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SUMMARY
B-lymphocyte-induced nuclear maturation protein 1 (BLIMP1) was previously reported to define a sebaceous gland (SG) progenitor

population in the epidermis. However, the recent identification of multiple stem cell populations in the hair follicle junctional zone

has led us to re-evaluate its function. We show, in agreement with previous studies, that BLIMP1 is expressed by postmitotic, terminally

differentiated epidermal cells within the SG, interfollicular epidermis, and hair follicle. Epidermal overexpression of c-Myc results in loss

of BLIMP1+ cells, an effectmodulated by androgen signaling. Epidermal-specific deletion of Blimp1 causesmultiple differentiation defects

in the epidermis in addition to SG enlargement. In culture, BLIMP1+ sebocytes have no greater clonogenic potential than BLIMP1�

sebocytes. Finally, lineage-tracing experiments reveal that, under steady-state conditions, BLIMP1-expressing cells do not divide.

Thus, rather than defining a sebocyte progenitor population, BLIMP1 functions in terminally differentiated cells to maintain homeosta-

sis in multiple epidermal compartments.
INTRODUCTION

Mammalian epidermis ismaintained by stem cells that self-

renew and give rise to the differentiated cells of the interfol-

licular epidermis (IFE), sebaceous glands (SGs), hair follicles

(HFs), and sweat glands (Kretzschmar and Watt, 2014).

Several different epidermal stem cell pools have been iden-

tified, including multiple HF stem cell populations. Under

steady-state conditions, stem cells in different regions

of the epidermis only give rise to the differentiated cells

appropriate for their location, but when the epidermis is

damaged or genetically modified, individual stem cells

exhibit a broader ability to differentiate into all epidermal

lineages (Watt and Jensen, 2009).

Within the epidermis, the differentiated cells of the SG

produce sebum that lubricates and waterproofs the skin

surface (Zouboulis et al., 2008). The specialized SGs of the

eyelid (meibomian gland) and male genitals (preputial

gland) contribute to the composition of the tears and

secrete pheromones, respectively (House et al., 2010). SG

dysfunction results in benign conditions, such as acne

and sebaceous cysts, and also in a range of different tumor

types. In vivo lineage tracing by retroviral transduction has

established that the SG can be maintained by a population
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of long-lived progenitors (putative stem cells) that are

distinct from the stem cells of the HF (Ghazizadeh and

Taichman, 2001). The only specificmarker of sebocyte pro-

genitors to be described is B-lymphocyte-induced nuclear

maturation protein 1 (BLIMP1) (also known as PR domain

zinc finger protein 1 [PRDM1]; Horsley et al., 2006).

First identified as a gene upregulated during, and capable

of promoting, terminal differentiation of B lymphocytes

(Turner et al., 1994), BLIMP1 was subsequently character-

ized inmany other tissues,mainly as a transcriptional regu-

lator of terminal differentiation (Bikoff et al., 2009; John

and Garrett-Sinha, 2009). During embryonic skin develop-

ment, BLIMP1 expression was identified in the upper

differentiated layers of the IFE and in differentiated cells

of the HF inner root sheath (Chang et al., 2002). It was sub-

sequently reported that BLIMP1 is also expressed in termi-

nally differentiated cells of the IFE and SG of postnatal

human and mouse skin and is upregulated in differenti-

ating sebocytes in culture (Cottle et al., 2013; Lo Celso

et al., 2008; Magnúsdóttir et al., 2007; Sellheyer and Krahl,

2010). In addition, by employing a range of experimental

strategies, including immunohistochemistry, genetic line-

age tracing, and cell culture, Fuchs and coworkers described

BLIMP1 to be a marker of sebocyte progenitors (Horsley
uthors
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et al., 2006). In view of the importance of the SG in

skin biology and new reports that cells expressing

leucine-rich repeats and immunoglobulin-like domain pro-

tein 1 (LRIG1) or leucine-rich repeat-containing G-protein-

coupled receptor 6 (LGR6) are SG progenitors (Jensen et al.,

2009; Page et al., 2013; Snippert et al., 2010), we have revis-

ited the function of epidermal BLIMP1.
RESULTS

BLIMP1 Is Expressed by Terminally Differentiated

Cells of the IFE, HF, and SG

We stained back skin sections of wild-type mice and trans-

genic mice expressing enhanced GFP (EGFP) under the

control of the Blimp1 promoter (Blimp1EGFP) (Ohinata

et al., 2005) from different postnatal stages for endogenous

BLIMP1 (Figure 1 and Figure S1 available online). In agree-

ment with previous publications, BLIMP1 was localized to

cell nuclei (Horsley et al., 2006; Magnúsdóttir et al., 2007;

Robertson et al., 2007). Specific cells within all epidermal

compartments (IFE, HF, and SG) expressed BLIMP1 (Figures

S1A–S1D). As reported previously (Coulombe and Bernot,

2004; Coulombe et al., 1989), the entire SG expressed ker-

atin 14 (K14) (Figure S1D). Cells double positive for BLIMP1

or Blimp1EGFP and the marker of differentiated sebocytes,

fatty acid synthase (FAS), were found in the upper SG (Fig-

ures 1A–1D). BLIMP1 expression by FAS+ sebocytes was

evident as soon as the SG began to develop at postnatal

day (P)2 (Figures S1A–S1D). BLIMP1+ involucrin (IVL)+ cells

as well as Blimp1EGFP+ IVL+ (Figures 1C–1F) were found in

the sebaceous duct, which sits like a cap atop the SG and is

an elongation of the HF infundibulum/junctional zone

(Cottle et al., 2013). In the IFE, BLIMP1+ cells were absent

from the K14+ basal layer and were found in the terminally

differentiated, IVL+ cells of the granular layers (Figures 1E,

1F, and S1A–S1D). We confirmed the existence of a popula-

tion of BLIMP1+ cells in the upper HF adjacent to the SG.

