cell populations of the SVZ.

Keywords: glioblastoma, subventricular zone (SVZ), lateral ventricle, neural stem cell (NSC), cancer stem cell (CSC),
neurogenic niche
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INTRODUCTION

Glioblastoma (GBM) is the most frequent and aggressive type of
malignant primary brain tumor in adults (1, 2). Patients suffering
from GBM have a median survival of approximately 15 months
despite advanced therapeutic strategies of combinatorial surgery,
chemotherapy, and radiation (3, 4). Interestingly, tumor
progression for GBM patients is greatly affected by tumor
location. Lateral ventricles (LVs) infiltrating tumors account
for over 50% of all GBM patients (5). These LV-contacting
tumors result in higher incidence of distant recurrence, as well
as larger tumor volume and worse survival expectancy in patients
(6–9). Furthermore, GBM patients who receive radiotherapy that
includes the ventricular wall ipsilateral to the tumor show
increased survival when compared to patients where the
ipsilateral ventricular wall is avoided (10), indicating the
involvement of LV-derived factors in GBM progression.

The reason for worse patient outcome in these cases is
unknown, though could be due in part to contact with the
subventricular zone (SVZ) present in the lateral wall of the LV.
The SVZ is the largest stem cell niche in the mammalian adult
brain, including humans (11–14). In rodents, neural stem cells
(NSCs) of the SVZ form new neurons and glia throughout life,
differentiating to neuroblasts or glial progenitors that then
migrate to their site of terminal differentiation (15–18). Studies
have shown a high amount of similarity in the biology of NSCs
and stem-like GBM cells, including shared pathways of self-
renewal, differentiation, and cell migration (19, 20). Additionally,
several studies have identified NSCs of the SVZ as a potential
cell-of-origin for GBM, pointing to the potential involvement of
NSCs in GBM progression (21–25).

Shared mechanisms between NSCs and GBM support the
idea that stem cell-supportive factors contained within the SVZ
support the proliferation and stemness of LV-proximal tumors.
This may include a bidirectional crosstalk between NSCs/
progenitors and GBM cells that leads to changes in SVZ
biology and patient outcome. Previous work has shown that
cell types within the SVZ, including NSCs and their progeny, are
altered in response to GBM in rodents (26). Here, we develop a
novel rodent model of LV-proximal GBM and examine the
reciprocal relationship between the SVZ and GBM tumors. We
particularly focused on cell population and proliferation changes
in the SVZ as a consequence of GBM proximity to the LV.
MATERIALS AND METHODS

Experimental Animals
All in vivo experiments were approved by the Institutional
Animal Care and Use Committee of Mayo Clinic. Mice were
housed in a fully AALAC-accredited facility in accordance
with all federal and local regulations. Male athymic
immunosuppressed J:NU mice (The Jackson Laboratory, strain
007850) were maintained at Mayo Clinic Jacksonville with a 12-
hour light-dark cycle and ad libitum feeding. Animals were
utilized for experiments at an age between 6-8 weeks.
Frontiers in Oncology | www.frontiersin.org 2
Primary GBM Cell Xenograft
and Euthanasia
We utilized a primary cell line of human GBM cells (GBM1A,
also known as line 020913) (27). GBM1A cells were transduced
with a GFP-luciferase lentivirus (RediFect™ Red-FLuc-GFP,
Perkin Elmer CLS960003) and sorted for GFP positivity.
Following cell transduction, intracranial implantation of
tumors was performed as previously described (28–31).
Briefly, mice were anesthetized and placed in a stereotactic
frame. 5.0 x105 GBM1A-GFP luciferase+ cells were injected in
2 mL of DMEM/F12 into the right brain hemisphere. 3
injection sites were established in the following coordinates
(in mm relative to bregma); LV-proximal: AP: 1.0, L: 1.2, D:
2.3, n = 17; LV-intermediate: AP: 1.5, L: 1.3, D: 3, n = 7; and
LV-distal: AP: 1.0, L: 2.1, D: 2.3, n = 17. Tumor growth was
monitored weekly by bioluminescence following luciferin
injection. For survival experiments, mice were maintained
until reaching humane endpoint criteria following GBM
xenograft. For histology analysis, mice were maintained for 4
weeks after tumor implantation (n=7). Mice were then
anesthetized and perfused with 4% paraformaldehyde. Brains
were extracted and cryoprotected in 30% sucrose. Brains were
sectioned using an HM 430 Freezing Microtome at 30 mm
thickness. Sections were stored in 30% ethylene glycol, 20%
g l y c e r o l , 0 . 0 5M PB S , pH 7 . 4 a t - 2 0 ° C u n t i l
immunohistochemical processing.

