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Climate change is expected to profoundly affect key food production sectors, including

fisheries and agriculture. However, the potential impacts of climate change on these sectors

are rarely considered jointly, especially below national scales, which can mask substantial

variability in how communities will be affected. Here, we combine socioeconomic surveys of

3,008 households and intersectoral multi-model simulation outputs to conduct a sub-

national analysis of the potential impacts of climate change on fisheries and agriculture in 72

coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New

Guinea, Philippines, and Tanzania). Our study reveals three key findings: First, overall

potential losses to fisheries are higher than potential losses to agriculture. Second, while most

locations (> 2/3) will experience potential losses to both fisheries and agriculture simulta-

neously, climate change mitigation could reduce the proportion of places facing that double

burden. Third, potential impacts are more likely in communities with lower socioeconomic

status.
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C limate change is expected to profoundly impact key food
production sectors, with the tropics expected to suffer
losses in both fisheries and agriculture. For example, by

2100 tropical areas could lose up to 200 suitable plant growing
days per year due to climate change1. Likewise, fishable biomass
in the ocean could drop by up to 40% in some tropical areas2,3.
While understanding the magnitude of losses that climate change
is expected to create in key food production sectors is crucial, it is
the social dimensions of vulnerability that determine the degree
to which societies are likely to be affected by these changes4–8.
Vulnerability is the degree to which a system is susceptible to and
unable to cope with the effects of change. It is comprised of
exposure (the degree to which a system is stressed by environ-
mental or social conditions), the social dimensions of sensitivity
(the state of susceptibility to harm from perturbations), and
adaptive capacity (people’s ability to anticipate, respond to, and
recover from the consequences of these changes)4,9. Together, the
exposure and sensitivity domains are referred to as “potential
impacts”, which are the focus of this article.

Incorporating key social dimensions of vulnerability is parti-
cularly important because many coastal communities simulta-
neously rely on both agriculture and fisheries to varying
degrees10, yet assessments of climate change impacts and the
policy prescriptions that come from them often consider these
sectors in isolation1,5,11–14. Recently, studies have begun to look
at the simultaneous impacts of climate change on both fisheries
and agriculture at the national level15,16, but this coarse scale does
not capture whether people simultaneously engage with- and are
likely to be affected by- changes in these sectors. Indeed, whether
households engage in both fisheries and agriculture10 will deter-
mine whether people have the knowledge, skills, and capital to
substitute sectors if one declines, or alternatively, make them
particularly susceptible to the potential double burden of a
combined decline across sectors15. Thus, more localised analyses
incorporating key social dimensions of vulnerability are required
to better understand how combined impacts to fisheries and
agriculture may affect coastal communities.

Here, we combine a measure of exposure based on model
projections of losses to exploitable marine biomass (here dubbed
fisheries catch potential) and agriculture from the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP) Fast Track phase
3 dataset with a measure of sensitivity based on survey data about
material wealth and engagement in fisheries, agriculture, and other
occupational sectors from >3,000 households across 72 tropical
coastal communities in five countries (see Supplementary
Data file). We answer the following questions: 1) What are the
potential impacts of projected changes to fisheries catch potential
and agriculture on coastal communities?, 2) How much will
mitigation measures reduce these potential impacts?, and 3) Are
lower socioeconomic status coastal communities facing more
potential impacts from climate change than their wealthier
counterparts? We show that: fisheries tend to be more impacted
than agriculture although there is substantial within-country
variability; climate change mitigation can reduce the number of
locations experiencing a double burden (i.e. losses to both fisheries
and agriculture); and communities with lower socioeconomic
status will experience the most severe climate change impacts.

Results
Our study has three key results. First, we find that overall possible
impacts on fisheries catch potential is higher than possible
impacts on agriculture, but there can be substantial within-
country variability in both exposure and sensitivity (Fig. 1).
Specifically, exposure under the high-emissions Shared Socio-
economic Pathway 8.5 scenario (which has tracked historic

