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Systemic sclerosis (SSc) is an autoimmune disorder charac-
terized by the fibrosis of skin, heart, lung, and kidney as well. 
Excessive activation of fibroblasts is associated with higher 
expression of Notch1 and/or Notch3 genes. The constitutive 
expression of NOTCH genes was described in epithelial 
cells: epidermal keratinocytes, hair follicle cells and seba-
ceous glands. The NOTCH signalling pathway may be in-
volved in the development of fibrosis, myofibroblast for-
mation and the process of epithelial-mesenchymal tran-
sition. Activation of the NOTCH pathway leads to morpho-
logical, phenotypic and functional changes in epithelial 
cells. Furthermore, inhibition of Notch signalling prevent the 
development of fibrosis in different models, among them, 
bleomycin-induced fibrosis and in the Task-1 mause model. 
Molecular mechanisms, including the role of NOTCH sig-
naling pathway, associated with fibrosis in SSc have not been 
completely recognized. (Ann Dermatol 31(4) 365∼371, 2019)
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INTRODUCTION

Fibrosis is often accompanied by repair and/or remodel-
ling of tissues, activation of fibroblasts, formation of myofi-
broblasts and increase in the volume of extracellular ma-
trix (ECM)1,2. Progressive interstitial and perivascular fib-
rosis is observed in systemic sclerosis (scleroderma, SSc)3. 
SSc is classified into limited SSc (lcSSc) and diffuse SSc 
(dcSSc) forms. Both types differ in the extent of cutaneous 
involvement, in which fibroblasts produce significant am-
ounts of collagen (type I, III, VI, and VII)4. In lcSSc fibrosis 
is restricted to skin on fingers, digital extremities and face. 
Whereas in dcSSc are also affected truncal and peripheral 
skin areas, as well as visceral organs including interstitial 
lung disease (ILD), scleroderma renal crisis (SRC), gastro-
intestinal disease and myocardial involvement5.
Increased fibrosis of the skin and visceral organs leads to 
progression of SSc3. NOTCH signalling pathway may be 
involved in the development of fibrosis6-9. Nowadays there 
are no clinical trials to treat SSc/fibrosis by modulating 
NOTCH pathway.  

NOTCH PATHWAY

In mammals, the NOTCH pathway is conservative and 
consists of four receptors (NOTCH 1∼4) and five ligands: 
delta-like 1, 3, and 4 (DLL-1, 3, 4) and Jagged 1 and 2 
(JAG-1, 2)10. The proteins DLL and JAG can effect on 
NOTCH receptors by cis-(synthesis of the ligand and re-
ceptor occurs in the same cell) or trans-interaction (the li-
gand and receptor are synthesized by different cells)11. 
Post-translational modifications may have a major impact 
on the function of NOTCH pathway proteins. Biochemical 
processes, like glycosylation and/or phosphorylation, may 
determine the specificity of a receptor to a ligand, and 
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Fig. 1. Cross-talk between NOTCH and transforming growth factor
β (TGF-β) pathways. Activation of NOTCH receptors by ligand 
binding causes the cleavage by an A Digestirn and Metallo-
proteinase 17 (ADAM) metalloprotease (α-secretase) producing 
the Notch extracellular truncation fragment. Another cleavage 
by γ-secretase of transmembrane fragment releases the NOTCH 
intracellular domain (NICD). It translocates to the nucleus and 
acts as a co-transcription factor in association with the CSL 
(C-repeat/DRE binding factor 1/suppressor of hairless/Lag1) and 
other transcription factors including SMAD3. This protein trans-
locates to the nulceus in the phosphorylated form as a result 
of TGF-β receptor activation.

vice versa12. Post-translational modifications of NOTCH 
receptors occur in the endoplasmic reticulum. Appropri-
ately modified receptor proteins are cut in the Golgi appa-
ratus and transported in the form of heterodimer to the 
cell membrane13. Each receptor consists of three domains: 
extracellular, transmembrane and intracellular12,14. The li-
gand binding domain involves the epidermal growth fac-
tor (EGF)-like repeats, which are present in the extracel-
lular domain14,15. 
Once attached to the ligand, the NOTCH receptors are 
subject to cleavage catalysed by the metalloproteinase A 
Digestirn and Metalloproteinase 17 and γ-secretase. This 
causes the disconnection of the NOTCH intracellular do-
main (NICD), which is transferred into the cell nucleus, 
joins with the transcription factor-CSL (C-repeat/DRE bind-
ing factor 1 [CBF1]/suppressor of hairless/Lag1) and in-
hibits or stimulates the expression of target genes (Fig. 
1)7,13. The CSL protein is a suppressor of transcription, 
while its connection to NICD results in the activation of 
RNA synthesis16. Low or no NICD expression is observed 
in normal skin fibroblasts. Its constitutive expression was 
described in epithelial cells: epidermal keratinocytes, hair 
follicle cells and sebaceous glands17-20. 
The NOTCH pathway regulates the final stage of epi-
dermal cells differentiation and maintains the homeostasis 

of hair follicle cells17-19. In the mouse, Notch1-deficient 
embryos show severe vascular developmental defects, which 
are more severe in double mutant Notch1 and Notch4 
embryos21.

