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Health in later life varies significantly by individual demographic
characteristics such as age, sex, and race/ethnicity, as well as by
social factors including socioeconomic status and geographic
region. This study examined whether sociodemographic variations
in the immune and inflammatory molecular underpinnings of
chronic disease might emerge decades earlier in young adulthood.
Using data from 1,069 young adults from the National Longitudinal
Study of Adolescent to Adult Health (Add Health)—the largest na-
tionally representative and ethnically diverse sample with peripheral
blood transcriptome profiles—we analyzed variation in the expres-
sion of genes involved in inflammation and type I interferon (IFN)
response as a function of individual demographic factors, sociodemo-
graphic conditions, and biobehavioral factors (smoking, drinking, and
body mass index). Differential gene expression was most pronounced
by sex, race/ethnicity, and body mass index (BMI), but transcriptome
correlates were identified for every demographic dimension an-
alyzed. Inflammation-related gene expression showed the most
pronounced variation as a function of biobehavioral factors (BMI
and smoking) whereas type I IFN-related transcripts varied most
strongly as a function of individual demographic characteristics
(sex and race/ethnicity). Bioinformatic analyses of transcription
factor and immune-cell activation based on transcriptome-wide
empirical differences identified additional effects of family poverty
and geographic region. These results identify pervasive sociodemo-
graphic differences in immune-cell gene regulation that emerge by
young adulthood and may help explain social disparities in the devel-
opment of chronic illness and premature mortality at older ages.
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Most chronic illnesses show marked demographic variations
in prevalence and outcome, including cardiovascular (1),

neoplastic (2), metabolic (3), and neurodegenerative diseases
(4). These demographic disparities become increasingly preva-
lent in mid to later adulthood (5, 6), resulting in shorter life
spans for men relative to women, for blacks and Hispanics rel-
ative to Asians and non-Hispanic whites, for the poor relative to
the affluent, and for residents of the southern United States
compared to other regions (7–9). However, the biological un-
derpinnings of these late-life health disparities may emerge de-
cades earlier in adolescence and young adulthood (9–15), well
before such morbidities are commonly diagnosed. Most chronic
diseases develop over the course of many years and are driven in
part by the activity of disease-promoting molecular pathways
involved in inflammation, metabolism, and immune function
(16). Measurement of gene expression can provide insight into
the molecular processes that underlie these sociodemographic
gradients in health. However, little is known about sociodemo-
graphic variation in the molecular precursors of disease because

population health studies have rarely surveyed the molecular
characteristics of adolescents or young adults. Here we report
results from a transcriptome profiling analysis of a large, na-
tionally representative and ethnically diverse sample of young
adults and find significant demographic variation in the molec-
ular antecedents of chronic disease decades before those dis-
eases typically manifest in late adulthood.
To determine whether demographic variations in gene regu-

lation during young adulthood might contribute to social gradients
in late-life disease risk, this study analyzed genome-wide transcrip-
tional profiles in blood samples from a nationally representative
sample of 1,126 young adults (mean age 37) participating in the
National Longitudinal Study of Adolescent to Adult Health (Add
Health) (17). Add Health is the largest, most comprehensive lon-
gitudinal study of adolescents ever undertaken, with national rep-
resentation of all race, ethnic, immigrant, socioeconomic status, and
geographic subgroups in the United States. Add Health used
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probability population-representative sampling to enroll a na-
tionwide sample of adolescents (grades 7 to 12) in 1994 to 1995
and has followed that cohort longitudinally since then (17). We
analyzed gene expression profiles in whole-blood samples col-
lected ∼22 y later during young adulthood to assess tran-
scriptome variation as a function of individual demographic
characteristics (age, sex, race/ethnicity), sociodemographic con-
ditions (family poverty status, geographic region), and bio-
behavioral factors that might potentially be confounded with
demographic characteristics [smoking, alcohol consumption, and
body mass index (BMI)]. Our initial analysis focused on quan-
tifying variations in health-relevant gene expression among
young adults as a function of fundamental demographic, social,
and behavioral factors known to define disparities in chronic
disease. In addition to clarifying the molecular origins of late- life
health disparities, this analysis provides an essential platform for
more detailed analyses of specific risk factors in adolescence and
young adulthood, as well as methodological guidance to avoid
the risk of sociodemographic confounding in future genomic
research.
Our analyses focused on two molecular pathways involved in

the pathogenesis of multiple chronic diseases (16): 1) genes in-
volved in inflammation and 2) genes involved in type I interferon
(IFN) responses. These two gene sets represent functionally
distinct immunoregulatory programs (18, 19) and were selected
for analysis based on their well-established relationship to
chronic disease and longevity, both as empirical predictors (16,
20–27) and as molecular mechanisms of disease (16, 28–33).
Both gene sets are subject to physiological regulation by tissue
injury and microbial stimuli as well as by the neural and endo-
crine systems (34).
Neural/endocrine regulation of gene expression has been hy-