cumulative CO2 emissions17, but has been recently critiqued for
over-projecting CO2 emissions and economic growth18) indicates
substantive losses by mid-century to fisheries catch potential
[Fig. 1; 14.7% +/− 4.3% (SE) mean fisheries catch potential loss].
To put these projected losses in perspective, Sala et al19. found
that strategically protecting 28% of the ocean could increase food
provisioning by 5.9 million tonnes, which is just 6.9% of the 84.4
million tons of marine capture globally in 201820. Thus, the mean
expected fisheries catch potential losses are approximately double
that which could be buffered by strategic conservation. Model run
agreement about the directionality of change for projected
impacts to fisheries catch potential was high (SSP5-8.5: 84.7+ /−
4.5% (SE); SSP1-2.6: 89.2+ /− 4.06% (SE)). Interestingly, crop
models projected that agricultural productivity (based on rice,
maize, and cassava- see methods) is expected to experience small
average gains across the 72 sites (1.2% +/− 1.5% (SE) mean
agricultural gain), with a large response range between sites and
crops (Supplementary Fig. 1). However, the average gains are not
significantly different from zero (t=−0.80, df = 5.0, p= 0.46),
and model run agreement about directionality of change was
lower for agriculture (SSP5-8.5: 69.1+ /− 4.82% (SE); SSP1-2.6:
70.4 +/− 3.27% (SE)). These projected agricultural gains are
driven exclusively by rice (Supplementary Fig. 1), which has
particularly large model disagreement14,21. Excluding rice shows
an average decline in agricultural production by mid-century,
since maize and cassava show consistent median losses under
both SSP1-2.6 and SSP5-8.5 climate scenarios (Supplementary
Fig. 1). Significantly greater losses in fisheries catch potential
compared to agriculture productivity are apparent not only for
our study sites (i.e. 15.9+ /− 5.6% (SE) greater; t= 2.81, df =
4.97, p= 0.0379), but also for a random selection of 4746 (10%
of) coastal locations in our study countries with populations >25
people per km2 (Fig. 2). Among those random sites, fisheries
catch potential losses are an average of 15.6+ /− 5.1% (SE)
greater than agriculture productivity changes (t= 3.06, df = 5.00,
p= 0.0282). Differences between expected losses at our sites and
the randomly selected sites are small for agriculture (Cohen’s D
for SSP5-8.5= -0.31, SSP1-2.6=−0.35) and negligible for fish-
eries catch potential (Cohen’s D for SSP5-8.5= -0.02, SSP1-
2.6= -0.03), indicating that our sites are not particularly
biased towards high or low exposure for the study region. Not
only is the level of exposure generally higher in fisheries com-
pared to agriculture, but the sensitivity is on average nearly twice
as high (Fig. 1a, b; 0.077+ /− 0.007 mean fisheries sensitivity;
0.04 +/− 0.01 mean agricultural sensitivity; t= 3.0, df = 2.26,
p value =0.0815).

Our analysis also reveals high within-country variability in
potential impacts (i.e. both exposure and sensitivity), particularly
for fisheries (Fig. 1) - a finding that may be masked in studies
looking at national-level averages15,16. Looking only at the mean
expected losses can obscure the more extreme fisheries catch
potential losses projected for many communities (Figs. 1, 2). For
example, under SSP5-8.5, our Indonesian sites are projected to
experience very close to the average fisheries catch potential losses
among our study sites (15.9+ /− 2.1%SE), but individual sites
range from 6.5-32% losses (Fig. 1b). There is also substantial
within-country variation in how communities are likely to
experience climate change impacts, based on their sensitivity
(Fig. 1a, b). For example, in the Philippines, exposure to fisheries
is consistently moderate (range 8.9-12.6% loss), but sensitivity
ranges from our lowest (0.001) to our highest recorded scores
(0.32). There is also within-country variability in model agree-
ment, particularly for the agricultural models in Indonesia, where
agricultural model agreement ranges from 50-85% and fisheries
model agreement ranges from 56-100% for SSP5-8.5, and 50-80%
and 50-94%, respectively, for SSP1-2.6.
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The second key result from our integrated assessment reveals
that some locations will bear a double burden of losses to fisheries
and agriculture simultaneously, but mitigation efforts that reduce
greenhouse gas emissions could curb these losses. Specifically,
under SSP5-8.5, 64% of our study sites are expected to lose
productivity in fisheries and agriculture simultaneously (Fig. 3a),
but this would reduce to 37% of sites under the low emissions
scenario SSP1-2.6 (Fig. 3b). Again, the effect of mitigation is
consistent in the random selection of 4746 sites (Supplementary
Fig. 2), with 70% of randomly selected sites expected to experi-
ence a double burden under SSP5 8.5, and 47% under SSP1 2.6.
Many of the sites expected to experience the highest losses to both
fisheries catch potential and agriculture have moderate to high
sensitivity (Fig. 3a, Supplementary Fig. 3), which means the
impacts of these changes could be profoundly felt by coastal
communities.