Immunohistochemistry
Sections were permeabilized with 0.1% Triton in PBS (PBST) and
blocked with 1% BSA and 10% normal horse serum. In the case
of caspase-3 and Ki67 staining, antigen retrieval was performed
using sodium citrate buffer (10 mM + 0.05% Tween) at 90°C for
25 minutes, followed by cooling in the sodium citrate buffer for
30 minutes before washing and blocking. Sections were then
incubated overnight at 4°C in primary antibody at various
concentrations (Table 1) diluted in 0.2% normal horse serum
in PBST. Sections were washed and incubated in the dark for 1
hour at room temperature with secondary antibodies (Table 2) at
a concentration of 1:500 in 2% normal horse serum in PBST.
Sections were washed and counterstained with DAPI as a nuclear
dye. At least three sections per animal were used per
staining condition.

Imaging
Immunohistochemical preparations were visualized using a
confocal microscope (Zeiss LSM800). Tumors were visualized
by GFP+ cells and imaged with 10X, 25X, 40X or 63X objectives.
ZEN® Blue Edition software (Zeiss) was then used to process the
image. All sections for the same antibody combinations were
imaged in the same way using the same exposure levels.

Volumetric Analysis
Tumor area data was obtained using ZEN® Blue Edition
software. GFP+ tumors were traced using the “Draw Spline
Contour” tool in ZEN software to obtain the area of each
tumor section. Morphometric volume was then calculated
June 2021 | Volume 11 | Article 650316
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using the Cavalieri principle, which allows an accurate
estimation of the volume (V) of a structure independently of
its shape and size (32). This is calculated by finding surface area
(A) of a number (n) of parallel sections spaced at a constant
distance (t) and inserting into the following equation: V = t * (A1

+ A2 + A3… + An).

Cell Quantification
ZEN® Blue software was used to estimate the number of cells
expressing the human nucleus marker, HuNu, and the
proliferation marker, Ki67 in the different groups, both in the
tumor as in SVZ. In addition, cells positive for cleaved caspase-3,
phosphohistone H3, SOX2, SOX2/GFAP, DCX and OLIG2
present in SVZ were quantified. For cell quantification of the
SVZ, the ipsilateral and contralateral SVZ were imaged in 20X tiles
using a confocal microscope. Using the ZEN® Blue software, the
SVZ region was manually traced using the “Draw Spline Contour”
tool to specifically isolate the cells of the SVZ for the subsequent
analysis. Signal background was removed by adjusting the channel
histogram to the peak of the curve and remaining cells were
considered positive and counted. Cell quantification was
performed from planes with no tumor cell presence in order to
avoid changes in cell proportion, The cell density (number of cells
per square millimeter) was calculated for each image.

Statistical Analysis
All data is represented as the mean ± the standard error (SEM)
unless otherwise indicated. Statistical analysis and graphical
representation were performed using GraphPad Prism® 6
software. Normal distribution of data was assessed using the
Shapiro-Wilk normality test. To compare among multiple
groups, analysis of variance (ANOVA) with Tukey’s post-hoc
correction was performed. For independent comparisons
Frontiers in Oncology | www.frontiersin.org 3
between two groups the student’s t-test was performed. The
level of significance was determined as p < 0.05.
RESULTS