BLIMP1+ cells in that region coexpressed IVL and the HF

shaft differentiation marker K31, indicating that they

were undergoing terminal differentiation (Figures 1G and

1H). The location of BLIMP1-expressing cells in the

epidermis is summarized in Figure 1I.

We also stained sections of murine meibomian glands

and preputial glands, which are specialized SGs (Figures

S1E–S1H) (House et al., 2010). BLIMP1+ cells were found

in the center of the meibomian glands, where the most

highly differentiated sebocytes reside; they expressed FAS

(Figures S1E and S1F), as reported previously (Cottle et al.,

2013). Cells expressing BLIMP1 in preputial glands were

also FAS+, confirming that they are indeed lipid-producing,

differentiated sebocytes (Figures S1G and S1H). BLIMP1+

cells were also detected in the supporting HF ductal struc-
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tures, coexpressing IVL (Figure S1H). Consistent with the

observations in mouse skin, in human skin BLIMP1 was

expressed in terminally differentiated, IVL+ epidermal cells

in IFE, SG, and HF (Figures S1I–S1K). In human sebaceous

tumors, BLIMP1 was expressed by the most differentiated

(IVL+ or weak FAS+) cells in the center of the neoplasm

rather than in the periphery, where the most proliferative

cells reside (Figures S1L–S1P). BLIMP1 is expressed in papil-

lary dermal fibroblasts during normal skin development

(Driskell et al., 2013; Lesko et al., 2013) and was also ex-

pressed in tumor stromal cells (Figures S1L–S1P).

Modulation of BLIMP1 Expression by MYC and

Androgens

BLIMP1 has previously been shown to bind and negatively

regulate the c-Myc promoter (Horsley et al., 2006), and

epidermal c-Myc overexpression, like Blimp1 deletion, can

lead to SG enlargement (Horsley et al., 2006; Berta et al.,

2010; Cottle et al., 2013). To determine the effect of c-Myc

overexpression on Blimp1 expression in the epidermis, we

first confirmed that, in wild-type epidermis, BLIMP1+ cells

did not express proliferating cell nuclear antigen (PCNA), a

marker of proliferation (Figures 2A and 2B). When MYC

was activated by high-dose 4-hydroxy-tamoxifen (4-OHT)

treatment in K14c-MycERt transgenic mice (Berta et al.,

2010; Cottle et al., 2013), proliferation in the SGwas stimu-

lated and there was a reduction in BLIMP1+ SG cells (Fig-

ure 2C). In contrast, when MYC-induced SG proliferation

was inhibited by the androgen testosterone and sebocyte

terminaldifferentiationwas stimulatedby theantiandrogen

bicalutamide (Cottle et al., 2013), there was an increase in

the number of BLIMP1+ differentiated sebocytes (FAS+)

and BLIMP1+ cells in the upper layers of the IFE (Figure 2D).

These observations indicate that accumulation of BLIMP1+

cells in the SG is correlated with terminal differentiation

rather than proliferation of SG progenitors.

Epidermal Loss of Blimp1 Causes Multiple Epidermal

Deficiencies, Including Sebaceous Gland Enlargement

There are conflicting reports about the consequences of

epidermal loss of Blimp1 (Blimp1 conditional knockout

[cKO]). In one report, there were no obvious defects in

the IFE or HF and specific SG abnormalities were found,

including SG enlargement and hyperplasia in the skin,

the meibomian glands, and the preputial glands (Horsley

et al., 2006). In contrast, Magnúsdóttir et al. (2007) found

that epidermal-specific deletion of Blimp1 caused not

only SG enlargement but also IFE hyperplasia, abnormal

expansion of the granular layer, and a hyperkeratotic HF

infundibulum. The IFE hyperplasia was absent in Blimp1-

deficient epidermis in mice older than 15 days, and only

SG enlargement and hyperkeratinization of the HF infun-

dibulum persisted into adulthood (Magnúsdóttir et al.,
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Figure 2. BLIMP1 Expression Is Regulated by MYC
(A and B) Paraffin sections of murine wild-type back skin collected at P6 or P56 (adult) labeled with antibodies against BLIMP1 (green),
PCNA (red), and K14 (blue).
(C and D) Paraffin sections of adult K14c-MycERt transgenic mice treated with 4-hydroxytamoxifen (4-OHT) alone (C) or in combination
with testosterone and bicalutamide and labeled with antibodies against BLIMP1 (green), FAS (red), and IVL (blue). Black and white panels
show BLIMP1 channel separately. Arrowheads, BLIMP1+ cells; dashed lines, epidermal-dermal boundary.
Scale bars represent 50 mm (A and B) and 100 mm (C and D).
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2007). Both studies used the same K14Cre mouse strain;

however, Magnúsdóttir et al. (2007) used a floxed Blimp1

strain that deletes exons 6–8 upon recombination

(Prdm1tm1Clme; Figure 3A) (Shapiro-Shelef et al., 2003)

whereas Horsley et al. (2006) used an exon 5 floxed Blimp1

strain (Prdm1tm2Masu; Ohinata et al., 2005).

