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Integrated analysis reveals the dysfunction 
of signaling pathways in uveal melanoma
Songlin Sun1, Boxia Guo2†, Liang Xu3*† and Rui Shi4* 

Abstract 

Background:  Uveal melanoma (UM) is the most common primary intraocular malignancy with a strong tendency 
to metastasize. The prognosis is poor once metastasis occurs. The treatment remains challenging for metastatic UM, 
even though our understanding of UM has advanced, mostly because the complexity of the genetic and immuno-
logic background has not been fully explored.

Methods:  Single-cell sequencing data were acquired from a healthy dataset and three UM datasets. The differentially 
expressed genes between primary and metastatic UM in The Cancer Genome Atlas (TCGA) data were attributed to 
specific cell types and explained with functional annotation. The analysis for cell–cell communication was conducted 
by “CellChat” to understand the cell crosstalk among the cell clusters and to delineate the dysfunctional signaling 
pathways in metastatic UM. CCK-8, EdU and transwell assays were performed to verify the function of the genes of 
interest.

Results:  We revealed aberrant signaling pathways with distinct functional statuses between primary and metastatic 
UM by integrating multiple datasets. The crucial signals contributing most to outgoing or incoming signaling of 
metastasis were identified to uncover the potential targeting genes. The association of these genes with disease risk 
was estimated based on survival data from TCGA. The key genes associated with proliferation and metastasis were 
verified.

Conclusions:  Conclusively, we discovered the potential key signals for occurrence and metastasis of UM and pro-
vided a theoretical basis for potential clinical application.
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Introduction
Uveal melanoma (UM) is a rare disease that arises from 
melanocytes in the uvea [1]. As a common intraocular 
malignancy, the annual incidence rate of UM is 4.3 cases 
per one million people [1, 2]. Half of patients with UM 

will develop metastatic disease despite treatment of the 
primary tumor. The liver is the most common metastatic 
site, followed by the lungs, bone, and skin. No effective 
therapies are available to prevent the development of 
metastases. The average survival period for patients suf-
fering from metastatic UM is no more than 1 year.

Genetic risk factors associated with UM disease include 
mutations in GNAQ and GNA11 [3]. Over 90% of UM 
patients carry constitutively active mutations in GNAQ 
and GNA11, which encode the ɑ-subunits Gq and G11 
[4]. Mutations in BRCA-associated protein 1 (BAP1) are 
observed in over 80% of all UMs, and approximately 28% 
of patients with germline BAP1 alterations will develop a 
UM and usually result in metastasis within 5 years [5]. In 
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addition, mutations in SF3B1, SRSF2, EIF1AX, and other 
known cancer genes are observed in UM patients [6].

Intratumoural heterogeneity is regarded as one of the 
leading factors that determines metastasis, therapeutic 
resistance and recurrence. UM tissue is not a homoge-
neous structure but a complex ecosystem, where tumor 
cells and diverse cell types engage in dynamic crosstalk 
that leads to cancer evolution, adaptation and progres-
sion. Several lines of evidence indicate that immune cells 
play a protumor role in the development and metastasis 
of UM. UM cells may take advantage of immune privilege 
in the eye and escape immune surveillance even after 
leaving the niche [7].

Therefore, it is necessary to explore the interactive 
functions among the cell types and elucidate the molec-
ular mechanism of the pathological changes in UM. In 
this study, we integrated TCGA data and four single-cell 
RNA sequencing (scRNA-seq) datasets containing one 
normal retinal pigment epithelium (RPE)/choroid dataset 
and three UM datasets to perform a detailed analysis of 
UM heterogeneity and intercellular communications that 
promoted cell state transitions. Our study may provide 
new signaling pathways and prognostic genes for UM 
treatment.

Methods
scRNA‑seq data collection and quality control
The raw data in this study were downloaded from the 
GEO database (GSE138433, GSE139829, GSE160883, and 
GSE135133), which comprised a normal dataset contain-
ing 11 healthy retinal pigment epithelium (RPE)/choroid 
samples [8] and three UM datasets containing 20 primary 
UM samples and three metastatic UM samples [9–11]. 
We excluded low-quality cells based on the following 
criteria: (1) the number of features between 200 and the 
median ± 3 x median absolute deviation (MAD), (2) the 
counts and the percentage of mitochondrial and riboso-
mal genes were smaller than the median ± 3 x MAD, (3) 
all cells expressing hemoglobin genes were excluded, and 
(4) a sample in the GSE160883 database was dropped 
due to having too few cells. This resulted in 222,075 sin-
gle cells being considered for further study (11 healthy 
samples from GSE135133, 6 primary UM samples from 
GSE138433, 5 primary UM samples from GSE160883, 8 
primary UM samples and 3 metastatic UM samples from 
GSE139829). The data information was summarized in 
Table S1.