pothesized to constitute one pathway through which social en-
vironmental conditions might contribute to health disparities, for
example, through stress-induced activation of the Conserved
Transcriptional Response to Adversity (CTRA) RNA profile
that involves up-regulation of inflammatory genes and a reciprocal
down-regulation of type I IFN genes in the circulating leukocyte
pool (35–37). Basic laboratory research has found the CTRA
transcriptome shift to be mediated in part by sympathetic nervous
system (SNS)-induced increases in hematopoietic output of myeloid
lineage immune cells—monocytes, dendritic cells, and neutrophil
granulocytes (38–40).
In addition to examining basic sociodemographic variations in

inflammatory and type I IFN gene modules due to their estab-
lished relevance for chronic disease, we also conducted analyses
testing whether the more specific CTRA pattern (i.e., IFN −
inflammation) and related neuroendocrine and cellular mecha-
nisms might contribute to such demographic variations. As such,
the present analysis quantified demographic variation in young
adult blood-cell gene expression profiles using three comple-
mentary analytic approaches corresponding to three distinct
levels of biological influence on gene expression (41): 1) ana-
lyzing expression of a-priori–defined sets of inflammatory and
IFN indicator genes used in previous research (level 1) (42); 2)
analyzing genome-wide empirical differences in RNA expression
in terms of their coregulation by transcription factors involved in
inflammatory, type I IFN, SNS, and neuroendocrine response
(level 2) (34, 36); and 3) analyzing genome-wide empirical dif-
ferences in RNA expression in terms of their coexpression in
specific immune-cell subsets involved in inflammatory and IFN
gene expression (particularly monocytes, dendritic cells, and
neutrophils) (level 3) (38, 39, 43).

Results
We analyzed gene expression data from a nationally represen-
tative subsample (sample 1) of Add Health Wave V (2016
to 2017). Sample 1 is a random one-third subsample of the

nationally representative Wave V (see SI Appendix, Methods, for
details), so it, too, is nationally representative (44). Among the
1,126 participants with transcriptome profiles available in sample
1, 57 were missing data on one or more demographic or be-
havioral variables, leaving 1,069 individuals in the final analytic
sample. Characteristics of the analytic sample are presented in
Table 1 and are closely representative of the national Add Health
cohort of young adults in sample 1 Wave V (any differences
are <5%).
Transcriptome profiles were derived by sequencing whole-

blood polyadenylated RNA and tested for quantitative variations
as a function of: 1) individual demographic characteristics (age,
sex, race/ethnicity); 2) social and geographic context (family
poverty status, region of residence); and 3) biobehavioral factors
that might potentially confound sociodemographic effects (smoking,
alcohol consumption, BMI). Quantitative variations in gene
expression were analyzed by linear statistical models that adjusted
the estimated effect of each demographic characteristic for any
correlated effects of other dimensions, as well as for technical
covariates (sample RNA integrity, sample RNA profile quality,
sample sequencing depth, and assay batch).
We assessed sociodemographic variations in inflammatory and

type I IFN gene expression using three complementary levels of
transcriptome analysis involving 1) a-priori-specified sets of in-
flammatory and IFN indictor genes used in previous research to
capture broad variations in innate immune activity (42); 2) em-
pirical differences in genome-wide transcriptional profiles analyzed
in terms of their regulation by transcription factors involved in
inflammation, type I IFN, and neuroendocrine responses (34, 36);
and 3) empirical differences in genome-wide transcriptional pro-
files analyzed in terms of their cellular origins, focusing particularly
on innate immune cells involved in inflammatory and IFN re-
sponses (monocytes, dendritic cells, and neutrophils) (38, 39, 43).