GBM Proximity to the LV Contributes to
Tumor Growth and Survival Outcome
We first evaluated the effect of the LV proximity on tumor
growth in our animal model. Patient-derived GBM cells
transduced to express GFP and luciferase were implanted at
locations proximal, intermediate, and distal to the LV (Figure 1A
and Supplementary Figure 1). Following a 4-week period,
tumors were evaluated for volume, cellular density,
proliferation, and apoptosis. When tumors were injected into
locations proximal and intermediate to the LV, we observed a
trend towards increased tumor volume compared to LV-distal
tumors (LV-proximal: 2.55 mm3; LV-intermediate: 3.74 mm3;
LV-Distal: 1.19 mm3; Figure 1B) with no difference in tumor cell
density (Supplemental Figure 2). In order to determine whether
LV proximity induced differences in proliferation or apoptosis,
we performed immunofluorescence staining for Ki67, cleaved
caspase-3, and human nuclei (HuNu)+ GBM cells. In tumors
injected in LV-proximal and LV-intermediate locations we
observed a significantly higher percentage of Ki67+/HuNu+
GBM cells than in LV-distal tumors (LV-proximal: 23.36%,
LV-Intermediate: 23.48%, LV-Distal: 11.41%; Figures 1C–F),
indicating an increase in GBM proliferative index dependent
on proximity to the LV. Additionally, the percentage of cleaved
caspase-3+/HuNu+ cells was significantly decreased in LV-
intermediate tumors compared to LV-proximal tumors (LV-
Proximal: 0.014%, LV-Intermediate: 0.0037%, LV-Distal:
0.015%; Figures 1G–J).
TABLE 1 | Primary antibodies used.

Antibody Species Detection Dilution Factor Catalog

GFP Mouse GFP+ GBM cells 1:500 Abcam (ab1218)
Human Nuclei (HuNu) Mouse Human GBM cells 1:200 Millipore (MAB1281)
Ki67 Rabbit Proliferating cells 1:200 Thermo (RM-9106-S0)

Mouse Novocastra (NCL-L-Ki67-MM1)
phosphohistone H3 (pH3) Rabbit Proliferating cells 1:200 Cell Signaling (9701S)
GFAP Rabbit Astrocytic cells 1:200 Dako (Z0334)
SOX2 Rat Undifferentiated cells 1:500 Thermo (14-9811-82)
OLIG2 Rabbit Oligodendrocyte precursors 1:500 Millipore (AB9610)
Cleaved caspase-3 (Asp175) Rabbit Apoptotic cells 1:200 Cell Signaling (9661)
Doublecortin (DCX) Goat Neuroblasts 1:200 Santa Cruz (SC-8066)
June 2021
TABLE 2 | Secondary antibodies used.

Secondary Antibody Wavelength Species and Reactivity Dilution Factor Catalog

Alexa Fluor 568 Donkey anti-rabbit 1:500 Invitrogen (A10042)
Alexa Fluor 647 Chicken anti-rabbit 1:500 Invitrogen (A21443)
Alexa Fluor 488 Donkey anti-goat 1:500 Invitrogen (10246392)
Alexa Fluor 555 Donkey anti-mouse 1:500 Invitrogen (A31570)
Alexa Fluor 594 Donkey anti-rat 1:500 Invitrogen (A21209)
| Volum
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We then evaluated the differences in tumor growth via
bioluminescence imaging (BLI) and long-term survival
outcome. Due to similar Ki67+ staining in LV-proximal and
LV-intermediate tumor locations, we only used the LV-proximal
tumor site for survival analysis. Tumor growth measured by
increase in total flux (photons per second) was significantly
higher in LV-proximal tumors than LV-distal tumors at 5
weeks post-xenograft (Figures 2A, B). Additionally, mice with
LV-proximal tumors exhibited decreased median survival
compared to their LV-distal tumor-bearing counterparts (LV-
Proximal: 36 days, LV-Distal 52 days; Figure 2C). These findings
show that we are able to effectively model several of the clinical
differences of LV-proximal GBM compared to LV-distal GBM,
Frontiers in Oncology | www.frontiersin.org 4
such as increased tumor burden and decreased survival, in an
immunocompromised rodent model.