Analysis of scRNA‑seq data
The Seurat package (4.0.5) [12, 13] was used in R (ver-
sion 4.1.1) for processing the data from the four data-
sets. The 33 samples were integrated by the Harmony 
R package [14] (0.1.0). After integration, the genes were 

summarized by principal component analysis (PCA) 
to reduce dimensionality. The first 30 principal compo-
nents were used as input for cell clustering, and the cells 
were visualized in a two-dimensional uniform manifold 
approximation and projection (UMAP) representation. 
Cell types were annotated using canonical marker genes.

TCGA data collection and processing
The human UM samples data were downloaded from The 
Cancer Genome Atlas (TCGA) database (https://​portal.​
gdc.​cancer.​gov/). The “Alive, no UM metastasis” group 
(n = 50) and “Death, metastatic UM” group (n = 20) were 
obtained for further analysis. Other groups were dropped 
due to having too few samples. The log2(x + 1)-trans-
formed gene expression of RNA-seq was restored to 
count data, and the DESeq2 package (1.32.0) was used for 
differentially expressed gene (DEG) analysis.

Functional annotation analysis
To enable the functional analysis of DEGs, we used the 
R package clusterProfiler (4.0.5) [15, 16] to perform GO 
(Gene Ontology) enrichment analysis. The subontology 
Biological Process was specifically focused. A P value 
< 0.05 was considered statistically significant.

Survival analysis
Kaplan–Meier survival analysis was performed for the 
UM patients. The Survminer package (0.4.9) was used for 
Kaplan–Meier analysis. The cutpoint was determined by 
the surv_cutpoint function.

Cell–cell communication analysis
To identify and visualize cell–cell interactions between 
primary and metastatic UM samples, we employed the 
R package CellChat (1.1.3) [17]. We performed CellChat 
analysis according to the official workflow. All databases, 
including “Secreted Signaling”, “ECM-Receptor”, and 
“Cell–Cell Contact”, were used.

Sample collection
This study was approved by the Ethical Committees of 
Yuncheng Central Hospital, Shanxi Medical University. 
Three primary UM tissue specimens were obtained from 
patients who underwent surgical resection at Yuncheng 
Central Hospital. The tumor tissues and adjacent normal 
tissues were separated by experienced doctors according 
to their gross appearance and stored immediately after 
the operation for cryopreservation. All samples were 
pathologically confirmed. The patient information was 
summarized in Table S2.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Cell culture
MUM2B cells were purchased from iCell Bioscience 
(iCell-h148, iCell Bioscience, Shanghai, China) and 
cultured in 1640 medium containing 10% fetal bovine 
serum (FBS) and 1% penicillin/streptomycin (Gibco, 
Invitrogen, Carlsbad, CA, USA).

siRNA transfection
CD44 and SPP1 siRNAs were synthesized by GeneP-
harma (Shanghai, China) and transfected individually 
at 50 nM using Lipofectamine RNAiMAX transfection 
reagent (13778–100, Thermo Fisher Scientific) accord-
ing to the manufacturer’s instructions. The siRNA 
sequences used in this study are listed in Table S3.

Quantitative real‑time polymerase chain reaction (qRT–
PCR)
Total RNA was extracted using TRIzol (Invitrogen, 
Carlsbad, CA, USA) and reverse-transcribed by the 
PrimeScript RT reagent Kit (RR037A, TaKaRa, Kyoto, 
Japan). The quantification of target mRNA was per-
formed by SYBR Green-based detection. The mRNA 
expression level was calculated using the 2 − (∆∆Ct) 
method. GAPDH was used as an internal reference gene. 
The primers used in this study are listed in Table S4.

CCK‑8 assay
Cell growth and viability were measured using a CCK-8 
kit (Beyotime, Zhejiang, China) according to the manu-
facturer’s instructions. Briefly, 5 × 103 MUM2B cells/
well were seeded in a 96-well flat-bottomed plate and 
transfected with CD44 or SPP1 siRNAs for 24 h. Sub-
sequently, 10 μL CCK-8 dye was added to each well 
and incubated for 1 h. Cell viability was determined by 
measuring the absorbance at 450 nm using a microplate 
reader.