Level 1: A Priori Gene Composites. Analyses of prespecified com-
posites of 19 representative proinflammatory genes (e.g., IL1B, IL6,
COX2/PTGS2, TNF) and 32 IFN-related genes (e.g., IFI-,OAS-, and
MX-family genes) identified significant sociodemographic variation in
gene expression across the entire set of analyzed transcripts: F(20,
1,012) = 5.98, P = 3.6 × 10−15. Follow-up analyses of each gene set
separately indicated significant sociodemographic variation in ex-
pression of the inflammatory gene composite: F(10, 1,040) = 2.09,
*P = 0.0230; expression of the type I IFN gene composite: F(10,
1,040) = 7.13, *P = 6.3 × 10−11; and expression of the CTRA
composite (inflammation − type I IFN): F(10, 1,040) = 3.53, *P =
1.3 × 10−4 (the asterisk indicates a value significant after correction
for hierarchical multiple testing at a false discovery rate of q < 0.05).
As shown in Fig. 1, these effects were most pronounced for individual
demographic characteristics [i.e., age, sex, and race/ethnicity; in-
flammatory: F(6, 1,040) = 3.01, *P = 6.3 × 10−3; IFN: F(6, 1,040) =
10.86, *P = 9.5 × 10−12; CTRA F(6, 1,040) = 5.48, *P = 1.3 × 10−5 ].
Inflammatory gene expression was up-regulated in females relative to
males and in blacks relative to non-Hispanic whites. Type I IFN gene
expression was up-regulated even more strongly in females relative to
males and in Asians and blacks relative to non-Hispanic whites. As a
result of males’markedly lower type I IFN activity, the CTRA profile
(inflammatory − type I IFN) was up-regulated in males compared to
females; it was also down-regulated in Asians relative to non-
Hispanic whites. Ancillary analyses also found expression of the in-
flammatory gene composite to vary as a function of biobehavioral
characteristics [omnibus F(4, 1,040) = 8.12, P = 1.9 × 10−6], with
effects driven predominately by BMI and smoking (Fig. 1). Broadly
speaking, type I IFN gene expression varied most strongly as a
function of individual demographic characteristics, whereas in-
flammatory gene expression varied most strongly as a function of
biobehavioral factors. None of the three broad gene composites
varied significantly as a function of family poverty or residential re-
gion [all F(4, 1,040) < 1, P > 0.5].
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The a-priori–specified gene composites analyzed here were
originally derived on theoretical grounds to capture broad vari-
ations in activity of the two major immunoregulatory gene
modules involved in innate immunity (18, 42). However, such
broad indices can obscure more nuanced and differentiated as-
pects of gene regulation that become apparent in empirical gene
coregulation analyses. To map the coregulatory substructure of
the overall 19-gene inflammatory composite, we conducted ex-
ploratory principal factor analysis (SI Appendix, Fig. S1A and
Dataset S1) and identified seven coregulated gene modules, each
of which was structured around distinct patterns of transcription
factor activity (SI Appendix, Fig. S1B) [factor 1 (F1) = JUNB,
FOSL2, RELA, RELB; F2 = FOS; F3 = REL, NFKB1, NFKB2;
F4 = FOSB, JUN; F5 = JUND; F6 = FOSL1] and distinct effector
molecules (F2 = IL8/CXCL8, COX2/PTGS2; F3 = IL1B; F4 =
TNF; F5 = COX1/PTGS1; F6 = IL1A). Results also identified a
single-gene module (F7) involving variation in IL6 expression
that was largely uncorrelated with the other inflammatory gene
modules. All but one of the inflammatory gene modules (F6)
showed significant demographic variation in activity (Fig. 2A),
with the specific demographic correlates varying across modules.
Exploratory principal factor analysis of the type I IFN com-

posite (SI Appendix, Fig. S1A and Dataset S1) also identified
seven major coregulated gene modules that were again struc-
tured around distinct transcription factors (F1 = IRF7; F2 =
IRF2; F3 = low IRF8) and associated with distinct effector
molecules (SI Appendix, Fig. S1C). Two single-gene modules
emerged (IFNB1 and IGLL1). All but one of the type I IFN
subcomponents (F5) showed significant demographic variation
in activity (Fig. 2B) with the specific demographic correlates
again varying across modules.

Levels 2 and 3: Empirical Transcriptome Variation. In addition to
analyzing a-priori–defined sets of inflammatory and type I IFN
indicator genes, we also quantified empirical variation in the
genome-wide transcriptomic correlates of sociodemographic
factors (Fig. 3A; SI Appendix, Fig. S2; and Dataset S2). Each
sociodemographic parameter was associated with hundreds of

genes showing >20% difference in expression across the ob-
served range of variation (although the statistical significance of
these individual transcript associations varied, with some di-
mensions such sex, race, and BMI showing large numbers of
differentially expressed genes at a genome-wide false discovery
rate of 5%, whereas others failed to yield any significant differ-
ences after correction for genome-wide multiple testing) (SI
Appendix, Fig. S2 and Dataset S2).

Level 2: Transcription Factor Activity. To characterize the empirical
transcriptomic correlates of sociodemographic factors in terms
of their upstream gene-regulatory influences (41), we con-
ducted promoter-based bioinformatics analyses of transcription
factor-binding motif (TFBM) prevalence for a prespecified set
of transcription factors involved in inflammation (NF-κB and
AP-1), type I IFN response (IFN-stimulated response element;
ISRE), and neuroendocrine activity [CREB, which mediates
SNS-induced β-adrenergic signaling, and the glucocorticoid
receptor (GR) which mediates cortisol signaling from the
hypothalamus-pituitary-adrenal axis] (45). Results showed sig-
nificant demographic variation in activity of each transcrip-
tion factor (Fig. 3B), with particularly marked effects for the
immunoregulatory transcription factors (NF-κB, AP-1, ISRE)
and CREB.