In order to delete Blimp1 selectively in adult, rather than

developing, epidermis and therefore evaluate whether

a BLIMP1+ progenitor population does indeed govern

cellular input to the SG, we crossed Prdm1tm1Clme mice
Figure 1. BLIMP1 Is Expressed by Terminally Differentiated Epid
(A–H) Paraffin sections of murine wild-type or Blimp1EGFP (as indicat
with antibodies against BLIMP1 (green in A, B, and E–H), GFP (green in
(IVL) (red in E, F, and right panels of C and D) and counterstained
separately. Arrowheads, BLIMP1+ cells; dashed lines, epidermal-derm
(I) Summary of epidermal BLIMP1 expression.
HF, hair follicle; IFE, interfollicular epidermis; INF, infundibulum; SG
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with K5CreERt transgenic mice (Liang et al., 2009) and

induced Cre-mediated deletion of Blimp1 in adult mice by

injecting tamoxifen (Figures 3A and 3B) (Chiang et al.,

2013). Deletion of Blimp1 in the entire epidermis was

confirmed as reported previously (Figure S2) (Chiang

et al., 2013). Hematoxylin and eosin (H&E) staining of

neck skin sections collected 2, 3, and 6months after tamox-

ifen injection revealed clear differences between control

and Blimp1 cKO epidermis, with epidermal loss of Blimp1

resulting in SG enlargement, IFE thickening, accumulation
ermal Cells in IFE, SG, and HF
ed) back skin collected at postnatal day (P)6 or P56 (adult) labeled
C and D), FAS (red in A, B, and left panels of C and D), and involucrin
with DAPI (blue). Black and white panels show BLIMP1 channel
al boundary.

, sebaceous gland. Scale bars represent 50 mm. See also Figure S1.
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Figure 3. Epidermal-Specific Loss of Blimp1 Causes Multiple Differentiation Defects
(A and B) Schematics of genetic elements (A) and experimental setup (B).
(C and D) Paraffin sections of neck skin collected from Blimp1 conditional knockout (cKO) mice and control littermates 2 and 6 months
after tamoxifen injection. Dashed lines indicate epidermal-dermal boundary and delineate area of SG quantified. Square brackets show IFE
thickness quantified. Arrow indicates outermost cornified layers. Arrowheads indicate hyperkeratosis of HF infundibulum.
(E) Quantitation of SG size in Blimp1 cKO epidermis normalized to control. Quantitation was performed on a minimum of five H&E-stained
sections per mouse from three cKO and three control mice.
(F) Paraffin sections stained with antibodies against FAS (red) and K14 (green) and counterstained with DAPI (blue).
(G) Quantitation of IFE thickness in Blimp1 cKO epidermis normalized to control. Quantitation was performed on a minimum of five H&E-
stained sections per mouse from three cKO and three control mice.
(H–K) Paraffin sections stained with antibodies against Ki67 (red in H), PCNA (red in I), K10 (red in J), or IVL (red in K) and K14 (green in
H, J, and K) and counterstained with DAPI (blue).
(L) Quantitation of infundibulum length in Blimp1 cKO epidermis normalized to control. Quantitation was performed on a minimum of five
H&E-stained sections per mouse from three cKO and three control mice.
(M–P) Paraffin sections stained with antibodies against K6 (red in M), FABP5 (green in N), CRABP2 (red in O), or K31 (red in P) and
counterstained with DAPI (blue).
cKO, conditional knockout; TAM, tamoxifen. Error bars represent the SEM. Asterisks indicate significant differences between control and
cKO (unpaired two-tailed Student’s t test; p values: *p < 0.05, **p < 0.005, ***p < 0.001). Scale bars represent 100 mm, except those in the
left-hand panels for Ctrl and cKO in (F), which represent 200 mm. See also Figure S2.
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of cornified layers, and hyperkeratosis of the HF infundib-

ulum (Figures 3C and 3D). Although our analysis was

restricted to neck skin, other studies have shown no evi-

dence for differences between neck and back skin (Magnús-

dóttir et al., 2007; Chiang et al., 2013). The phenotype

resembled that described by Magnúsdóttir et al. (2007) in

neonatal Blimp1�/� epidermis rather than a SG-specific

phenotype (Horsley et al., 2006).
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Quantification of H&E-stained sections showed that

Blimp1 deletion resulted in a gradual increase in SG size

over time (Figure 3E). Sections of Blimp1 cKO tissue stained

for FAS showed no obvious changes in expression within

sebocytes (Figure 3F). Blimp1-deficient IFE was signifi-

cantly thickened (Figure 3G) and showed a dramatic

increase in Ki67+/PCNA+ basal layer cells in the IFE

and HF infundibulum (Figures 3H and 3I). K14, a marker
uthors
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that is usually restricted to the basal layer in the IFE,

expanded into the suprabasal layers (Figure 3H), as re-

ported in neonatal cKO skin (Magnúsdóttir et al., 2007).

K10 and IVL, markers of IFE differentiation, were expressed

in the suprabasal layers, but the strong overlap of those

markers with K14 indicates perturbed IFE differentiation

(Figures 3J and 3K). We also found that the infundibulum

of adult Blimp1 cKO skin displayed increased proliferation

and was hyperkeratotic, thickened, and elongated (Figures

3D and 3L).

Markers typical of epidermal hyperproliferation, namely

K6, the retinoic acid (RA)-signaling molecule fatty-acid-

binding protein, FABP5, and cellular RA-binding protein,

CRABP2 (the latter two being also sebocyte markers in

normal skin; Collins and Watt, 2008), were also dramati-

cally increased in Blimp1 cKO epidermis (Figures 3M–3O).