EdU proliferation assay
To assess cell proliferation, MUM2B cells were seeded 
in 24-well plates and transfected with CD44 or SPP1 
siRNAs for 48 h. Then, cell proliferation was detected 
using the incorporation of 5-ethynyl-2′-deoxyuridine 
(EdU) with Click-iT EdU Assays (Invitrogen, Carlsbad, 
CA, USA) according to the manufacturer’s instructions. 
Briefly, the cells were incubated with EdU for 24 h, fixed 
in 4% paraformaldehyde, and permeabilized with 0.4% 
Triton in PBS. Then, the cells were incubated in 1× 
Click-iT Reaction Buffer and washed with PBS. The cell 
nuclei were stained with DAPI (Sigma). The proportion 
of EdU-labeled cells was determined by fluorescence 
microscopy.

Cell migration assays
MUM2B cell migration was analyzed with a Tran-
swell assay using a 24-well transwell with 8.0 μm 
pores (#3422, Corning Life Sciences, Corning, NY). 
MUM2B cells transfected with CD44 or SPP1 siRNAs 
were cultured for 24 h in RPMI 1640 supplemented 
with 10% FBS. Afterward, the cells were added to 
the top chamber with medium containing 2% FBS. 
Medium containing 10% FBS was added to the lower 
well. After culture for 12 h, the upper chamber was 
fixed with paraformaldehyde for 15 min and stained 
with 0.1% crystal violet. Cells that migrated to the 
bottom side of the membrane were counted in five 
random fields of view. The cell migration activity was 
described as the relative cell numbers of the transmit-
ted cells.

Statistical analysis
Statistical analysis of the data was performed using 
GraphPad Prism 8 (GraphPad Software, San Diego, 
CA) with an unpaired t test or one-way ANOVA. P val-
ues lower than 0.05 were considered significant.

Results
Integration of multiple single‑cell transcriptomic data 
revealed the complexity of UM
UM progression and treatment failure are often related 
to the heterogeneity of tumor cells [18]. We down-
loaded scRNA-seq data from 33 samples (11 healthy 
samples and 22 UM patients) in four datasets to delin-
eate the cellular heterogeneity in retinal pigment epi-
thelium (RPE)/choroid tissues. After stringent quality 
control, a total of 222,075 cells from 33 samples were 
retained for further analysis (Fig.  1 A and Fig. S1). To 
exclude the batch effects across the datasets, we per-
formed integration analysis for the 33 samples with 
the sctransform method. As shown in Fig.  1 B, the 
four datasets were well integrated for all 33 samples 
(Fig. S2). The differentially expressed genes (DEGs) 
among cell clusters and highly specific marker genes 
were selected to annotate cell types. Some small clus-
ters were merged according to the common specific 
marker genes. As a result, all cells were identified as 12 
clusters (Fig. 1 C), and each cluster had a unique gene 
expression (Fig.  1 D). The vision-associated cell types, 
such as rods, cones, biopolar cells and glia, originated 
from the healthy data, whereas the UM datasets were 
mainly composed of melanocytes, T cells, B cells and 
macrophages (Fig. 1 E). These findings indicate the pro-
liferation of melanocytes and the infiltration of immune 
cells in UM.
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Tumor stage‑specific alteration in the cell ratio of UM
Most UM patients develop metastatic disease with sur-
vival prognoses of no more than one year [19], so we 
paid close attention to metastasis-related cell clusters. 
As the disease developed and progressively worsened, 
most vision-related cells in the normal eye structure 
disappeared and were replaced by melanocytes (Fig.  2 
A). A large proportion of primary and metastatic UM 
samples were observed in immune-associated clusters 

(Fig. 2 B). We collected patient information and meta-
data and calculated the cell proportions of healthy, 
primary and metastatic UM samples in each cluster. 
Our data showed that while a significant reduction in 
vision-related clusters was demonstrated, such as in 
Cluster 2, Cluster 3, Cluster 4, Cluster 5, Cluster 6, 
Cluster 7, Cluster 8, and Cluster 10, the proportion of 
melanocytes in Cluster 1 and macrophages in Clus-
ter 9 was remarkably elevated (Fig.  2 C). Of note, the 

Fig. 1  The integration and analysis of the scRNA-seq data from 33 samples in four datasets. A Workflow of single-cell data processing and analysis. 
B UMAP plot showing the integration of four datasets. C UMAP visualization of 222,075 cells, colored by cluster identity, and annotated on the basis 
of marker genes (D). E The composition of each cluster in each sample
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proportion of T cells (Cluster 0) and B cells (Cluster 11) 
was not statistically significant in our data due to the 
large variance differences, but it strongly implied the 
infiltration of these immune cells.