Proliferation Levels in GFP-/HuNu- Cells
Within the SVZ Are Decreased as a Result
of GBM Tumor Proximity
The LV contains the SVZ, the largest neurogenic niche in
mammals (11–14). Previous studies have indicated that the
cellular populations of the SVZ are altered due to the presence
of GBM (26), but do not explore the effect of tumor proximity on
different neurogenic cell populations. We observed that SVZ size
was not altered by the presence of tumors when compared
between groups and between sides ipsilateral and contralateral
FIGURE 1 | GBM proximity to the lateral ventricle induces increased tumor growth. (A) Schematic illustration of the LV-proximal, LV-intermediate, and LV-distal
injection sites. (B) Quantification of GFP+ tumor volume in LV-proximal (n = 6), LV-intermediate (n = 5), and LV-distal (n = 5) groups. (C–E) Representative Ki67
immunohistochemical staining in (C) LV-proximal, (D) LV-intermediate, and (E) LV-distal GBM. Merged with HuNu staining (green, C’-E’). Scale bar = 100 mm.
(F) Quantification of the percentage of Ki67+/HuNu+ cells within the GBM tumor between LV-proximal (n = 6), LV-intermediate (n = 5), and LV-distal (n = 5) groups.
(G–I) Representative cleaved caspase-3 (cleaved C3) immunohistochemical staining in (G) LV-proximal, (H) LV-intermediate, and (I) LV-distal GBM. Merged with
GFP staining (green, G’-I’). Scale bar = 100 mm. (J) Quantification of the percentage of cleaved caspase-3+/HuNu+ cells in the GBM tumor between LV-proximal
(n = 7), LV-intermediate (n = 3), and LV-distal (n = 5) groups. The data are presented as mean ± SEM. *p < 0.05, ****p < 0.0001. NS, not significant.
June 2021 | Volume 11 | Article 650316
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to the tumor (data not shown). To explore the effect of GBM
proximity on mouse SVZ cell proliferation, we performed
immunostaining for Ki67 and evaluated Ki67+/GFP-/HuNu-
cells in the regions of the SVZ where the tumor growth was
also present, in both ipsilateral and contralateral hemispheres.
We determined that the proliferation rate of innate cells in the
SVZ ipsilateral to the tumor site is significantly decreased
compared to the contralateral SVZ in the presence of LV-
proximal and LV-intermediate GBM, but not in LV-distal
GBM (LV-proximal: 14.01 cells/mm2 ipsilateral vs. 40.97 cells/
mm2 contralateral; LV-intermediate: 15.85 cells/mm2 ipsilateral
vs. 40.41 cells/mm2 contralateral; LV-distal: 24.18 cells/mm2

ipsilateral vs. 50.60 cells/mm2 contralateral; Figures 3A–G),
indicating that tumor proximity decreases SVZ cell proliferation.

To verify that SVZ cells have decreased levels of mitosis with
increased tumor proximity, we also performed IHC for
phosphohistone H3 (pH3), a marker of chromatin
condensation with higher specificity for mitosis than Ki67.
Again, we determined that the proliferation rate of HuNu-
cells in the SVZ ipsilateral to the LV-proximal tumor is
significantly decreased compared to the contralateral
hemisphere (LV-proximal: 92.51 cells/mm2 ipsilateral vs.
182.93 cells/mm2 contralateral; Supplemental Figures 3A–E).
In contrast, there was no decrease in the proliferation of the
ipsilateral SVZ cells in LV-distal GBM when compared to the
contralateral SVZ (LV-distal: 233.62 cells/mm2 ipsilateral vs.
214.67 cells/mm2 contralateral; Supplemental Figures 3A–E).
Despite changes in proliferation, almost no cleaved caspase-3
labeling was seen in GFP- cells of the SVZ (data not shown).
These findings further support a shift in the proportion of SVZ
cell proliferation in response to tumor proximity.