Over a third of our sites (36% under SSP5-8.5) are expected to
experience increases in agriculture (due to CO2 fertilization
effects that fuel potential increases particularly in rice yields)
while experiencing losses in fisheries catch potential. For these
sites, a question of critical concern is whether the potential gains
in agriculture could help offset the losses in fisheries catch
potential. The answer to this lies in part in the degree of sub-
stitutability between sectors. Our survey of 3,008 households

reveals high variation among countries, and even within some
countries in the degree of household occupational multiplicity
incorporating both agriculture and fisheries sectors (Table 1).
31% of households in our study engaged in both fishing and
agriculture, though this ranged from 10% of households in the
Philippines to 77% of households in Papua New Guinea. This
means that the degree to which agricultural gains might possibly
offset some fisheries losses at the household scale is very context
dependent. Our survey also revealed that 17% of households were
involved in agriculture but not fisheries, ranging from 33% in
Madagascar to 3% in our Papua New Guinean study commu-
nities. Alternatively, more than a third of households surveyed in
Indonesia and Philippines were involved in fisheries but not
agriculture (36% and 37% respectively), compared to a low value
of 16% in Madagascar. In 12% of the Philippines communities
surveyed (n= 3), not a single household was engaged in agri-
culture. Thus, for 32% of households across our sample, including
some entire communities, potential agricultural gains will not
offset potential fisheries losses. In these locations building adap-
tive capacity to buffer change will be critical9.

Our third key result is that coastal communities with lower
socioeconomic status are more likely to experience potential
impacts than communities of higher socioeconomic status across
the climate mitigation scenarios (SSP1-2.6 and SSP5-8.5; Fig. 4).
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exposure (y-axis, measured in potential losses, with error bars showing 25th and 75th percentiles) and sensitivity (x-axis, measured as level of dependence
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community. Inset map in Supplementary Fig. 9.
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Fig. 3 Simultaneous potential losses to fisheries and agriculture in coastal communities (n = 72). a Under SSP5-8.5 agricultural losses (y-axis) plotted
against fisheries losses (x-axis), with bubble size revealing the overall sensitivity and colour revealing the fisheries-agricultural relative sector dependency
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Specifically, we examined the relationship between the average
material style of life (a metric of wealth based on material assets;
see methods) in a community and the relative potential impacts
of simultaneous fisheries catch potential and agriculture losses
(measured as the Euclidean distance of sensitivity and exposure
from the origin). Importantly, socioeconomic status is related to
both sensitivity and exposure (Supplementary Fig. 4). In other
words, low socioeconomic status communities tend to have
higher sensitivity to fisheries and agriculture than the wealthy,
and are significantly more likely to be exposed to climate change
impacts. Our findings regarding the relationship between socio-
economic status and sensitivity are consistent with a broad body
of literature that shows how people tend to move away from
natural resource-dependent occupations as they become
wealthier10,22–25. One potential interpretation of our findings is
that alternative livelihood programs (e.g. jobs outside the fisheries
or agricultural sectors, such as the service industry) could reduce
sensitivity in lower socioeconomic status communities. However,
decades of research on livelihood diversification has highlighted a
multitude of reasons why alternative livelihood projects fre-
quently fail26, including that they do not provide high levels of
non-economic satisfactions (e.g., social, psychological, and
cultural)27–29, as well as cultural barriers to switching occupations
(e.g. caste systems)30, and attachment to identity and place31.

Alternative occupations need to provide some of the same satis-
factions, including basic needs (safety, income), social and psy-
chological needs (time away from home, community in which
you live, etc.), and self-actualization (adventure, challenge,
opportunity to be own boss, etc.). For example, fishing attracts
individuals manifesting a personality configuration referred to as
an externalizing disposition, which is characterized by a need for
challenges, adventure, and risk. Fishing can be extremely satis-
fying for people with this personality complex, while many
alternative occupations can lead to job dissatisfaction, which has
negative social and psychological consequences32,33. Research has
shown that recreational fishing captain or guide jobs produce
some of the same satisfactions as fishing and have been suc-
cessfully introduced as alternative occupations33. Despite these
limited successes, alternative livelihood programs frequently fail
and are not a viable substitute for mitigating climate change for
the ~6 million coral reef fishers globally34.

Discussion
Our study is an important first step in examining the potential
simultaneous impacts to fisheries catch potential and agriculture
in coastal communities, but has some limitations, some of which
could be addressed in future studies. First, our measure of

Table 1 Proportion of surveyed households in each study country engaged in both agriculture and fisheries, agriculture but not
fisheries, and fisheries but not agriculture.