These changes are consistent with a defective epidermal

barrier (Magnúsdóttir et al., 2007) and would explain the

massive inflammatory infiltrate in the dermis (Figure 3D)

(Chiang et al., 2013). Staining for the hair shaft marker

K31 did not reveal any abnormalities in the lower, cycling

portion of the HF (Figure 3P) (Horsley et al., 2006; Magnús-

dóttir et al., 2007).

We conclude that epidermal loss of Blimp1 expression

in adult epidermis causes multiple epidermal defects,

including SG enlargement, hyperplasia, and perturbed dif-

ferentiation of the IFE and HF infundibulum.

All Sebocytes Retain Proliferative Potential in Culture

BLIMP1+ epidermal cells have the ability to proliferate at

clonal density and give rise to lipid-filled sebocytes (Hors-

ley et al., 2006). In order to compare the proliferative

ability of BLIMP1+ sebocytes and other epidermal cells,

we first incubated adult back skin keratinocytes from

Blimp1EGFP mice with LipidTOX dye (Life Technologies)

to label lipid-producing sebocytes. We then flow sorted

four populations of keratinocytes: (1) EGFP�lipid+ sebo-

cytes; (2) EGFP+lipid+ sebocytes; (3) EGFP+lipid� cells

(comprising BLIMP1+ cells of IFE, HF, and sebaceous

duct); and (4) EGFP�lipid� cells (comprising primarily

undifferentiated cells and BLIMP1� differentiated cells;

Figures 4A–4C). Sorted cells were cultured on a feeder

layer, and colony-forming efficiency (CFE) was analyzed

2 weeks later.

Lipid+ sebocytes, whereas not proliferative in vivo, were

clonogenic at low frequency, confirming previous studies

(Laurent et al., 1992). EGFP+ sebocytes did not show a

significantly increased CFE compared to EGFP� sebocytes

(Figures 4D–4F). EGFP+ lipid� cells displayed a reduced

CFE compared to EGFP�lipid� cells, although this was

not statistically significantly (Figure 4E). Analysis of colony

sizes revealed EGFP�lipid+ sebocytes formed the largest

colonies in comparison to the other three cell populations
Stem Cell
(Figure 4F). We conclude that BLIMP1+ cells, whether or

not they are sebocytes, have a lower clonogenic capacity

than BLIMP1� cells, consistent with their differentiated

status.

BLIMP1+ Cells Do Not Give Rise to Proliferative and

Differentiating Sebocytes In Vivo

In order to understand whether a subset of BLIMP1+ cells

gives rise to differentiated sebocytes, we performed genetic

lineage-tracing experiments (Kretzschmar andWatt, 2012).

We crossed Blimp1Cre transgenic mice (Ohinata et al.,

2005; Horsley et al., 2006) with chicken b-actin promoter

and cytomegalovirus (CMV) enhancer-chloramphenicol

acetyltransferase-EGFP (CAGcatEGFP) transgenic (Kawa-

moto et al., 2000) or Rosa26tdTomato (Ai9 line) gene trap

(Madisen et al., 2010) reporter mice (Figure 5A). By consti-

tutively expressing Cre recombinase under the control of

the Blimp1 promoter, the floxed STOP cassette of the re-

porter construct is removed and the fluorescent reporter

(EGFP or tdTomato) expressed in BLIMP1+ cells and their

descendants (Figure 5A). If these Blimp1-expressing cells

are indeed sebocyte progenitors, labeled progeny should

be found throughout the SG in cells at all stages of

differentiation.

We collected tissue from Blimp1Cre 3 CAGcatEGFP and

Blimp1Cre 3 Rosa26tdTomato mice at weaning age (P21)

and adult (P56) and stained tail epidermal whole mounts

(Braun et al., 2003) with antibodies against the respective

reporter and the sebocyte marker, FAS (Cottle et al.,

2013). Neither EGFP nor tdTomato was significantly de-

tected in FAS+ sebocytes (Figures 5B–5I and 5L). Clones ex-

pressing either reporter were found in differentiated cells

of the inner bulge, as well as in the matrix of anagen HFs

(Figures 5B–5I). Figure 5D shows that rare EGFP+ clones,

containing a small number of cells, were present in

the HF junctional zone and sebaceous duct, but not in

basal or FAS+ sebocytes. These lineage-tracing results

largely mirror the expression of endogenous BLIMP1 and

Blimp1EGFP in all epidermal lineages (Figures 1, 5J, and

5K). Labeled progeny adjacent to the SG were mainly

found in the inner layers of the HF junctional zone, and

only one EGFP+ traced cell in the epidermis of all mice

examined expressed FAS (Figures 5M and 5N). Similar

data were obtained in horizontal whole mounts of back

epidermis, which also show EGFP+ lineage traced clones

in the differentiated layer of IFE (overlapping with IVL)

and HF (Figure S3). Dermal labeling is also observed in

line with recent studies on the role of BLIMP1 in dermal

fibroblast subpopulations (Driskell et al., 2013; Lesko

et al., 2013).