Identification of DEGs in each cell cluster and TCGA 
associated with a high risk of metastasis
To reveal the DEGs in the UM tissues, we introduced the 
TCGA data. Gene expression was analyzed in the “Alive, 
no UM metastasis” (n = 50) and “Death, metastatic UM” 
(n = 20) groups. A total of 1328 genes were found to be 
differentially expressed (Table S5). As shown in Fig. 3 A, 
the volcano plot showed the upregulated and downregu-
lated DEGs in the TCGA dataset with the cutoff criteria 
of P <  0.01 and |log2FC| > 1. Hierarchical clustering of 
the top 500 most significant DEGs indicated a greater 
similarity within each group and a significant difference 
between the non-UM metastasis and metastatic UM 
samples (Fig. 3 B).

We then analyzed the DEGs between primary and 
healthy samples and between metastatic and primary 
samples in each cluster (Table S6). Venn diagrams were 

used to demonstrate the overlapping DEGs among the 
three datasets, including significantly upregulated and 
downregulated genes. These DEGs were further applied 
to gene set enrichment in each cluster (Fig. 3 C-F). The 
results revealed the related molecular mechanisms and 
pathways of UM with distinct functional patterns. For 
example, the DEGs in the T cell cluster were significantly 
associated with T cell activation and the T cell recep-
tor signaling pathway, and the DEGs in the B cell clus-
ter were significantly correlated with antigen processing 
and presentation of peptide antigens. Interestingly, the 
melanocyte cluster is involved in the antigen processing 
and presentation of exogenous peptide antigen, suggest-
ing reciprocal communication between melanocytes and 
immune cells.

Identification of cell–cell communication between primary 
and metastatic UM
Next, we aimed to identify alterations in cell–cell commu-
nication between primary and metastatic UM patients. The 
communication network between primary UM individuals 
and metastatic UM patients was constructed to characterize 

Fig. 2  Cell composition in different tumor stages of UM. A UMAP plot showing the cell clustering in healthy samples and UM samples. B The 
composition of each sample in each cell cluster. C The percentage of healthy, primary and metastatic UM cells in each cluster. *, P < 0.05; #, P < 0.01
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Fig. 3  DEGs in TCGA data and scRNA-seq datasets. A Volcano plot of the DEGs in the “Alive, no UM metastasis” and “Death, metastatic UM” groups 
in TCGA data. B Heatmap depicting the top 500 most significant DEGs in the “Alive, no UM metastasis” group and the “Death, metastatic UM” group. 
C-F Left, Venn diagrams of the shared and unique DEGs among the indicated groups in each cell type; right, the functional annotations for genes in 
all three groups in each cell type

(See figure on next page.)
Fig. 4  Cell–cell communication between primary and metastatic UM. A Diagrams displaying the interaction number and strength in cell clusters. 
B Bar plot showing the interaction number and strength between primary and metastatic UM. C Heatmap depicting signals contributing the most 
to the overall signaling pathways in primary and metastatic UM. D APP signaling in cell–cell interactions between primary and metastatic UM. E The 
expression of the gene pair APP and CD74 in melanocytes, T cells, macrophages, and B cells
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Fig. 4  (See legend on previous page.)
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the alterations in signaling pathways (Fig.  4 A). The global 
number and strength of interactions were both reduced. 
Strikingly, the interaction strength in metastatic samples 
remained half of that in primary samples (Fig. 4 B). This was 
more obvious in the overall signaling patterns (Fig.  4 C). 
The alterations of signaling pathways were illustrated in the 
incoming and outgoing signaling patterns (Fig. S3). In par-
ticular, the MHC-I, MIF, APP, CD99, SPP1, LCK, and CLEC 
signaling pathways were actively involved in the outgoing 
and incoming signaling patterns between primary and meta-
static UM patients. We further characterized each signaling 
pathway network and visualized the pathway genes in each 
cluster. As shown in Fig.  4 D, the cell interactions among 
T cells, B cells and macrophages were lost in metastatic 
UM samples compared to primary UM samples (Fig. 4 D). 
The expression of APP pathway genes, the APP ligand, and 
the receptor CD74 is shown in Fig. 4 E, revealing that the 
destruction of the APP pathway was due to the reduction in 
APP in macrophages and B cells. In contrast, CD74 expres-
sion was increased significantly. The analysis of the signaling 
pathway network and pathway genes in single cells showed 
the general destruction of the immune network (Fig. S4).