Level 3: Cellular Origins. To characterize empirical transcriptomic
correlates of sociodemographic variation in terms of their shared
cellular origins (41), we conducted Transcript Origin Analyses
(43) of the same sets of differentially expressed genes using
reference data from previous genome-wide transcriptional pro-
filing of isolated leukocyte subsets (Gene Expression Omnibus
GSE101489) (46). Results indicated significant demographic
variation in activity of each cell type (Fig. 3C), with effects
particularly prevalent for the myeloid lineage immune cells in-
volved in proinflammatory and type I IFN innate immune re-
sponses (i.e., monocytes, dendritic cells, and neutrophils).

Table 1. Analytic sample characteristics (n = 1,069)

Mean (SD) or %

Analytic sample
(n = 1,069)

Wave V sample 1
(n = 3,872) Difference P value

Age (y) 36.5 (1.9) 36.6 (1.8) 0.481*
Sex (female) (%) 54.2 50.1 0.057†

Race/ethnicity (%) 0.100‡

White (non-Hispanic) 69.2 65.8
Black (non-Hispanic) 14.2 16.0
Hispanic 9.2 10.9
Asian 2.8 3.2
Other 4.7 4.2

Region (%) 0.001‡

Northeast 13.0 16.1
Midwest 35.5 31.0
South 39.9 38.7
West 11.6 14.2

Poverty (%) 16.3 20.4 0.054†

BMI (kg/m2) 30.1 (7.8) 29.9 (7.5) 0.516*
Smoking history (%) 48.2 47.1 0.690†

Regular drinking (%) 4.2 5.3 0.162†

Binge drinking (ordinal 0 to 6) 1.2 (1.7) 1.1 (1.5) 0.340*

Note: Descriptive statistics are weighted; 43 in analytic sample are missing sample 1 weights.
*Two-tailed single-sample t test: RNA sample mean = Wave V sample 1 mean.
†Two-sided binomial test: RNA sample proportion = Wave V sample 1 proportion.
‡χ2 test: RNA sample proportions = Wave V sample 1 proportions.
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Discussion
This population-representative transcriptome profiling study
reveals significant demographic variations in the expression of
inflammatory and type I IFN response genes that emerge by
young adulthood and are thus active decades before chronic
diseases commonly manifest in older age. Significant socio-
demographic variations in gene expression appeared at every
level of analysis examined, including prespecified sets of in-
flammatory and type I IFN indicator genes (level 1) and em-
pirically mapped genome-wide transcriptional differences
analyzed in terms of transcription factor coregulation (level 2)
and coexpression in myeloid lineage immune cells (particu-
larly monocytes, dendritic cells, and neutrophils) (level 3). As
the largest social genomics study conducted to date, as well as
the most demographically diverse sample so far analyzed, the
unprecedented power available in this sample allowed for the
detection of significant variations in gene regulation as a
function of every sociodemographic factor analyzed, including
individual demographic characteristics (age, sex, race/ethnic-
ity) and social context (family poverty, region of residence).

Molecular characteristics also varied as a function of bio-
behavioral factors (BMI, smoking, alcohol consumption) that
vary across sociodemographic groups. However, all analyses
controlled for biobehavioral factors and continued to identify
significant molecular correlates of individual and contextual
demographic features. These data establish a molecular frame-
work for analyzing social disparities in late-life health and mor-
tality in terms of sociodemographic variations in gene regulation
that emerge decades earlier in young adulthood (1–6) and can
thus exert a temporally extended impact on the molecular pro-
cesses that culminate in late-life chronic disease.
Expression of inflammatory and type I IFN response genes