SYSTEMIC SCLEROSIS

The activation of the NOTCH pathway is observed under 
physiological conditions, like organogenesis, and has been 
described in the pathogenesis of diseases associated with 
abnormal fibrosis, including the development of idio-
pathic pulmonary fibrosis, kidney fibrosis and SSc22-25. 
NOTCH pathway has an effect on cell differentiation, pro-
liferation, survival and apoptosis22.
Abnormal microcirculation, fibrosis, as well as, autoimmune 
inflammatory processes are observed in SSc26,27. Perivas-
cular inflammation reduces vascular density, and later the 
ECM accumulates27,28. A positive correlation between the 
number of T lymphocytes and the NOTCH1 gene ex-
pression in endothelial fibroblasts was found29. The differ-
entiation of T-helper cells (Th) is affected by the NOTCH 
pathway ligands, including JAG-1 and JAG-2, which stim-
ulate the immune response with Th2 cells, while DLL pro-
teins, predominantly DLL-4, are responsible for the activa-
tion of Th1 cells4. It is assumed, that the direct interaction 
between T-cells expressing JAG-1 and fibroblasts showing 
high expression of the NOTCH1 receptor may be the 
main mechanism of the NOTCH pathway activation in 
SSc8. For example overexpression of JAG-1, Notch ligand, 
is observed is SSc skin and in hypertrophic scars. It in-
duces an accumulation of NICD in SSc fibroblasts follow-
ing higher expression of genes whose products are in-
volved in fibroblast activation and collagen release24. 

MYOFIBROBLAST FORMATION

The phenotype of myofibroblasts is typical for fibroblasts 
and smooth muscle cells30. Myofibroblasts show increased 
expression of collagen type I and III collagen, α-smooth 
muscle actin (α-SMA) and lower expression of genes en-
code ECM-degrading enzymes31,32. 
Myofibroblasts synthesize the largest amounts of ECM in 
tissues, where the repair or remodelling process takes 
place33. If the repair is completed and these cells do not 
enter the apoptosis, then the remaining myofibroblasts 
may cause scarring and fibrosis development33. 
The myofibroblasts can originate from various cells, in-
cluding bone marrow fibrocytes, pericytes, perivascular fi-
broblasts, white adipocytes, vascular endothelial cells, 
cholangiocytes and hepatocytes29,34-38. Moreover, Dees et 
al.24 demonstrated that the stimulation of normal fibro-



NOTCH Pathway and Systemic Sclerosis

Vol. 31, No. 4, 2019 367

blasts with recombinant human Jag-1-Fc chimera leads to 
a change in their phenotype, increased collagen release, 
differentiation of resting fibroblasts into myofibroblasts 
and further for development of fibrosis. 

EPITHELIAL-MESENCHYMAL TRANSITION

The differentiation of epithelial cells into myofibroblasts is 
called epithelial-mesenchymal transition (EMT). It is a pro-
cess in which epithelial cells lose their properties and 
show alterations in morphology, cellular architecture, ad-
hesion and migration capacity39,40. EMT occurs during or-
gan development and in pathological conditions, e.g., in 
tumours or other diseases originating from fibroblasts37. 
EMT in kidney epithelial and intercalated cells was also 
described. It is the cause of tubulo-interstitial fibrosis34,41,42. 
Moreover Manetti et al.43 found that EMT may take a 
place in the skin of patients with SSc and may have there-
fore a role in the pathogenesis of dermal fibrosis. They 
characterized the phenotype of dermal microvascular en-
dothelial cells, which was associated with reduction in the 
expression of epithelial markers CD31 and vascular endo-
thelial cadherin and an upregulation of mesenchymal 
markers, including α-SMA+ stress fibers, fibroblast spe-
cific protein-1 (FSP1/S100A4), type I collagen and Snail1 
protein43.
Activation of the NOTCH pathway in the endothelium 
leads to EMT and to morphological, phenotypic and func-
tional changes in epithelial cells44. During EMT is ob-
served loss of expression of some genes, whose products 
are involved in regulation of cellular adhesion (claudins 
and E-cadherin) and inhibition of cytoskeletal proteins (for 
example SMAD6/7) to promote the mesenchymal pheno-
type30. Markers typical for EMT include increased ex-
pression of N-cadherin, vimentin, FSP1 and α-SMA, nu-
clear localization of β-catenin, decreased expression of 
E-cadherins and CD31 molecules39. Cytoskeletal changes 
promote increased cytosol mobility and the acquisition of 
a phenotype typical for myofibroblasts42. 
Many signalling pathways, are involved in the activation 
of fibroblasts and EMT including transforming growth fac-
tor β1 (TGF-β1), bone morphogenic protein, EGF, fibro-
blast growth factor, platelet-derived growth factor, Wnt, 
Sonic Hedgehog and integrin signalling6,45-51. These sig-
nalling pathways activate, trough intracellular kinases, 
transcription factors that activate the expression of EMT-as-
sociated genes52. 
Several transcription factors can be involved in the in-
duction of EMT, among them, are the zinc-finger binding 
proteins Snail1 and Snail2 (also known as Slug)53. Notch 
signalling can regulate expression of Snail1 in a non-di-