SOX2+/GFAP+/HuNu- Cells Within the SVZ
Are Decreased as a Result of GBM
Tumor Proximity
The SVZ contains NSCs that differentiate into progenitor
cells, ultimately leading to the production of new neurons
and glia throughout life (15–18). To examine how tumor
proximity affects these populations of cells, we performed
immunohistochemical staining for a variety of markers of
different neurogenic cell types. We evaluated the staining for
Frontiers in Oncology | www.frontiersin.org 5
SOX2, a marker of NSCs and progenitors (33), in response to
tumor proximity. SOX2+/HuNu- cell density is significantly
decreased in the ipsilateral SVZ of LV-proximal tumors compared
to LV-intermediate and LV-distal tumors (LV-proximal: 1273.83
cells/mm2; LV-intermediate: 2706.12 cells/mm2; LV-distal: 2853.37
cells/mm2; Figures 4A–D). Cells that are positive for both GFAP
and SOX2 and negative for HuNu, that represent astrocytic NSCs of
the SVZ (34), were also decreased in response to LV-proximal
tumors compared to LV-intermediate and LV-distal tumors (LV-
proximal: 393.20 cells/mm2; LV-intermediate: 604.48 cells/mm2;
LV-distal: 673.43 cells/mm2; Figures 4E–H), showing that there is a
decrease in NSCs and progenitors in the SVZ in response to LV-
proximal tumors.

GBM Proximity to the Lateral Ventricle
Decreases Oligodendrocyte Precursor
and Neuroblast Density in the SVZ
To examine changes in neurogenic progeny in the SVZ, we also
analyzed the number of GFP-/oligodendrocyte precursor cells
(OPCs) and neuroblasts in relation to GBM tumor proximity.
The differentiation of NSCs to OPCs is accompanied by the
expression of the transcription factor OLIG2. We found that the
presence of GBM significantly decreases the number of GFP-/
OLIG2+ cells in the ipsilateral SVZ compared to the contralateral
SVZ among all groups (ipsilateral 261.95 cells/mm2 vs.
contralateral 353.96 cells/mm2; Figure 5A). Additionally, there
are significantly fewer GFP-/OLIG2+ cells in the ipsilateral SVZ
of LV-proximal group than in the LV-intermediate or LV-distal
groups (LV-proximal: 159.88 cells/mm2; LV-intermediate:
339.27 cells/mm2; LV-distal: 386.19 cells/mm2; Figures 5B–E),
indicating that GBM proximity to the SVZ significantly decreases
OPC generation in the SVZ.

The differentiation of NSCs into neuroblasts, as well as their
migration through the brain and incorporation into the olfactory
bulb, is well-studied in rodents (16, 35). Previous studies have
shown an increase in the levels of SVZ neuroblasts in the
presence of GBM, as well as neuroblast migration to the tumor
site (26). In order to examine how the neuroblast population was
changed in response to tumor proximity to the SVZ, we
performed immunohistochemical staining for doublecortin
(DCX+), a widely used marker for migratory neuroblasts.
A

B

C

FIGURE 2 | GBM proximity to the lateral ventricles impacts long-term outcome in rodents. (A) Quantification of BLI total flux fold change over time in the LV-
proximal and LV-distal GBM tumor conditions (n = 7). (B) Representative BLI images in radiance (photons/second/centimeter/steradian) of immunosuppressed
athymic nude mice bearing orthotopic patient-derived GBM at LV-proximal (left) and LV-distal (right) locations at five weeks post injection. (C) Kaplan-Meier survival
curve of mice bearing tumors in LV-proximal and LV-distal sites (n = 3). The median survival for LV-proximal or LV-distal tumor bearing mice were 36 and 52 days,
respectively. The data are presented as mean ± SEM. *p < 0.05, ****p < 0.0001.
June 2021 | Volume 11 | Article 650316
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Interestingly, there was no significant change in GFP-/DCX+
cells among groups when measuring in the SVZ ipsilateral to the
injection site (LV-proximal: 1608.86 cells/mm2; LV-
intermediate: 1936.69 cells/mm2; LV-distal: 2484.84 cells/mm2;
Supplemental Figure 4), although there was a trend towards
decreased GFP-/DCX+ cells with increased GBM proximity to
the LV. These findings suggest that the proximity of GBM to the
LV does not affect NSC differentiation down the neuroblast
lineage, despite changes in the number and proliferation of
NSCs. We did not observe any GFP-/DCX+ cells migrating to
the tumor site (data not shown). While there were no significant
changes in the ipsilateral hemisphere to the tumor, mice with
LV-proximal tumors had significantly decreased DCX+ cells in
the contralateral hemisphere than LV-intermediate conditions
(LV-proximal: 1295.65 cells/mm2; LV-intermediate: 2427.31
cells/mm2; LV-distal: 1988.12 cells/mm2, Figures 6A–D).
DISCUSSION