Country Number of Households Agriculture and Fisheries Agriculture, No Fisheries Fisheries, No Agriculture

Indonesia 1140 0.25 0.18 0.36
Madagascar 339 0.42 0.33 0.16
Papua New Guinea 318 0.77 0.03 0.18
Philippines 973 0.11 0.18 0.37
Tanzania 238 0.69 0.04 0.26

Note: proportions do not add up to 1 because some households were not engaged in agriculture or fisheries.

p = 0.008
R2 = 0.385 (m); 0.442 (c)
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Fig. 4 Relationships between potential impacts (calculated as the Euclidean distance of exposure and sensitivity) and material style of life (a metric of
wealth based on material assets) under different mitigation strategies across all studied communities (n = 72). Black lines are predictions from linear
mixed-effects models (with country as random effect) and grey bands are standard errors. Statistical significance (p) and fit (R2) of the mixed-effects
models are also shown: (m) = marginal R2, (c) = conditional R2. Point shape and colour indicate country.
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exposure was dynamic (i.e., it was projected into the future),
while our measures of sensitivity and material wealth were static
(i.e., from a single point in time) and did not consider potential
changes over time. Although there are projections of how
national-scale measures of wealth (e.g. gross domestic product;
GDP) may change in the future, there are no reliable projections
for household- or community-scale changes to material wealth or
livelihoods. As an additional analysis, we examined observed
changes in sensitivity and material wealth over 15 and 16 years,
respectively, in two Papua New Guinean coastal communities
(Fig. 5). We found that, over the observed time frame (2001-
2016), which is approximately half that of the predicted time
frame of exposure, sensitivity scores were extremely stable, par-
ticularly in Ahus (Fig. 5). Similarly, material wealth was also
reasonably stable over time, but did reflect a shift in both com-
munities toward more houses being built out of sturdier material
(e.g., wood plank walls and floor, metal roofs). Importantly, while
there were absolute changes to material wealth in both commu-
nities, the relative position stayed very similar. Although these
data do not allow us to make inferences about what will happen
into the future, they do highlight that, at least in decadal time-
frames, these indicators are reasonably stable. One alternative
approach may have been to assume that projected national-scale
changes to GDP would apply evenly across each coastal com-
munity within a country (i.e., adjust the intercept of both material
wealth and correlated sensitivity for each country relative to the
projected changes in GDP). However, given the wide spread of
material wealth and sensitivity scores within countries, we ulti-
mately were less comfortable with the assumptions inherent in
the approach (i.e., that national-scale changes would affect all
communities in a country equally) than with the caveat that our
metrics were static.

Second, there are key limitations and assumptions to the
models we used. For example, many tropical small-scale fisheries
target seagrass35 and coral reef habitats34, which are not repre-
sented in the global ensemble models. Additionally, the ensemble
models were developed at relatively low spatial resolution (e.g. 1°
cells), and are not designed to capture higher-resolution struc-
tures and processes. Our approach for dealing with this was to
make transparent the degree of ensemble model run agreement
about the direction of change, which relies on the assumption that

we have greater confidence in projections that have higher model
run agreement. Another limitation is that there may be dis-
crepancies between the total consumer biomass (see method) in
the absence of fishing that is outputed by the models used here
and what would actually be harvested by fishers since total con-
sumer biomass can include both target and non-target species as
well as other taxa entirely. Despite these limitations, we assumed
that total consumer biomass is directly related to potential fish-
eries yields11. Likewise, we included just three crops in the agri-
cultural models (rice, maize, and cassava), which are key in the
study region, with many study countries growing 2 or more of
these crops. For example, in 2020 Indonesia was the 4th largest
producer of rice in the world, the 5th largest producer of cassava,
and the 8th largest producer of maize36. However, subsistence
agriculture in Papua New Guinea is dominated by banana and
yams, for which agricultural yield projections were not available.
We used an unweighted average of projected changes in these
three crops to represent a portfolio of small-scale agriculture, with
a sensitivity test based on agricultural projections weighted by
current yields/production area proportions of current yields
(Supplementary Fig. 1). Finally, it is important to keep key model
assumptions in mind when interpreting these data. For example,
the agricultural models assumed no changes in farm management
or climate change adaptation over time, while the fisheries models
do not explicitly resolve predation impacts from higher trophic
levels on phytoplankton.

Third, our sensitivity metric examined a somewhat narrow
aspect of what makes people sensitive to climate change. Sensi-
tivity is thought to contain dimensions of economic, demo-
graphic, psychological, and cultural dependency37. Our metric
was based on people’s engagement in natural resource-based
livelihoods, which primarily captures the economic dimensions
(although livelihoods do provide cultural and psychological
contributions to people26,28,29,31,38).