recive way through induction of hypoxia-inducible factor 
1α, which binds to promoter of lysyl oxidase gene fol-
lowing transcription of Snail1 gene54. Snail2 interacts with 
NOTCH receptors and is essential for Notch-mediated in-
hibition of E-cadherin and β-catenin genes expression55. 
In addition to EMT mediated by many signalling path-
ways, NOTCH regulates indirectly EMT through nuclear 
factor kappa B, β-catenin pathways, as well as, through 
the action of various microRNAs56. For example JAG-2, 
NOTCH ligand, promotes EMT through the expression of 
GATA3 gene (GATA-binding protein 3), which encodes 
transcription factor inhibiting the cluster of microRNA-20056. 
Activation of the NOTCH pathway by JAG-1 in epithelial 
cells of breast cancer induces EMT, which leads to promot-
ing the invasion and dissemination of malignant cells57.

INHIBITORS OF NOTCH AND NOTCH-AS-
SOCIATED PATHWAYS

Ligands endocytosis of the NOTCH pathway has the in-
hibitory effect on signal transduction. In mammals, four E3 
ubiquitin ligases are involved in the process of endocy-
tosis: neuralized-1 (Neur1), neuralized-2 (Neur2), mind 
bomb-1 (Mib1) and mind bomb-2 (Mib2)58. The Mib1 en-
zyme plays the essential role in inhibiting the NOTCH 
pathway, while the other ligases play an auxiliary role59. 
Taking into above, Choi et al.25 demonstrated that deletion 
of gene encoding Mib1 in kidney intercalated cells leads 
to increased expression of TGF-β1 and ECM volume. 
TGF-β1 may intensify fibrosis, for example in patients 
with SSc, it increases the expression of NICD and the hes 
family basic Helix-Loop-Helix transcription factor 1 (HES-1) 
protein in dermal fibroblasts (Fig. 1)24,60,61.
Inhibition of the NOTCH pathway can be carried out by 
suppressing the activity of γ-secretase and blocking or re-
duction of the synthesis of ligands (DLL and JAG)61. The 
inhibitor of γ-secretase activity–DAPT (N-[N-(3,5-difluoro-
phenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) can re-
duce the intensity of fibrosis62. DAPT reduces the expres-
sion of fibrosis-promoting cytokines interleukin (IL)-4, IL-6, 
TGF-β1 and connective tissue growth factor; and reduces 
the number of myofibroblasts in mice61. Moreover, Chen 
et al.63 demonstrated that DAPT reduced the number of 
cells with characteristics of myofibroblasts and inhibited 
the expression of TGF-β1. In SSc, blocking the NOTCH 
pathway by applying DAPT prevents the development of 
skin fibrosis (bleomycin-induced) in in vitro models de-
pendent on inflammation (dermal fibrosis in in-
flammation-dependent models) or in animal models, e.g., 
the tight skin 1 (Tsk-1) mice24,61. Targeting of NOTCH path-
way trough anti-sense RNAs or by DAPT can reduce the 
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collagen release in SSc fibroblasts, without any negative 
effects on wild type fibroblasts24. Furthermore, inhibition 
of Notch signalling prevent the development of fibrosis in 
different models, among them, bleomycin-induced fibrosis 
and in the Tsk-1 mause model7,61.   
In SSc skin is observed JAG-1 overexpression, which in-
creased expression of targeted genes in various tissues16. 
Inhibition of the NOTCH pathway by knockdown of JAG-1 
leads to the inhibition of keloid fibroblast proliferation and 
migration, and has antiangiogenic activity64. The direct ef-
fect on the NOTCH pathway results in the reduction of 
collagen synthesis by fibroblasts and may be effective both 
in the early proinflammatory stages of SSc and in later 
phases not related to the inflammatory process24,61.