Validation of ligand–receptor pairs in UM patients
To determine the correlation between the ligand–recep-
tor pairs in signaling pathways and the clinical character-
istics of UM patients, Kaplan–Meier survival analysis was 
conducted. The clinical information of 80 UM patients was 
collected from the TCGA database for the overall survival 
analysis. The results confirmed that the mRNA expres-
sion of these gene pairs was tightly correlated with the 
survival rate of UM (Fig. 5 A-B and Fig. S5). The decreased 
expression of the SPP1 signaling pathway, including the 
ligand SPP1 and the receptor CD44, was closely associ-
ated with poor overall survival in UM (Fig. 5 A), whereas 
the decreased expression of the MHC-I pathway, includ-
ing HLA-C and CD8A, predicted a better survival rate 
(Fig. 5 B). We further investigated the contribution of each 
cell cluster to the overall elevation of SPP1 and CD44. The 
single-cell analysis showed that the attenuation of the SPP1 
signaling pathway originated from the decrease in the 
expression of the pathway gene in melanocytes (Fig. 5 C). 
Interestingly, while the mRNA level of HLA-C was down-
regulated in melanocytes, its expression in immune cells 
was upregulated (Fig.  5 D), suggesting dysfunction of the 
immune response. The signaling gene pairs were also vali-
dated in UM samples. We obtained UM tissues (Fig. 5 E) 

and checked the gene expression of signaling gene pairs, 
such as SPP1-CD44, HLA-C-CD8A, in tumor and adja-
cent normal tissues. Consistent with the results observed 
in the sequencing data, these signaling genes were signifi-
cantly altered (Fig. 5 F). Taken together, our results suggest 
that the signaling pathways are abnormally altered in UM 
samples.

SPP1 signaling pathway in melanocytes
To reveal the function of SPP1 signaling in melanocytes, 
we silenced the expression of SPP1 signaling genes, 
ligand CD44 and receptor SPP1, to measure the prolif-
eration and migration in melanocytes. The knockdown 
efficiency was evaluated with quantitative PCR (qPCR), 
and the gene expression of CD44 and SPP1 was dramati-
cally decreased by siRNA application (Fig. 6 A, B). Next, 
we examined the effects of SPP1 pathway interference on 
melanocyte proliferation. As shown in Fig.  6 C, both of 
the siRNA sequences targeting CD44 significantly low-
ered the viability of melanocytes, whereas the knock-
down of SPP1 did not significantly affect the proliferation 
of MUM2B cells, as detected by the CCK-8 assay. In line 
with the results of the CCK-8 assay, MUM2B cells trans-
fected with CD44 siRNA showed a remarkable decrease 
in EdU incorporation, but melanocytes with SPP1 abla-
tion demonstrated a growth rate comparable to that 
of the control cells (Fig.  6DE). We further explored 
the influence of SPP1 signaling on melanocyte migra-
tion. The Transwell assay illustrated that knockdown of 
CD44 or SPP1 notably prevented cancer cell migration 
(Fig. 6FG). These results indicate that the SPP1 pathway 
plays a pivotal role in proliferation and migration in UM 
and that inhibition of this signaling pathway may favor 
the treatment of UM.

Discussion
UM is a malignant tumor with high mortality and ocu-
lar morbidity [20]. The easy invasion and metastasis of 
UM seriously threatens the vision and life of patients 
[21]. Therefore, accurate prognostic biomarkers and 
early diagnosis are of great significance for the reduction 
of distant metastasis and promotion of UM treatment. 
Although great progress has been made for local control 
of primary disease, the survival rate after a diagnosis of 
metastatic UM is not satisfactory. The mechanisms of 
action, regulation and metastasis need to be elucidated to 
determine new diagnosis and treatment options.