Fourth, our study explicitly focused on the potential impacts of
climate change in 72 Indo-Pacific coastal communities by
examining their sensitivity and exposure, but our methodology
did not enable us to incorporate adaptive capacity. Adaptive
capacity is a latent trait that enables people to adapt to and take
advantage of the opportunities created by change39,40, and is
critically important in determining the fate of coastal
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Fig. 5 Changes in (a) agriculture-fisheries sensitivity and (b) material wealth over time in two Papua New Guinean communities: Muluk (orange) and
Ahus (blue). b shows how the communities change along the first two axes of a principal component analysis (i.e., PC1 and PC2), based on 16 household-
scale material items, with black text and grey lines indicate the relative contribution of each material item to principal components.
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communities under climate change. Adaptive capacity is thought
to consist of dimensions of assets, flexibility, social organisation,
learning, socio-cognitive, and agency9,41,42. Unfortunately, indi-
cators of these dimensions of adaptive capacity were not collected
in a standardised manner across all of the different projects
comprising this study.

Fifth, we investigated the potential impacts of climate change
on two key food production sectors, but there may be other cli-
mate change impacts which have much more profound impacts
on people’s wellbeing. For example, sea level rise may destroy
homes and other infrastructure43, while heat waves may result in
direct mortality44. Last, we used shared socioeconomic pathway
exploratory scenarios that bracket the full range of scenario
variability (SSP5-8.5 and SSP1-2.6). At the time of publication,
these were the only scenarios available for both fisheries and
agriculture using the ISIMIP Fastrack Phase 3 dataset. Future
publications may wish to explore additional scenarios.

Our study quantifies the potential impacts of climate change on
key food production sectors in tropical coastal communities
across a broad swath of the Indo-Pacific. We find that both
exposure and sensitivity to fisheries is generally higher than to
agriculture, but some places may experience losses from both
sectors simultaneously. These losses may be compounded by
other drivers of change, such as overfishing or soil erosion, which
is already leading to declining yields45,46. Simultaneous losses to
both fisheries catch potential and agriculture will limit people’s
opportunity to adapt to changes through switching livelihoods
between food production sectors9. This will especially be the case
in lower socioeconomic status communities where dependence
on natural resources is higher10. Together, our integration of
model projections and socioeconomic surveys highlight the
importance of assessing climate change impacts across sectors,
but reveals important mismatches between the scale at which
people will experience the impacts of climate change and the scale
at which modelled projections about climate change impacts are
currently available.

Methods
Sampling of coastal communities. Here, we integrated data from five different
projects that had surveyed coastal communities across five countries47–50. Between
2009 and 2015, we conducted socioeconomic surveys in 72 sites from Indonesia
(n= 25), Madagascar (n= 6), Papua New Guinea (n= 10), the Philippines
(n= 25), and Tanzania (Zanzibar) (n= 6). Site selection was for broadly similar
purposes- to evaluate the effects of various coastal resource management initiatives
(collaborative management, integrated conservation and development projects,
recreational fishing projects) on people’s livelihoods in rural and peri-urban vil-
lages. Within each project, sites were purposively selected to be representative of
the broad range of socioeconomic conditions (e.g., population size, levels of
development, integration to markets) experienced within the region. We did not
survey strictly urban locations (i.e., major cities). Because our sampling was not
strictly random, care should be taken when attempting to make inferences beyond
our specific study sites.

We surveyed between 13 and 150 households per site, depending on the
population of the communities and the available time to conduct interviews per
site. All projects employed a comparable sampling design: households were either
systematically (e.g., every third house), randomly sampled, or in the case of three
villages, every household was surveyed (a census) (see Supplementary Data file).
Respondents were generally the household head, but could have been other
household members if the household head was not available during the study
period (i.e. was away). In the Philippines, sampling protocol meant that each village
had an even number of male and female respondents. Respondents gave verbal
consent to be interviewed.

The following standard methodology was employed to assess material style of
life, a metric of material assets-based wealth48,51. Interviewers recorded the
presence or absence of 16 material items in the household (e.g., electricity, type of
walls, type of ceiling, type of floor). We used a Principal Component Analysis on
these items and kept the first axis (which explained 34.2% of the variance) as a
material wealth score. Thus, each community received a mean material style of life
score, based on the degree to which surveyed households had these material items,
which we then scaled from 0 to 1. We also conducted an exploratory analysis of
how material style of life has changed in two sites in Papua New Guinea (Muluk
and Ahus villages) over fifteen and sixteen-year time span across four and five-time

periods (2001, 2009, 2012, 2016, and 2002, 2009, 2012, 2016, 2018), respectively,
that have been surveyed since 2001/200252. These surveys were semi-panel data
(i.e. the community was surveyed repeatedly, but we did not track individuals over
each sampling interval) and sometimes occurred in different seasons. For
illustrative purposes, we plotted how these villages changed over time along the
first two principal components.