varied significantly as a function of each of the sociodemographic
factors examined, but the magnitude of such effects varied
greatly across factors. Using an absolute effect-size reference
point of 20% difference in RNA abundance, both racial and
ethnic identity and BMI were associated with substantially more
differentially expressed genes than were the other factors ana-
lyzed (Fig. 3A). These results are particularly relevant for un-
derstanding racial disparities in chronic disease risk, as blacks
showed greater expression of both a broad composite of in-
flammatory genes and the more specific F5 inflammatory gene
module (Fig. 2A, JUND transcription factor and COX1/PTGS1
inflammatory mediator) as well as bioinformatic indications of
NF-κB and myeloid lineage immune-cell activity (monocytes,
neutrophils, and dendritic cells) (Fig. 3). Similar effects of race/
ethnicity and BMI emerged when comparing the number of
statistically significant transcript associations (SI Appendix, Fig.
S2), although this metric also revealed substantial sex differences
that manifest as quantitatively large differences in expression of
a relatively small number of genes (compare sex differences in SI
Appendix, Fig. S2, vs. Fig. 3A). Greater expression of the CTRA
profile in males may shed light on the well-documented longevity
disadvantage of males relative to females (47). The present findings
are also broadly consistent with previous studies of older adults
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Hispanic .48 .07 .19 .48
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Context .25 .80 .48 .80
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Fig. 1. Demographic variation in expression of inflammation- and type I
IFN-related genes. Differential expression composites of 19 proinflammatory
genes, 32 type I IFN-related genes, and their difference (i.e., CTRA profile) as
a function of individual demographic characteristics, contextual character-
istics, and biobehavioral factors. Estimates come from linear statistical
modeling of log2 gene expression values from n = 1,069 study participants
with adjustment for all other listed factors as well as assay technical cova-
riates. Effects are expressed as (A) t-statistics (effect size/SE; red: up-
regulated; blue: down-regulated) and as (B) statistical significance (symbol
area proportional to −log10 p). In A, rows with left-adjusted bold labels
contain omnibus F statistics summarizing all parameters within the category
(Individual, Context, or Behavior). Parameters represent effects of age (in
years), sex (male relative to female), race/ethnicity categories (relative to
non-Hispanic whites), US Census region (relative to Northeast region 1),
poverty (relative to household income above poverty line), BMI (kg/m2),
history of regular smoking (relative to none), regular alcohol consumption
(relative to none), and frequency of binge drinking (7-point ordinal scale).
“Max assoc.” indicates the maximum magnitude of association observed
over all demographic dimensions or over all gene sets analyzed. SI Appendix,
Table S1, contains the underlying numerical data for this figure.

Fig. 2. Demographic variation in expression of coregulated modules of in-
flammatory genes (A) and type I IFN genes (B). Principal factor analysis empirically
identified seven coregulated gene modules within both the overall inflammatory
and type I IFN gene sets (SI Appendix, Fig. S1 and Dataset S1). Data show varia-
tions in expression of these coregulated gene modules as a function of individual
demographic characteristics, contextual conditions, and behavioral factors. Esti-
mates come from linear statistical modeling as in Fig. 1, with effects expressed as
t-statistics (effect size/SE; red: up-regulated; blue: down-regulated) in subcategory
rows with right-adjusted nonbold labels. Rows with left-adjusted bold labels
contain omnibus F statistics summarizing all parameters in a given category of
influence (Individual, Context, Behavior). “Max assoc.” indicates the maximum
magnitude of association observed over all demographic dimensions or over all
gene sets analyzed. Dataset S1 contains underlying numerical data for this figure.
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that have documented marked differences in white-blood-cell gene
expression as a function of sex (48, 49), race (50–52), and BMI (19,
53, 54) (admittedly in smaller and less representative convenience
samples). It is difficult to quantitatively compare the demographic
variations in gene expression observed here in young adults to the
effects previously observed in older adults because no other large,
population-representative study has so far reported any general
demographic analysis of genome-wide transcriptional profiles.
However, several population health studies are currently collecting
transcriptome data from older adult samples, which should allow
for life-span developmental comparisons in the future.
The biological character of the transcriptome variations ob-

served here differed markedly across demographic dimensions,
with individual demographic factors showing the most pro-
nounced association with type I IFN activity and biobehavioral
factors associating most strongly with inflammatory gene ex-
pression (Fig. 1). In contrast, social context (family poverty and
geographic region) showed little association with broad com-
posite measures of inflammatory or type I IFN activity. However,
the lack of association with level 1 global composite measures
masked significant regional differences in more specific mea-
sures of proinflammatory transcription factor activity (level 2)
(Fig. 3B), monocyte and neutrophil activation (level 3) (Fig. 3C),

and empirically coregulated subcomponents of a global in-
flammatory gene set (particularly F2 involving the transcription
factor, FOS, and the inflammatory mediators COX2/PTGS2 and
IL8/CXCL8) (Fig. 2A). Elevated health risk in the southern
United States in particular (8, 9) may relate to the observed up-
regulation of the F2 inflammatory gene module (FOS/PTGS2/
CXCL8) and associated differences in activation of NF-κB,
classical and nonclassical monocytes, and the CREB transcrip-
tion factor involved in β-adrenergic signaling from the SNS (Fig.
3 B and C). Analyses of level 1 global composite scores also
missed substantial family poverty-related differences in IFN re-
sponse factor activity (level 2) (Fig. 3B), dendritic cell activation
(level 3) (Fig. 3C), and the IFN coregulatory module F4
(IFI27L1, IFI27L2) (Fig. 2B).
Beyond this study’s substantive implications for the early life

biological development of sociodemographic disparities in late-
life health, the pattern of results observed here may also have
significant implications for analytic approaches in social geno-
mics. Whereas level 1 analyses of a-priori–specified gene com-
posites showed little effect of contextual variables such as
residential region and family poverty, level 2 and 3 analyses
that map empirical differences in gene expression and interpret
them in terms of prespecified substantive hypotheses involving