In Blimp1EGFP mice, EGFP is expressed by cells that are

expressing endogenous BLIMP1, regardless of whether

they are derived from BLIMP1+ cells (Lesko et al., 2013). In
Reports j Vol. 3 j 620–633 j October 14, 2014 j ª2014 The Authors 625



Figure 4. Clonogenic Potential of BLIMP1+ Sebocytes
(A) Schematic of experimental setup.
(B) Epidermal tail whole mount of Blimp1EGFP mouse stained with
GFP antibody and LipidTOX to visualize lipid-producing cells;
counterstained with DAPI (blue). Dashed line outlines HF and SG.
Numbers correspond to sorted populations in (C).
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contrast, in Blimp1Cre 3 Rosa26tdTomato mice, tdTomato

expression (and likewise Blimp1Cre 3 CAGcatEGFP mice

EGFP expression) is restricted to cells that are BLIMP1+

and their progeny. The cells that give rise to the BLIMP1+

cells of the IFE and SG were BLIMP1� (e.g., IFE basal layer)

and so were labeled with EGFP and not tdTomato. Of

note, cells in the upper layers of the IFE cannot be visualized

in tail epidermal whole mounts, because antibodies cannot

penetrate deeper than the first suprabasal layer of the fixed

tissue. However, in horizontal whole mount sections,

EGFP and tdTomato labeling in the IFE and SG was clearly

visible (Figure S3; data not shown). The lack of tdTomato

labeling in terminally differentiated sebocytes may reflect

the short half-life of the cells. The lack of EGFP- or

tdTomato-labeled basal cells and early sebocytes supports

the conclusion that BLIMP1 does not define a sebocyte pro-

genitor population.

LGR6+ and LRIG1+ Stem Cells Contribute to

Maintenance of the Sebaceous Gland

LRIG1 and LGR6 have previously been shown to be

markers of epidermal stem cells in the HF junctional zone

that produce progeny in the SG (Figures 6A and 6B) (Jensen

et al., 2009; Page et al., 2013; Snippert et al., 2010).

We stained tissue sections of adult Lrig1EGFPiresCreERT2

(Page et al., 2013) and Lgr6EGFPiresCreERT2 (Snippert

et al., 2010) knockin (KI) mice with antibodies against

EGFP (to label the respective stem cell pools) and endoge-

nous BLIMP1. In agreement with the earlier findings, we

found that BLIMP1 was not coexpressed with LRIG1 or

LGR6 (Figures 6A–6D).

To confirm that our lineage-tracing strategy was capable

of labeling the SG lineage and to rule out any possible ef-

fects of using the CMV and CAG promoter versus Rosa26

promoters or different fluorescent reporters, we crossed

our Rosa26tdTomato strain (Madisen et al., 2010) with

Lrig1 KI and Lgr6 KI mice (Figure 6E). Offspring positive

for either of the two EGFPiresCreERT2 cassettes and the

tdTomato reporter were treated with 1.5 mg 4-OHT at

7–9 weeks of age, and back skin was examined 4 days and
(C) Flow cytometry plot showing sorted cell populations.
(D) Phase contrast images (top) and stained dishes (bottom) of
mouse epidermal cells after 14 days in culture (after removal of
feeder layer).
(E and F) Colony-forming efficiency (E) and average colony size (F;
whisker plot) of sorted populations. Error bars in (E) show SEM. In
(F), vertical lines show 25% confidence intervals; means are indi-
cated by crosses and medians by dashed lines. (E) and (F) data are
biological replicates (n = 3 mice). Asterisks indicate significance
of differences between cell populations (unpaired two-tailed Stu-
dent’s t test; p values: ***p < 0.001). The scale bar represents
100 mm.
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4 weeks later (Figure 6F). This dose of 4-OHT achieved

maximal labeling of the stem cell pools. Paraffin sections

were stained for tdTomato, BLIMP1, and FAS.

Four days after 4-OHT application, tdTomato+ LRIG1

stem cell progeny were found in the periphery and lower

SG, as well as in some sebaceous duct cells. However,

BLIMP1+ sebocytes were negative for the reporter (Fig-

ure 6G). As Lrig1 is also expressed in the dermis (Driskell

et al., 2013; Gomez et al., 2013), tdTomato+ dermal

LRIG1 progeny were also observed. TdTomato+ LGR6

stem cell progeny were also found in the lower SG, but

again tdTomato labeling was absent from BLIMP1+ sebo-

cytes (Driskell et al., 2013; Figure 6H). Four weeks after

4-OHT treatment, some BLIMP1+ sebocytes were also

tdTomato+ (Figures 6I and 6J), establishing that, between

4 days and 4 weeks after labeling, progeny of LRIG1+ and

LGR6+ stem cells underwent terminal differentiation into

BLIMP1+ sebocytes. Of note, even with the high dose of

4-OHT applied, SGs of Lgr6 KI 3 Rosa26tdTomato mice

were frequently labeled in the absence of isthmus labeling

(Figure S4), strongly suggesting the existence of sebocyte

progenitor residing within the SG, as proposed previously

(Page et al., 2013).

In conclusion, our results confirm that the SG lineage is

indeed derived from LRIG1+ and LGR6+ stem cells (Jensen

et al., 2009; Page et al., 2013; Snippert et al., 2010) and

that BLIMP1+ SG cells are terminally differentiating sebo-

cytes (Cottle et al., 2013).
DISCUSSION

Although the concept that BLIMP1 is a marker of sebocyte

progenitor cells has become established in the literature

(Beck and Blanpain, 2012; Blanpain and Fuchs, 2014;

Niemann and Horsley, 2012; Solanas and Benitah, 2013;

Zhang et al., 2011), our studies suggest that BLIMP1 is pri-

marily a marker of terminal differentiation in SG, IFE, and

HF and that BLIMP1+ cells do not divide in undamaged

postnatal epidermis. Nevertheless, genetic ablation of

BLIMP1 confirms its importance in epidermal homeosta-

sis, and clonogenic assays demonstrate that BLIMP1+

sebocytes, whereas nonproliferative in vivo, can divide

in vitro.