Sensitivity. We asked each respondent to list all livelihood activities that bring in
food or income to the household and rank them in order of importance. Occu-
pations were grouped into the following categories: farming, cash crop, fishing,
mariculture, gleaning, fish trading, salaried employment, informal, tourism, and
other. We considered fishing, mariculture, gleaning, fish trading together as the
‘fisheries’ sector, farming and cash crop as the ‘agriculture’ sector and all other
categories into an ‘off-sector’.

We then developed three distinct metrics of sensitivity based on the level of
dependence on agriculture, fisheries, and both sectors together. Each metric
incorporates the proportion of households engaged in a given sector (e.g., fisheries),
whether these households also engage in occupations outside of this sector
(agriculture and salaried/formal employment; referred to as ‘linkages’ between
sectors), and the directionality of these linkages (e.g., whether respondents ranked
fisheries as more important than other agriculture and salaried/formal
employment) (Eqs. 1–3)

SA ¼ A
AþNA

´
N

AþNA
´

ra
2

� � þ 1

ra þ rna þ 1
ð1Þ

SF ¼ F
Fþ NF

´
N

FþNF
´

rf
2

� � þ 1

rf þ rnf þ 1
ð2Þ

SAF ¼
AF

AFþNAF
´

N
AFþ NAF

´
raf
2

� � þ 1

raf þ rnaf þ 1
ð3Þ

where SA, SF and SAF are a community’s sensitivity in the context of agriculture,
fisheries and both sectors, respectively. A, F and AF are the number of households
relying on agriculture-related occupations within that community, fishery-related
and agriculture- and fisheries-related occupations within the community,
respectively. NA, NF and NAF are the number of households relying on non-
agriculture-related, non-fisheries-related, and non-agriculture-or-fisheries-related
occupations within the community, respectively. N is the number of households
within the community. ra, rf and raf are the number of times agriculture-related,
fisheries-related and agriculture-and-fisheries-related occupations were ranked
higher than their counterpart, respectively. rna, rnf and rnaf are the number of times
non-agriculture, non-fisheries, and non-agriculture-and-fisheries-related
occupations were ranked higher than their counterparts. As with the material style
of life, we also conducted an exploratory analysis of how joint agriculture-fisheries
sensitivity has changed over time in a subset of sites (Muluk and Ahus villages in
Papua New Guinea) that have been sampled since 2001/200252. Although our
survey methodology has the potential for bias (e.g. people might provide different
rankings based on the season, or there might be gendered differences in how people
rank the importance of different occupations53), our time-series analysis suggest
that seasonal and potential respondent variation do not dramatically alter our
community-scale sensitivity metric.

Exposure. To evaluate the exposure of communities to the impact of future cli-
mates on their agriculture and fisheries sectors, we used projections of production
potential from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)
Fast Track phase 3 experiment dataset of global simulations. Production potential
of agriculture and fisheries for each of the 72 community sites and 4746 randomly
selected sites from our study countries with coastal populations >25 people/km2

were projected to the mid-century (2046–2056) under two emission scenarios
(SSP1-2.6, and SSP5-8.5) and compared with values from a reference historical
period (1983–2013).

For fisheries exposure (EF), we considered relative change in simulated total
consumer biomass (all modelled vertebrates and invertebrates with a trophic level
>1). For each site, the twenty nearest ocean grid cells were determined using the
Haversine formula (Supplementary Fig. 5). We selected twenty grid cells after a
sensitivity analysis to determine changes in model agreement based on different
numbers of cells used (1, 3, 5, 10, 20, 50, 100; Supplementary Figs. 6–7), which we
balanced off with the degree to which larger numbers of cells would reduce the
inter-site variability (Supplementary Fig. 8). We also report 25th and 75th
percentiles for the change in marine animal biomass across the model ensemble.
Projections of the change in total consumer biomass for the 72 sites were extracted
from simulations conducted by the Fisheries and marine ecosystem Model
Intercomparison Project (FishMIP3,54). FishMIP simulations were conducted
under historical, SSP1-2.6 (low emissions) and SSP5-8.5 (high emissions) scenarios
forced by two Earth System Models from the most recent generation of the
Coupled Model Intercomparison project (CMIP6);55 GFDL-ESM456 and IPSL-
CM6A-LR57. The historical scenario spanned 1950–2014, and the SSP scenarios
spanned 2015–2100. Nine FishMIP models provided simulations: APECOSM58,59,
BOATS60,61, DBEM2,62, DBPM63, EcoOcean64,65, EcoTroph66,67, FEISTY68,