In this study, we highlight a two-way relationship between GBM
tumors and SVZ biology dependent on tumor proximity to the
LV in rodents. Our results indicate that human GBM cells
respond to the LVs in a proximity-dependent manner by
increasing their proliferation, ultimately resulting in decreased
Frontiers in Oncology | www.frontiersin.org 6
survival. Furthermore, we observed that tumor proximity to the
LV decreases some aspects of neurogenesis in the SVZ, including
proliferation as well as the density of NSCs and progenitors.

GBM tumors are more malignant in patients when located
proximal to the LV than in LV-distal counterparts. The increased
malignancy is evidenced by increased tumor size, increased distal
recurrence, and decreased survival independent of extent of
resection (5, 6, 8, 9, 36). Our work is the first to study the
proximity-dependent interaction between GBM and the SVZ in a
rodent model. This model recapitulates several of the features of
LV-proximal GBM in patients, including increased tumor growth,
increased proliferation, and decreased survival. It remains unclear
the reason for increased malignancy in these tumors. Despite
previous studies describing worse prognosis in patients with GBM
close to the LVs, there is no substantial evidence tying these clinical
findings to a molecular signature of GBM. Although some studies
have linked LV-proximal GBM to characteristics such as molecular
subtype and the expression of stem cell markers, others have found
no association of LV-proximal GBM with a molecular signature
(37–39). This may indicate that the increased malignancy of LV-
proximal GBM may not be a cell-intrinsic factor, but a product of
the SVZ microenvironment. This is supported by our previous
studies as well as this work, where tumors derived from the same
cell line become more malignant in response to the
LV microenvironment.
FIGURE 3 | GBM proximity to the LV negatively influences Ki67 expression in the SVZ. (A–F) Representative images of immunohistochemical staining for Ki67 in GFP-
cells of the SVZ (A–C) ipsilateral and (D–F) contralateral to the tumor. Red = Ki67, green = GFP, Blue = DAPI. This was compared between (A, D) LV-proximal,
(B, E) LV-intermediate, and (C, F) LV-distal GBM groups. Scale bar = 50 mm. (G) Quantification of Ki67+ cell density in the SVZ comparing between the SVZ ipsilateral
and contralateral to the GBM in LV-proximal (n = 6), LV-intermediate (n = 5), and LV-distal (n = 5) mice. Data are presented as mean ± SEM. **p < 0.01,
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FIGURE 5 | LV-proximal GBM reduces the number of OLIG2+ progeny in the ipsilateral SVZ. (A) Quantification of OLIG2+ cell density in the ipsilateral and
contralateral SVZ of all groups. (B) Quantification of OLIG2+ cell density in the SVZ ipsilateral to the tumor in LV-proximal, LV-intermediate, and LV-distal GBM mice.
(C-E) Representative images of the ipsilateral SVZ in (C) LV-proximal (n = 7), (D) LV-intermediate (n = 5), and (E) LV-distal (n = 5) groups. Scale bar = 100 mm. Data
are represented as mean ± SEM. *p < 0.05.
FIGURE 4 | SVZ SOX2+ progenitor number is altered by LV-proximal GBM. (A–C) Representative images of SOX2+ cells in the GFP-/HuNu- cells of the SVZ in
(A) LV-proximal, (B) LV-intermediate, and (C) LV-distal groups. Scale bar = 100 mm. (D) Quantification of SOX2+ cell density in the SVZ of LV-proximal, LV-
intermediate, and LV-distal GBM mice. (E–G) Representative images of GFAP+/SOX2+ cells in the SVZ of (E) LV-proximal, (F) LV-intermediate, and (G) LV-distal
groups. Scale bar = 100 mm. (H) Quantification of GFAP+/SOX2+ cell density in the SVZ of LV-proximal (n = 7), LV-intermediate (n = 5), and LV-distal (n = 5) GBM
mice. Data are presented as mean ± SEM. **p < 0.01, ****p < 0.0001.
Frontiers in Oncology | www.frontiersin.org June 2021 | Volume 11 | Article 6503167
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Though this work does not identify the components responsible
for increased malignancy in these tumors, there are several potential
sources of neurogenesis-supporting factors that may contribute to
GBM growth. The SVZ contains many NSC and progenitor cells
that may interact directly with GBM cells, thereby increasing
proliferation. Additionally, the SVZ contains many soluble factors
which contribute to neurogenesis of SVZ NSCs that GBM cells may
take advantage of. These factors may be released from the NSCs
themselves or be contained within the nearby cerebrospinal fluid
(CSF), ultimately contributing to GBM malignancy (40–43). Our
previous work has revealed several CSF-induced transcriptomic
changes in primary GBM cells, including upregulation of
SERPINA3, MYC, and SPP1 (40, 41). Gene ontology analysis has
indicated an upregulation in cell viability, movement, and migration
pathways induced by CSF (40), all of which may contribute to the
malignancy-promoting pathways in LV-proximal tumors. These in
vitro findings warrant the study of transcriptomic changes in SVZ
and GBM cells in vivo using a model similar to the one presented
here. The elucidation of the bidirectional mechanisms supporting
GBM tumor growth requires further unbiased transcriptomic
studies in both animal models and navigation-guided tumor
biopsy samples.