Fig. 3. Demographic variation in empirical gene expression and bioinformatic inferences of transcription factor activity and cellular activation. (A) Number
of genes up- and down-regulated by >20% as a function of each sociodemographic parameter (Dataset S2 lists individual transcripts). (B) Bioinformatic
analysis of promoter TFBM distributions for targeted proinflammatory transcription factors (NF-κB, AP-1), IFN response factors (ISRE), SNS response factors
(CREB), and the GR for each set of differentially expressed genes. Symbol area is proportional to statistical significance (−log10 p); see legend at the Right in A.
(C) Bioinformatic analysis of shared cellular origins for each set of differentially expressed genes. Symbol area is proportional to the maximal statistical
significance of results for up- vs. down-regulated genes (−log10 p, as in legend at the Right in A).
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transcription factor activity (level 2) and immune-cell mediators
(level 3) identified multiple effects of region and poverty (compare
level 1 contextual effects in Fig. 1B with those of level 2 and 3
analyses in Fig. 3 B and C). Similarly, decomposition of the global
inflammatory and IFN gene composites into empirically coregu-
lated gene modules also revealed significant associations that were
missed in analyses of global composite scores (compare contextual
effects in Fig. 1A with those in Fig. 2 A and B). The differential
sensitivity of level 1 analyses (prespecified gene sets) and level 2
and 3 analyses (empirically identified gene sets interpreted in terms
of prespecified hypotheses regarding their shared biological func-
tion) underscores the utility of deploying multilevel bioinformatic
approaches to characterize transcriptomic diversity, rather than
relying solely on prespecified gene composites to assess complex
physiological processes. Previous analyses have noted the concep-
tual and statistical advantages of “abstractionist” bioinformatic
analyses that treat empirical differences in genome-wide tran-
scriptional profiles as input into higher-order bioinformatics anal-
yses testing specific substantive hypotheses involving transcription
factor activity and cellular differentiation (levels 2 and 3) (37, 55).
The present findings are consistent with that perspective and lay
the groundwork for more differentiated analyses of inflammatory
biology in future research using both bioinformatic inferences of
latent causal factors (i.e., transcription factors and cellular context)
as well as empirically refined sets of indicator genes (e.g., the seven
coregulatory modules empirically identified within each of the
global indicator gene sets analyzed here).
These data also have more specific implications for the analysis

of inflammation as a biological mechanism of sociodemographic
differences. The present analyses identify seven distinct coregu-
lated gene modules within the overall set of 19 general inflam-
matory indicator genes (SI Appendix, Fig. S1). These modules
typically involved a transcription factor accompanied by a set of
inflammatory effector molecules (i.e., cytokines, prostaglandin
synthases, chemokines, and other innate immune response genes).
This analysis also revealed that one of the most commonly mea-
sured proinflammatory cytokines, IL6, was largely uncorrelated
with the activity of the other six inflammatory gene modules. The
other six inflammatory gene modules also showed patterns of de-
mographic variation that differed from those of IL6. These results
suggest that IL6 (and its downstream reporters such as CRP)
should not be used as a summary measure of inflammatory activity;
several other distinct proinflammatory gene modules also exist and
drive the expression of empirically distinct inflammatory effector
systems involving IL1B, TNF, IL8/CXCL8, and COX2/PTGS2.
This study has several strengths, most notably the application

of genome-wide transcriptional profiling to a large, population-
based sample in Add Health with national representation of all
racial, ethnic, geographic, and income subgroups. However,
these findings are also limited in several respects. These data
come from a contemporary representative sample of community-
dwelling young adults in the United States, and it is unclear
whether similar patterns would hold for other groups that differ
in age, health status, global region (particularly given the US
health disadvantage in early and midlife) (9), or other factors. It
will be important to replicate the present analyses in other
samples to assess the generalizability of these findings to other
age groups or global regions. Given the restricted age range in
this sample, these data likely under-represent the total range of
transcriptomic variation across the adult life span. These analy-
ses document the presence of significant demographic differ-
ences in human genome function at the time of young adulthood,
but it is possible that such differences emerge even earlier in
development (e.g., adolescence, childhood, infancy, or in utero)
(56–59). A critical topic for future population-based genomic
research will be pushing back the etiological time line even
further than achieved here to identify the specific developmental
periods in which the demographic differences in gene expression