We showed that specific deletion of Blimp1 caused

defects in differentiation in multiple epidermal compart-

ments, namely the IFE, SG, HF infundibulum, and junc-

tional zone. Hyperplasia was not restricted to the SG and

was more pronounced in the IFE and infundibulum.

The aberrant IFE differentiation was suggestive of a barrier

defect, which would explain the previously reported

inflammatory skin phenotype (Chiang et al., 2013). The

two previously published studies on epidermal deletion
Stem Cell
of Blimp1 in early development (Horsley et al., 2006; Mag-

núsdóttir et al., 2007) used a K14Cre mouse described

by Vasioukhin et al. (1999) to target the epidermal basal

layer but used different conditional alleles of Blimp1:

Horsley et al. (2006) used an exon 5 floxed Blimp1 strain

(Prdm1tm2Masu; Ohinata et al., 2005), whereas Magnúsdót-

tir et al. (2007) used a floxed Blimp1 strain with loxP sites

between exons 6–8 (Prdm1tm1Clme; Figure 3A) (Shapiro-She-

lef et al., 2003). Both studies reported SG enlargement

(Horsley et al., 2006; Magnúsdóttir et al., 2007), a pheno-

type that we also observed on epidermal deletion of Blimp1

in adult mice. In addition, Magnúsdóttir et al. (2007),

Chiang et al. (2013), and the present study found

thickening of the IFE and HF infundibulum, regardless

of whether Blimp1 was deleted in the embryo or adult.

Potential reasons for the divergent observations regarding

whether or not Blimp1 has a selective role in the SG

include differences in the genetic background of the

mice, animal husbandry (diet, health status, and patho-

gens), or the presence of truncated BLIMP1 protein that is

undetectable with current antibodies (Bikoff et al., 2009).

Differences in Cre expression over time could also

contribute, as suggested for other transgenic Cre lines

(Kang et al., 2014).

BLIMP1 is a transcriptional repressor of c-Myc (Lin et al.,

1997), and forced activation of MYC resulted in down-

regulation of BLIMP1 and increased proliferation within

the SG (Cottle et al., 2013). We have previously observed

that androgen receptor signaling modulates epidermal re-

sponses to MYC activation (Cottle et al., 2013), and consis-

tent with this, stimulation of sebocyte differentiation was

accompanied by an increase in the number of BLIMP1+

cells. BLIMP1 repression of c-Myc may also contribute to

the transition of IFE cells out of the granular layer (Honma

et al., 2006). Consistent with BLIMP1 being associated

with terminal differentiation, BLIMP1 expression was

downregulated in human SG tumors. Another negative

regulator of BLIMP1 is miR-125b, which is upregulated in

stem cells and progenitors in the HF and SG (Zhang

et al., 2011).

For lineage-tracing experiments, we crossed Blimp1Cre

transgenic mice with two different loxP-STOP-loxP fluores-

cent reporter strains. We found no evidence that BLIMP1+

cells gave rise to differentiated sebocytes or indeed any

labeled progeny. Instead, subpopulations of Lgr6- and

Lrig1-expressing cells founded the sebocyte lineage, as

reported previously (Jensen et al., 2009; Page et al.,

2013; Snippert et al., 2010). Although we used the same

Blimp1Cre line as in the earlier lineage-tracing experiments

(Horsley et al., 2006; Ohinata et al., 2005), we utilized

different reporter lines, transgenic CAGcatEGFP and

gene-trap Rosa26tdTomato (used in our study) compared

to gene-trap Rosa26EYFP (used in the study by Horsley
Reports j Vol. 3 j 620–633 j October 14, 2014 j ª2014 The Authors 627



Figure 5. Lineage Tracing the Progeny of BLIMP1+ Cells
(A) Schematic of lineage-tracing experiments. Numbers correspond to labeling strategies in (B)–(I).
(B–F) Epidermal tail whole mounts collected from Blimp1Cre 3 CAGcatEGFP mice at P21 (B–D) and P49 (E) and control mice (F) stained
with antibodies against GFP (green) and FAS (red) and counterstained with phalloidin (blue).
(G–I) Epidermal tail whole mounts collected from Blimp1Cre 3 Rosa26tdTomato mice at P49 (G and I) and control mice (H) stained with
antibodies against tdTomato (red) and FAS (green) and counterstained with phalloidin.
(J and K) Epidermal tail whole mounts collected from Blimp1GFP mice at P49 (J) and control mice (K) stained with antibodies against GFP
(green), FAS (red), and IVL (white).
(L) Quantitation of percent HFs with fluorescent-reporter-labeled SGs. Quantification was performed on stained 0.5 3 0.5 cm epidermal
tail whole mounts collected from three mice per strain and time point.

(legend continued on next page)
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et al., 2006), which have been shown to be more sensitive

(Duffield and Humphreys, 2011; Kawamoto et al., 2000;

Kretzschmar and Watt, 2012; Madisen et al., 2010). The

fluorescent lineage tracers we used are expressed more

strongly upon recombination, due to expression driven

from the CAG promoter rather than the weaker Rosa26

promoter used by Horsley et al. (2006; Kawamoto et al.,

2000; Soriano, 1999; Srinivas et al., 2001). EGFP and

tdTomato also have the spectral advantage over EYFP

when distinguishing true epifluorescence from highly

autofluorescent structures such as the lipid-rich SG and

sebaceous duct.