We observed decreased proliferation of SVZ cells in the
presence of LV-proximal and LV-intermediate GBM tumors
compared to LV-distal tumors. These findings agree with
previous work, which found decreased proliferation of SVZ
cells in the presence of GBM in an syngeneic intracranial C6
rat glioma model (26). However, other studies have found that
signaling from the tumor increases SVZ proliferation, resulting
in hypertrophic, hypercellular areas and increased levels of stem
cell markers such as Nestin (44). One potential reason for these
contradictive findings is a different mechanism of interaction by
GBM cells and resident SVZ cells dependent on tumor proximity
to the LV. Soluble factors that are expressed by GBM, such as
PDGF-A, have the ability to increase the levels of proliferation in
NSCs, resulting in hypertrophic areas of the SVZ that share some
features of gliomas (45, 46). However, a different effect is seen
when wild-type NSCs are directly placed in co-culture with
Ink4a/Arf-/-, EGFRvIII mutated NSCs that generate tumors in
vivo which recapitulate many features of human GBM (47, 48).
Here, direct contact with glioma-like cells results in decreased
levels of proliferation and increased levels of quiescence in NSCs
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primarily mediated by increased Notch signaling activation (48).
This suggests that GBM proximity to the LV may differentially
affect resident NSCs, where LV-proximal tumors induce
decreased proliferation and increased quiescence through cell-
cell contact via Notch signaling, while LV-distal tumors may
signal to NSCs primarily through secreted components.