first appear. These data come from an observational study, and it
is unclear whether the observed associations represent causal ef-
fects of demographic or biobehavioral factors. Demographic var-
iations may stem from genetic differences, socioenvironmental
exposures and consequent neurobiological responses (e.g., SNS or
hypothalamus-pituitary-adrenal axis activity), or differential phys-
icochemical and microbial exposures. The quantitative relation-
ship between the specific molecular differences observed here and
subsequent disease/mortality risks is not yet known and remains to
be defined in future research. However, the present study ana-
lyzed gene expression through the lens of two biological processes
that have previously been shown to play a significant role in
chronic disease risk and longevity: inflammation and type I IFN
responses (16). This study was not designed to provide a com-
prehensive discovery-based analysis of transcriptomic differences,
and other biological processes in addition to those analyzed here
may also differ as a function of demographic characteristics. The
gene coregulatory modules identified here are derived from ob-
servational data in a specific cohort, and the structure of those
modules may differ in other populations; like the findings for
cellular and transcription factor effects, these findings need to be
replicated in future research. It is also possible that different ef-
fects would be observed in analyses using different representations
of sociodemographic variation (e.g., more differentiated measure
of socioeconomic status than the poverty classification used here,
although we found no significant difference in expression of the
overall inflammatory or type I IFN gene composites as a function
of household income or educational attainment) (SI Appendix,
Table S2). Finally, it is important to note that we analyzed indi-
vidual sociodemographic and biobehavioral variables as distinct
influences on gene expression, but some of these factors are em-
pirically correlated in the social ecology (e.g., race and poverty;
poverty, BMI, and smoking, etc.). As such, the present covariate-
adjusted estimates will underestimate the magnitude of each fac-
tor’s overall association with gene expression (i.e., unadjusted for
other correlated risk factors).
Despite these limitations, this study provides a comprehensive

map of the landscape of demographic variation in human gene
expression in the contemporary US, and it identifies the emer-
gence of marked differences in inflammatory and type I IFN
gene expression by young adulthood. These data establish a
molecular framework for understanding social disparities in late-
life health and mortality in terms of disparities in gene regulation
that emerge decades earlier (and may initially develop even
earlier than observed here—in infancy, childhood, or adoles-
cence). These findings also provide a framework for reducing
health disparities by mitigating molecular risk gradients before
they develop into overt disease. For example, the differential
expression of inflammatory and type I IFN genes observed here
could serve as outcome biomarkers to assess the impact of in-
terventions that seek to mitigate health disparities by altering
social contexts or family environments in early life (58, 60). In-
deed, the identification of demographic gradients in inflamma-
tory and antiviral gene regulation in young adults underscores
the need to initiate social, behavioral, and policy interventions
early in life in order to most effectively mitigate social disparities
in disease risk that would otherwise become clinically evident
only decades later in older adulthood (9, 12, 15, 61–63).

Methods
Sample and Survey Procedures. Data come from Add Health, a nationally
representative study of US adolescents in grades 7 to 12 in 1994 to 1995 who
have been followed into adulthood over five waves of data collection. We
used data from sample 1 Wave V (2016 to 2017) that was collected when
respondents were aged 32 to 42. Study design, interview procedures, and
demographic and biobehavioral assessments have been previously described
(13, 17). Participants provided written informed consent and all procedures
were approved by the University of North Carolina School of Public Health
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Institutional Review Board. Details on measurement and coding are provided
in SI Appendix.

Blood Transcriptome Profiling. Venipuncture whole-blood samples were
assayed by RNA sequencing using a 3′messenger RNA counting assay (Lexogen
QuantSeq 3′ FWD) on an Illumina HiSeq 4000 system following the manu-
facturers’ standard protocols. The 65-base single-strand reads were mapped to
the ENSEMBL hg38 human transcriptome to estimate gene-level transcript
abundance using STAR. Transcript abundance values were normalized using 11
reference genes (64) and analyzed by linear statistical models relating log2-
transcript abundance to individual demographic characteristics (age, sex, race/
ethnicity), sociodemographic contextual characteristics (US region, family
poverty status), biobehavioral factors (BMI, smoking, alcohol consumption),
and technical covariates [sample RNA integrity number (RIN), assay plate, se-
quencing depth, and profile consistency with other samples].

Sociodemographic Variables and Technical Controls. Variables were coded as
follows: age (continuous self-reported years); sex (self-reported biologically
assigned male sex at birth, coded by an indicator relative to reference point
female); race/ethnicity (self-identified Asian, non-Hispanic black, Hispanic,
and other race/ethnicity, each coded by an indicator relative to reference
point non-Hispanic white); US region (census regions 2 to 4: Midwest, South,
and West, each coded by an indicator relative to reference point region 1,
Northeast); family poverty status (self-reported household income less than
or equal to 2015 US federal poverty level based on household size, coded by
an indicator relative to nonpoverty status); BMI (continuous kg/m2 derived
from self-reported continuous height and weight); smoking history (self-
reported ever smoked coded by an indicator relative to never smoked ref-
erence point); and alcohol consumption [represented as two variables: one
“regular drinking” variable indicating whether participants self-reported
drinking beer, wine, or liquor every day or almost every day, relative to less
frequent drinking during the past 12 mo; and a second “binge drinking” or-
dinal variable reflecting days during the past 12 mo during which participants
drank (female 4/male 5) or more drinks in a row, (coded none = 0, 1 to 2 d/y =
1, 3 to 12 d/y = 1 d/mo = 2, 2 to 3 d/mo = 3, 1 to 2 d/wk = 4, 3 to 5 d/wk = 5,
every/almost every day = 6)]; assay batch (nominal indicators for plates 1 to 11
relative to reference point plate 12); sample RIN (continuous 0 to 10), total
mapped reads per sample (continuous/106); read alignment rate (continuous
percentage); and profile consistency (average Pearson r with 95 other samples).