Based on our findings and the recent literature, we pro-

pose the following model of sebocyte differentiation (Fig-

ure 7). First, subsets of LGR6- and LRIG1-expressing cells

residing in the upper HF and periphery of the SG constitute

the bona fide stem cells of the sebocyte lineage (Page et al.,

2013; Snippert et al., 2010). This is in line with the observa-

tion that the SG can be maintained independently of the

HF lineages (Ghazizadeh and Taichman, 2001). We do

not rule out the existence of other SG stem cell compart-

ments, and indeed, we believe this is likely, given the diver-

sity of stem cells elsewhere in the epidermis (Kretzschmar

and Watt, 2014). Second, we propose that MYC plays a

role in proliferation of cells that are committed to undergo

terminal differentiation. Third, upregulation of BLIMP1

promotes terminal differentiation by repressing c-Myc and

inhibiting proliferation (Figure 7) (Berta et al., 2010; Cottle

et al., 2013). Our revised model suggests that Blimp1 cKO

mice exhibit SG hyperplasia directly because of derepres-

sion of c-Myc, as reported previously (Horsley et al.,

2006), and indirectly by causing a barrier defect in the IFE

(Chiang et al., 2013), which activates stem cells within

the HF infundibulum/junctional zone and SG periphery

to proliferate (Page et al., 2013).

In conclusion, our findings indicate that the role of

BLIMP1 in the epidermis is to maintain homeostasis in

multiple compartments, including the SG, but that it exerts

its effects in terminally differentiated cells rather than in

sebocyte progenitors.
EXPERIMENTAL PROCEDURES

Human Tissue
Human skin and tumors were collected and diagnosed by

Dr. Harald P. Gollnick and Dr. Sven R. Quist from the Clinic of

Dermatology and Venereology, Otto-von-Guericke University
(M and N) Epidermal tail whole mounts collected from Blimp1Cre 3
(green) and FAS (red), counterstained with phalloidin (blue) or DAPI
SD, sebaceous duct; JZ, junctional zone; HS, hair shaft; arrowheads in
bars represent 100 mm, except the scale bar in (B), which represents

Stem Cell
Magdeburg, Germany, and Dr. Ken Natsuga from the Depart-

ment of Dermatology, Hokkaido University Graduate School of

Medicine, Sapporo, Japan. Patient consent records and ethical re-

view are retained by the respective institutions.

Generation and Experimental Treatment of Mice
Mouse experiments were subject to Cancer Research UK, Univer-

sity of Cambridge, King’s College London, and Institutional

AnimalCare andUtilizationCommittee of Academia Sinica ethical

review and performed in accordance with the UK Government

Animals (Scientific Procedures) Act 1986.

Blimp1EGFP (Ohinata et al., 2005) transgenic and F1 (CBA3Bl6)

wild-typemice were used for the initial characterization of BLIMP1

expression. To obtain mice with epidermal deletion of Blimp1

(Prdm1), Blimp1flox/flox (Prdm1tm1Clme; Shapiro-Shelef et al., 2003)

and K5CreERtmice (Liang et al., 2009) were crossed and tamoxifen

treated as described previously (Chiang et al., 2013). For constitu-

tive lineage-tracing experiments, Blimp1Cre mice (Ohinata et al.,

2005) were either crossed with Rosa26tdTomato (Ai9 line) knockin

(Madisen et al., 2010) or CAGcatEGFP transgenic (Kawamoto et al.,

2000) reporter mice.

For 4-OHT (Sigma)-induced lineage-tracing, Lgr6EGFPiresCreERT2

(Snippert et al., 2010) and Lrig1EGFPiresCreERT2 (Page et al.,

2013) knockin mice were bred to Rosa26tdTomato reporter mice.

Their offspring were treated with one dose of 1.5 mg 4-OHT dis-

solved in 100 ml acetone applied to clipped back skin at 7–9 weeks

of age, and tissue was collected 4 days and 4 weeks after 4-OHT

application.

K14c-MycERt (2184 C.1 line) transgenic mice (Arnold and Watt,

2001) were treated once with 1.5 mg 4-OHT and then subse-

quently with 2 mg testosterone and 2 mg bicalutamide or

carrier only (acetone) for 4 days and analyzed 4 days after the

first treatment (Cottle et al., 2013). At the start of every ex-

periment, all the mice were 7–9 weeks old and therefore in the

resting phase (telogen) of the hair cycle (Stenn and Paus, 2001).

Wild-type littermates and acetone-only-treated transgenic mice

were used as controls. At least three mice were treated per

condition.