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30991-4 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3530 | https://doi.org/10.1038/s41467-022-30991-4 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Macroecological69, and ZooMSS11. Simulations using only IPSL-CM6A-LR were
available for APECOSM and DBPM, while the remaining 7 FishMIP models used
both Earth System Model forcings. This resulted in 16 potential model runs for our
examination of model agreement, albeit with some of these runs being the same
model forced with two different ESMs. Thus, the range of model agreement could
range from 8 (half model runs indicating one direction of change, and half
indicating the other) to 16 (all models agree in direction of change). Model outputs
were saved with a standardised 1° spatial grid, at either a monthly or annual
temporal resolution.

For agriculture exposure (EA), we used crop model projections from the Global
Gridded Crop model Intercomparison Project (GGCMI) Phase 314, which also
represents the agriculture sector in ISIMIP. We used a window of 11×11 cells
centred on the site and removed non-land cells (Supplementary Fig. 5). The crop
models use climate inputs from 5 CMIP6 ESMs (GFDL-ESM4, IPSL-CM6A-LR,
MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL), downscaled and bias-
adjusted by ISIMIP and use the same simulation time periods. We considered
relative yield change in three rain-fed and locally relevant crops: rice, maize, and
cassava, using outputs from 4 global crop models (EPIC-IIASA, LPJmL, pDSSAT,
and PEPIC), run at 0.5° resolution. These 4 models with 5 forcings generate 20
potential model runs for our examination of model agreement. Yield simulations
for cassava were only available from the LPJmL crop model. All crop model
simulations assumed no adaptation in growing season and fertilizer input remained
at current levels. Details on model inputs, climate data, and simulation protocol are
provided in ref. 14. At each site, and for each crop, we calculated the average change
(%) between projected vs. historical yield within 11×11 cell window. We then
averaged changes in rice, maize and cassava to obtain a single metric of agriculture
exposure (EA).

We also obtained a composite metric of exposure (EAF) by calculating each
community’s average change in both agriculture and fisheries:

EAF ¼
EA þ EF

2
ð4Þ

Potential Impact. We calculated relative potential impact as the Euclidian distance
from the origin (0) of sensitivity and exposure.

Sensitivity test. To determine whether our sites displayed a particular exposure
bias, we compared the distributions of our sites and 4746 sites that were randomly
selected from 47,460 grid cells within 1 km of the coast of the 5 countries we
studied which had population densities >25 people/km2, based on the SEDAC
gridded populating density of the world dataset (https://sedac.ciesin.columbia.edu/
data/set/gpw-v4-population-density-rev11/data-download).

We used Cohen’s D to determine the size of the difference between our sites
and the randomly selected sites.

Validating ensemble models. We attempted a two-stage validation of the
ensemble model projections. First, we reviewed the literature on downscaling of
ensemble models to examine whether downscaling validation had been done for
the ecoregions containing our study sites.

While no fisheries ensemble model downscaling had been done specific to our
study regions, most of the models of the ensemble have been independently
evaluated against separate datasets aggregated at scales down to Large Marine
Ecosystems (LMEs) or Exclusive Economic Zones (EEZs) (see11). For example, the
DBEM was created with the objective of understanding the effects of climate
change on exploited marine fish and invertebrate species2,70. This model roughly
predicts species’ habitat suitability; and simulates spatial population dynamics of
fish stocks to output biomass and maximum catch potential (MCP), a proxy of
maximum sustainable yield2,62,71. Compared with spatially-explicit catch data from
the Sea Around Us Project (SAUP; www.seaaroundus.org)70 there were strong
similarities in the responses to warming extremes for several EEZs in our current
paper (Indonesia and Philippines) and weaker for the EEZs of Madagascar, Papua
New Guinea, and Tanzania. At the LME level, DBEM MCP simulations explained
about 79% of the variation in the SAUP catch data across LMEs72. The four LMEs
analyzed in this paper (Agulhas Current; Bay of Bengal; Indonesian Sea; and Sulu-
Celebes Sea) fall within the 95% confidence interval of the linear regression
relationship62. Another example, BOATS, is a dynamic biomass size-spectrum
model parameterised to reproduce historical peak catch at the LME scale and
observed catch to biomass ratios estimated from the RAM legacy stock assessment
database (in 8 LMEs with sufficient data). It explained about 59% of the variability
of SAUP peak catch observation at the LME level with the Agulhas Current, Bay of
Bengal, and Indonesian Sea catches reproduced within +/-50% of observations61.
The EcoOcean model validation found that all four LMEs included in this study fit
very close to the 1:1 line for overserved and predicted catches in 200064,65. DBPM,
FEISTY, and APECOSM have also been independently validated by comparing
observed and predicted catches. While the models of this ensemble have used
different climate forcings when evaluated independently, when taken together the
ensemble multi-model mean reproduces global historical trends in relative
biomass, that are consistent with the long term trends and year-on-year variation

in relative biomass change (R2 of 0.96) and maximum yield estimated from stock
assessment models (R2 of 0.44) with and without fishing respectively11.