Analytic Methods. Data analyses examined inflammatory and type I IFN gene
regulation at three distinct levels of biological function: 1) expression of a-
priori-defined sets of inflammatory and type I IFN indicator genes (42); 2)
activity of transcription factors involved in mediating inflammatory, type I
IFN, SNS, and neuroendocrine responses (34, 36); and 3) activation of specific
immune-cell subsets involved in inflammatory and IFN gene expression,
particularly monocytes, dendritic cells (DCs), and neutrophils (38, 39, 43).

For level 1 analyses, prespecified general inflammatory and IFN composite
scores were computed by averaging standardized expression values for 19
genes involved in inflammation or for 32 genes involved in type I IFN re-
sponses (42). We also examined a previously derived CTRA indicator contrast
score computed as the difference between inflammatory and type I IFN
composites (inflammatory composite score − type I IFN composite score).
Each of these molecular parameters was tested for differential expression as
a function of individual demographic characteristics (age, sex, race/ethnic-
ity), and contextual conditions (US region, family poverty status), with an-
cillary analyses examining potentially confounding effects of biobehavioral
factors (BMI, smoking, alcohol consumption), while controlling for technical
covariates as noted above. To avoid capitalizing on chance due to multiple
testing, we followed standard biostatistical procedures by computing a
single integrated omnibus hypothesis test of our primary hypothesis that

there exists significant sociodemographic variation (either individual or
contextual) in the expression of one or more of the examined gene sets
(65–68). Contingent on a significant omnibus test of global sociodemographic
variation in gene set expression, we conducted interpretive follow-up
analyses testing for significant sociodemographic variation in expression of
each gene composite in isolation [with a false discovery rate (69) correction
for multiple testing]. For gene sets showing a significant omnibus test of
global sociodemographic variation in activity, we presented the individu-
al parameter estimates underlying that global result for descriptive/
interpretive purposes and conducted follow-up nested aggregate hypothesis
tests to assess the respective effects of individual vs. contextual demographic
factors (again with a false discovery rate correction for multiple testing).
Ancillary aggregate hypothesis tests also examine biobehavioral factors that
might potentially confound sociodemographic effects. Throughout these
analyses individual parameter estimates are presented for interpretive pur-
poses only and do not serve as the analytic basis for primary substantive
conclusions. To ensure that the a-priori-specified global inflammatory and
type I IFN composite scores did not obscure the effects of more differenti-
ated coregulated gene modules within each global set, we also conducted
exploratory follow-up analyses of the analyzed gene sets to map their fine-
grain coregulatory structure, using principal factor analysis (70) to identify
sets of coregulated genes while accounting for residual sources of sampling
variability (i.e., unique variance components).

For level 2 and 3 analyses, empirical variations in genome-wide tran-
scriptional profiles were mapped by identifying all genes showing >20%
differential expression as a function of a binary demographic indicator
variable or a 4-SD difference in a continuous demographic variable (ranging
from 2 SD below the mean to 2 SD above the mean). Gene-specific statistical
significance was based on a 5% dependent false discovery rate allowing for
potential correlation among genes (71). In level 2 analyses, transcription
factor activity was assessed by TELiS bioinformatic analysis (45) of RefSeq
core promoter DNA sequences for all genes showing a maximum-likelihood
point estimate of >20% differential expression as a function of a target
demographic variable. Genes were screened into TELiS analyses based on
differential expression effect size because effect-size–screened gene lists
have been found to be more replicable than those based on p- or q-value
screening (42, 72–75). TELiS analyses used TRANSFAC position-specific
weight matrices for NF-κB, AP-1, ISRE, CREB, and the GR (76), with de-
tection by the TRANSFAC mat_sim information criterion and statistical signif-
icance assessed by bootstrap resampling of linear model residual vectors to
account for correlation among genes (77). Level 3 analyses examined the rel-
ative contributions of 10 leukocyte subsets to the same set of differentially
expressed genes using Transcript Origin Analysis (43) based on reference
transcriptome profiles derived from isolated cell samples (Gene Expression
Omnibus GSE101489) (46) and bootstrap analysis of statistical significance.

Additional analytic details are available in SI Appendix. Analyses were
performed using SAS 9.4 software.

Data Availability. Add Health data are available at https://www.cpc.unc.edu/
projects/addhealth/documentation/. SAS code used in these analyses is avail-
able upon request from the corresponding authors.
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