Mouse Keratinocyte Isolation, Flow Cytometry, and

Clonogenic Assays
Keratinocytes were isolated from telogen back skin of adult

Blimp1EGFP mice using trypsin (Life Technologies), as previously

described (Jensen et al., 2010). Isolated keratinocytes were incu-

bated with LipidTOX dye (Life Technologies) diluted 1:500 in

PBS for 20 min. Flow sorting was carried out using a MoFlo high-

speed sorter (DakoCytomation) or a FACSAria II cell sorter (BD Bio-

sciences). Sorted keratinocytes were plated onto a J2 3T3 feeder

layer in six-well plates and cultured for 14 days as previously

described (Jensen et al., 2010). Feeders were removed from the

keratinocyte colonies prior to fixation with 2% paraformaldehyde
CAGcatEGFP mice at P49 and stained with antibodies against GFP
(white in M).
(B) and (C), SG; arrowheads in (M) and (N), single GFP+ cells. Scale
200 mm. See also Figure S3.
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Figure 6. Lineage Tracing the Progeny of LRIG1+ and LGR6+ Stem Cells
(A and B) Genetic elements of the Lrig1 knockin (KI) and Lgr6 KI.
(C and D) Paraffin sections of adult Lrig1 KI (C) and Lgr6 KI (D) back skin stained with antibodies against GFP (green) and BLIMP1 (red),
counterstained with DAPI (blue). Boxed area is shown at higher magnification.
(E and F) Schematic of experimental breeding and procedures.
(G–J) Paraffin sections of Lrig1 KI3 Rosa26tdTomato (G and I) and Lgr6 KI3 Rosa26tdTomato (H and J) collected 4 days (G and H) and
4 weeks (I and J) after one dose of 4-OHT and stained for BLIMP1 (green, left panels) or FAS (green, right panels) and tdTomato (red).
Arrowheads indicate BLIMP1+ cells. Dashed lines indicate epidermal-dermal boundary. Scale bars represent 100 mm.
See also Figure S4.
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Figure 7. Model of Sebocyte Differen-
tiation
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and staining with 1% Nile red and 1% rhodamine B blue (all

Sigma). Images of stained colonies were taken on a Molecular

Imager Gel Doc XR+ imaging system (BioRad).

Histology and Immunohistochemistry
Tissue samples for sections were fixed overnight in 4% paraformal-

dehyde (Sigma) and embedded in paraffin wax. Five micrometer

sections were prepared and stained with H&E.

Tail epidermal whole mounts and back skin horizontal whole

mounts were prepared as described previously (Braun et al., 2003;

Driskell et al., 2013). Immunohistochemistry on paraffin wax sec-

tions was performed as described elsewhere (Niemann et al.,

2002). Primary antibodies used were: rat anti-BLIMP1 (1:100;

eBioscience 14-5963-82), rabbit anti-CRABP2 (1:100; Proteintech

10225-1-AP), goat anti-FABP5 (1:100; R&D Systems AF1476),

mouse anti-FAS (1:100; SantaCruz Biotechnology sc-48357), rabbit

anti-GFP (1:500; Life Technologies A11122), chicken anti-GFP

(1:500; Abcam ab13970), goat anti-GFP (1:200; Abcam ab6673),

rabbit anti-involucrin (1:800; ERLI-3, in-house), rabbit anti-K6

(1:500; Covance RBP-169P), mouse anti-K14 (1:1,000; LL002; in-

house), rabbit anti-K14 (1:1,000; Covance PRB-155P), chicken

anti-K14 (1:1,000; Covance SIG-3476), guinea pig-anti-K31

(1:100; Progen GP-hHa1), rabbit anti-Ki67 (1:100; Abcam

ab16667), mouse anti-PCNA (1:100;Millipore CBL407), and rabbit

anti-RFP (1:1,000; recognizing tdTomato; Rockland 600-401-379).

Antibody stainingwas visualized using appropriate species-specific

secondary antibodies conjugated to Alexa 488, Alexa Fluor 555, or

Alex Fluor 647 (1:300; Life Technologies). LipidTOX dye (1:500;

Life Technologies) was used in some cases to label lipids. Slides

were mounted using ProLong Gold antifade reagent (Life Technol-

ogies) containing DAPI (Sigma) as nuclear counterstain.

All fluorescent sections were analyzed on a TCS SP5 confocal

microscope (Leica) or an A1 confocal microscope (Nikon). All

images of H&E-stained sections were taken on an Axiophot micro-

scope with an AxioCamHRc camera (both Zeiss) or on an AZ100M

microscope (Nikon) with a DS-Fi2 camera (both Nikon). Images

were taken with constant settings optimized for each protein.
Stem Cell
Images of stained colonies were taken on a Molecular Image Gel

Doc XR+ imaging system (BioRad).

Quantitation and Statistics
Quantitation of IFE thickness, HF infundibulum length, and SG

size was performed on images taken of H&E-stained vertical tissue

sections collected from three Blimp1 cKO and three control mice.

Statistical analysis was performed using the unpaired two-tailed

Student’s t test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.2014.

08.007.
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Magnúsdóttir, E., Kalachikov, S., Mizukoshi, K., Savitsky, D.,

Ishida-Yamamoto, A., Panteleyev, A.A., and Calame, K. (2007).

Epidermal terminal differentiation depends on B lymphocyte-

induced maturation protein-1. Proc. Natl. Acad. Sci. USA 104,

14988–14993.

Niemann, C., and Horsley, V. (2012). Development and homeosta-

sis of the sebaceous gland. Semin. Cell Dev. Biol. 23, 928–936.

Niemann, C., Owens, D.M., Hülsken, J., Birchmeier, W., andWatt,

F.M. (2002). Expression of DeltaNLef1 in mouse epidermis results

in differentiation of hair follicles into squamous epidermal cysts

and formation of skin tumours. Development 129, 95–109.

Ohinata, Y., Payer, B., O’Carroll, D., Ancelin, K., Ono, Y., Sano, M.,

Barton, S.C., Obukhanych, T., Nussenzweig, M., Tarakhovsky, A.,

et al. (2005). Blimp1 is a critical determinant of the germ cell line-

age in mice. Nature 436, 207–213.

Page, M.E., Lombard, P., Ng, F., Göttgens, B., and Jensen, K.B.
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