The SVZ of mice with LV-proximal tumors have decreased
neurogenic capability compared to those bearing LV-intermediate
or LV-distal tumors, measured through decreased SOX2+ stem cells
and progenitors, decreased SOX2+/GFAP+ NSCs, and decreased
numbers of OLIG2+ cells in the ipsilateral SVZ. Though there is no
significant difference in the numbers of DCX+ neuroblasts in the
ipsilateral SVZ among groups, there is also a decrease in DCX+
neuroblasts in the contralateral SVZ of LV-proximal tumor mice
compared to LV-intermediate tumor mice, suggesting decreased
neurogenesis in the contralateral hemisphere of LV-proximal mice.
Interestingly, previous data shows that GBM tumors increase
neuroblast density in the SVZ (26), which differs from our
present findings. SOX2+ NSCs are able to give rise to new neural
cells through their multipotent potential (49). Therefore, by
decreasing the number of stem cells or the rate and number of
cell divisions, it is expected that we will find a lower rate of neuronal
renewal in SVZ, which is a direct alteration in neurogenesis (50).
Decreased neurogenesis in the ipsilateral SVZ may be due to the
previously mentioned increase in NSC quiescence via Notch
signaling through cell-cell contact. Increased quiescence of NSCs
results in both decreased proliferation and decreased differentiation
into progenitors (51). The decrease of neuroblasts in the
contralateral hemisphere, however, may suggest the secretion of a
circulating factor that is able to affect SVZ neurogenesis in the
hemisphere contralateral to the tumor. The identification of factors
that decrease SVZ neurogenesis secreted by GBM cells or other cells
in response to the presence of GBM, such as ependymal cells or cells
of the choroid plexus, need to be further explored.

Alternatively, the decrease of neuroblasts in the contralateral
hemisphere may be related to decreased CSF volume or flow
throughout the ventricular system without directly altering
secreted factors. Neurogenesis is regulated in part by both the
flow and the contained chemokines within the CSF. Both the
proliferation of NSCs and the migration of newly differentiated
neuroblasts down the rostral migratory stream are regulated in a
flow-dependent manner (43, 52). The decrease of CSF flow and the
FIGURE 6 | LV-proximal GBM decreases the number of neuroblasts in the contralateral SVZ. (A–C) Representative images of DCX+ cells in the contralateral SVZ to
the GBM in (A) LV-proximal (n = 7), (B) LV-intermediate (n = 3), and (C) LV-distal (n = 5) groups. Scale bar = 100 mm. (D) Quantification of DCX+ in the contralateral
SVZ to the tumor between groups. Data is presented as mean ± SEM. **p < 0.01.
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loss of chemokine gradient may affect neurogenesis, particularly
stem cell proliferation and neuroblast migration. In support of this
scenario, glioma-bearing mice have reduced CSF circulation and
output compared to non-tumor controls (53), which could
implicate a loss of flow-dependent regulation in GBM. The
contribution of CSF flow to neurogenesis and GBM malignancy
in this animal model require further studies to fully understand.

Interestingly, there are significant decreases in the level of
cleaved caspase-3 labeling in the tumors LV-intermediate tumor
group. GBM tumors have quite low levels of caspase-3 labeling in
humans (54), so further decrease in apoptosis of the tumor may be
related to increased growth. This, accompanied by increased Ki67+
GBM cells, may indicate that LV-intermediate tumors were located
in a “sweet spot” where the tumors are able to take advantage of
neurogenic factors contained within the SVZ niche without leading
to significant neurogenic disruption. The signaling pathways
between the SVZ and GBM that regulate cell proliferation and
apoptosis need to be further studied in order to determine the
molecular contributors to this phenomenon.

In summary, this study provides the development of a novel
rodent model of LV-proximal GBM. Due to the limitations of
using human cells in an immunocompromised rodent model, it
will be necessary to further evaluate and validate these
observations in immunocompetent murine models. The
proximity of the tumor to the LV results in increased tumor
proliferation, increased tumor growth, and decreased survival.
Additionally, we have determined that GBM proximity to the LV
also negatively impacts the number of NSCs and downstream
progenitors in the SVZ. This model will be invaluable for future
studies to describe the interactions between the SVZ and GBM
tumors, as well as for the investigation of novel therapeutics to
target signaling between these two sites. Ultimately, these
findings encourage future studies to elucidate the bidirectional
molecular signaling between GBM and the SVZ, particularly the
identification of pathways contributing to tumor progression in
LV-proximal GBM patients.
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