Crop yield estimates simulated by GGCMI crop models have been evaluated
against FAOSTAT national yield statistics14,73,74. These studies show that the
models, and especially the multi-model mean, capture large parts of the observed
inter-annual yield variability across most main producer countries, even though
some important management factors that affect observed yield variability (e.g.,
changes in planting dates, harvest dates, cultivar choices, etc.) are not considered in
the models. While GCM-based crop model results are difficult to validate against
observations, Jägermeyr et al14. show that the CMIP6-based crop model ensemble
reproduces the variability of observed yield anomalies much better than CMIP5-
based GGCMI simulations. In an earlier crop model ensemble of GGCMI, Müller
et al.74 show that most crop models and the ensemble mean are capable of
reproducing the weather-induced yield variability in countries with intensely
managed agriculture. In countries where management introduces strong variability
to observed data, which cannot be considered by models for lack of management
data time series, the weather-induced signal is often low75, but crop models can
reproduce large shares of the weather-induced variability, building trust in their
capacity to project climate change impacts74.

We then attempted to validate the models in our study regions. For the crop
models, we examined production-weighted agricultural projections weighted by
current yields/production area (Supplementary Fig. 1). We used an observational
yield map (SPAM2005) and multiplied it with fractional yield time series simulated
by the models to calculate changes in crop production over time, which integrates
results in line with observational spatial patterns. The weighted estimates were not
significantly different to the unweighted ones (t = 0.17, df = 5, p = 0.87). For the
fisheries models, our study regions were data-poor and lacked adequate stock
assessment data to extend the observed global agreement of the sensitivity of fish
biomass to climate during our reference period (1983-2013). Instead, we provide
the degree of model run agreement about the direction of change in the ensemble
models to ensure transparency about the uncertainty in this downscaled
application.

Analyses. To account for the fact that communities were from five different
countries we used linear mixed-effects models (with country as a random effect) for
all analyses. All averages reported (i.e. exposure, sensitivity, and model agreement)
are estimates from these models. In both our comparison of fisheries and agri-
culture exposure and test of differences between production-weighted and
unweighted agriculture exposure we wanted to maintain the paired nature of the
data while also accounting for country. To accomplish this we used the differences
between the exposure metrics as the response variable (e.g. fisheries exposure
minus agriculture exposure), testing whether these differences are different from
zero. We also used linear mixed-effects models to quantify relationships between
the material style of life and potential impacts under different mitigation scenarios
(SSP1-2.6 and 8.5), estimating standard errors from 1000 bootstrap replications. To
further explore whether these relationships between the material style of life and
potential impacts were driven by exposure or sensitivity, we conducted an addi-
tional analysis to quantify relationships between the material style of life and: 1)
joint fisheries and agricultural sensitivity; 2) joint fisheries and agricultural expo-
sure under different mitigation scenarios. We present both the conditional R2 (i.e.,
variance explained by both fixed and random effects) and the marginal R2 (i.e.,
variance explained by only the fixed effects) to help readers compare among the
material style of life relationships.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The de-identified exposure, sensitivity, and material style of life data generated in this
study for each community can be accessed through Zenodo76 [https://doi.org/10.5281/
zenodo.6496413]. All outputs from the FishMIP model ensemble are available via ISIMIP
[https://www.isimip.org/gettingstarted/data-access/]. Raw social survey data are not
available because our verbal informed consent made it clear that only aggregated data
would be published. The sample sizes and proportions of each community included in
the social surveys can be found in the Supplementary Data file. Base layer map data in
Fig. 1c and Supplementary Figures 5, 8, and 9 is from Natural Earth, which is freely
available through their website (naturalearthdata.com). The SEDAC gridded populating
density of the world dataset used to identify a subset of random locations can be found at
the following: https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-
rev11/data-download.

Code availability
Code used to analyse and visualize results is available through Zenodo76 [https://doi.org/
10.5281/zenodo.6496413].
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