LIVER FIBROSIS 

The mechanism of tissue fibrosis has been well under-
stood in the liver. Its fibrosis occurs as a result of chronic 
liver disease. In SSc is observed excessive fibrosis in the 
viscera and activation of hepatic stellate cells (HSCs) after 
liver injury65. Activated HSCs are characterised by in-
creased expression of α-SMA and can be transformed in-
to myofibroblasts66. Activation/auto-activation of HSCs in-
creases fibrosis and biosynthesis of JAG-1 ligand and the 
expression of the Notch3 gene63. Unactivated HSCs do 
not show an expression of both JAG-1/2 ligands67. All four 
types of NOTCH receptors are expressed on the surface of 
healthy liver cells. Liver fibrosis increases expression of 
NOTCH3 protein/Notch3 gene68,69. The expression of 
Notch1, Notch2 and Notch4 genes is at a similar level in 
both healthy and fibrotic liver cells69.

KIDNEY FIBROSIS

Kidney involvement is SSc is primarily manifested by SRC. 
It is defined as the accelerated arterial hypertension and/or 
rapidly progressive oliguric renal failure. The primary pro-
cess, associated with SRC, is injury to the endothelial 
cells70. These cells are found in vascular, glomerular and 
peritubular capillary (PTC) beds71. Kidney endothelial cells, 
which underwent EMT, play an important role in the fib-
rosis of this organ72.
Kidney fibrosis is the hallmark of chronic kidney disease 
(CKD). It is characterized by the accumulation of myofi-
broblasts and excessive deposition of ECM components 
and the tubulo-interstitial fibrosis25,73,74. The kidney fib-
rosis process is accompanied by the process of repairing 
PTCs. However, renal PTCs are very susceptible to atro-
phy occurring after this organ has been damaged75. The 
concomitance of PTCs with interstitial fibrosis is one of 

the main symptoms of CKD. Animal models showed a 
negative correlation between the density of PTCs and the 
intensity of fibrosis75. In patients with CKD, the increased 
loss of PTCs is a factor associated with increased inter-
stitial fibrosis and kidney failure42,76. The repression of 
Notch1 signalling counteracts PTC rarefaction75.
NOTCH pathway is involved in the development of tubu-
lointerstitial fibrosis and the differentiation or pathological 
changes of kidney podocytes and tubular cells6,67,77,78. Re-
duced NOTCH signalling is observed in the healthy adult 
kidney67. The expression of JAG-1 and HES-1 increases in 
CKD79,80.

LUNG FIBROSIS

ILD is observed in up to 50% of SSc patients28,81. Pulmo-
nary fibrosis is associated with dysfuntion of epithelial 
cells, accumulation of fibroblasts, increased production of 
TGF-β1, excessive deposition in ECM and abnormal lung 
remodeling82,83. Idiopathic pulmonary disease is charac-
terized by myofibroblast formation (by EMT), which is fa-
cilitated by activation of NOTCH pathway84. Liu et al.9 in-
dicated, that TGF-β1 stimulated expression of JAG-1, 
Notch1, NICD and HES-1 following the differentiation of 
rat primary lung fibroblasts. 

HEART FIBROSIS

NOTCH pathway is a key mechanism of normal heart 
morphogenesis. It regulates cardiomyocyte proliferation, 
formation of valves, atrioventricular canal, outflow tract 
and coronary vessels85,86. 
Cardiac fibrosis is characterized by excessive deposition 
of scar tissue Cross-talk between NOTCH and TGF-β 

pathways play an important role during the development 
of the heart. Furthermore, NOTCH pathway is involved in 
the heart fibrosis after myocardial infarction (MI), primarily 
through myofibroblast differentiation87. 
NOTCH receptors and their ligands are localized to the 
vasculature, as well as, are observed in endocardium. 
JAG-1, which is NOTCH ligand, is present on endocardial 
and periendocardial cells of the cardiac cushions88-90. In 
vivo study of Boopathy et al.91, showed that delivery of 
JAG-1 ligand through intramyocardial injection in rats 
with MI reduced cardiac fibrosis. The inhibition of 
NOTCH receptors expression-1, 3, and 4 promotes fibro-
blast-myofibroblast transition87. Moreover, Zhang et al.92 
found in animal model that overexpression of Notch3 re-
ceptor (as a result of cDNA lentivirus inections) increased 
mice survival rate, improved cardiac function and mini-
mized MI-induced increase in cardiac fibrosis. 



NOTCH Pathway and Systemic Sclerosis

Vol. 31, No. 4, 2019 369

SUMMARY

The ever growing evidence suggests that the NOTCH 
pathway is involved in the development of fibrosis in vari-
ous organs7,61. However, the molecular mechanisms asso-
ciated with this process have not been fully recognised. It 
is possible that inhibitors of NOTCH receptors or their li-
gands will be used in the future in new therapeutic strat-
egies in SSc patients. Furthermore, there is insufficient da-
ta on the expression of NOTCH receptors, the occurrence 
of polymorphisms and possible mutations in genes which 
encode the above receptors in fibrotic tissues. The research 
in this area is still to be continued.
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