Fig. 5  Survival analysis for key signaling pathways in UM patients. Kaplan–Meier survival analysis of the SPP1-CD44 gene pair (A) and HLA-C-CD8A 
gene pair (B) was performed to estimate the OS of high-risk and low-risk patients in the TCGA cohort. Expression of the SPP1-CD44 gene pair (C) 
and HLA-C-CD8A gene pair (D) in melanocytes, T cells, macrophages, and B cells. (E) H&E staining for the UM samples. (F) qPCR detection of gene 
pairs in the signaling pathway in UM and adjacent tissues

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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The present study provides several lines of evidence 
for understanding the pathogenesis of UM. First, we 
reveal the abnormal signaling pathway in UM sam-
ples. Using CellChat, we inferred intercellular com-
munications and compared the healthy and diseased 
samples in UM to provide a new vision for recogniz-
ing the mechanism of UM. Second, we combined the 

bulk-seq analysis of UM with the scRNA-seq data, 
depicting the heterogeneity of the tumor tissues. 
Third, we attribute the contribution of the differen-
tially expressed genes to each cell type and analyze the 
function of these genes in specific cell types. These 
findings suggest that the dysfunction of cell-cell com-
munication, especially the inability or responsiveness 

Fig. 6  The function of the SPP1 signaling pathway in melanocytes. Knockdown efficiency of CD44 (A) and SPP1 (B) in melanocytes. C Cell viability 
was determined 24 h after CD44 and SPP1 knockdown, followed by a CCK-8 assay. Data were normalized to NC. D Immunofluorescence staining 
using EdU in CD44- and SPP1-silenced melanocytes. Scale bars: 100 μm. E Data were collected from at least five sections, and cell numbers were 
averaged. F The migration activity of melanocytes transfected with CD44 siRNA or SPP1 siRNA was measured by a Transwell assay. G Data are shown 
as the mean ± SD of three independent experiments. **, P < 0.01
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of melanocytes and immune cells, may contribute to 
the exacerbation of UM.

In this study, we took advantage of scRNA-seq tech-
nology to integrate four high-throughput transcriptome 
datasets to reveal the molecular features in healthy RPE/
choroid tissue and primary and metastatic UM tissues. 
We included 222,075 single cells obtained by dynamic 
filtration from 33 samples (11 healthy, 19 primary and 3 
metastatic samples). These cells were classified into 12 
clusters (vision-associated cells and immune-associated 
cells), which indicated high heterogeneity in the pro-
gression of UM. Heterogeneity is one of the hallmarks 
of malignant tumors, which can cause tumor growth, 
invasion, and metastasis. Melanocyte carcinogenesis is 
paralleled by immune cell infiltration. As normal vision-
related cells, such as cones and rods, diminished, the 
melanocytes expanded, accompanied by an increase in B 
cells, T cells and macrophages.

We introduced bulk RNA-seq data from TCGA. The 
DEGs were obtained by comparing the “alive: no metas-
tasis” and “death: metastasis” groups. These DEGs were 
further validated in single-cell data in melanocytes and 
immune cell clusters to reveal their functions. Our GO 
analysis demonstrated that these cells were involved in a 
series of immune processes: the T cell receptor signaling 
pathway, T cell differentiation, antigen processing and 
presentation, neutrophil activation in melanocytes, anti-
gen processing and presentation in macrophages, and the 
type I interferon signaling pathway in B cells. These data 
implied that the immune response could play a key role 
in the development of UM. However, evidence has shown 
limited clinical efficacy with no benefit to OS for meta-
static UM. Low response rates of checkpoint inhibition in 
advanced UM are observed in clinical practice.

To uncover the mechanism of the low immune 
response in UM, we constructed a cell crosstalk network 
by CellChat. Our results found that the overall number 
and strength of the interaction in metastatic UM were 
significantly attenuated compared to those in primary 
UM. Various signaling pathways, such as MHC-I, MIF, 
APP, CD99, SPP1, LCK, and CLEC, were impaired, espe-
cially the communication between melanocytes and 
immune cells. Previous studies have demonstrated the 
presence of immune infiltrates in primary and metastatic 
UM, but immune checkpoint blockade failed to achieve 
impressive OS in UM. To further explore the possible 
molecular mechanisms of nonresponsiveness in these 
immune cells, we analyzed the expression of signaling 
pathway genes at the single-cell level. As expected, sub-
stantial alterations in mRNA expression were observed in 
immune cells and melanocytes, which corresponded to 
the survival rate of UM patients.

For instance, the overall high expression of HLA-C 
and CD8A leads to a shorter OS. The high expression of 
HLA-C is attributed to T cells, B cells and macrophages 
but not melanocytes, suggesting immune dysfunction 
in the microenvironment. The SPP1-CD44 gene pair is 
another example. The low expression of both genes in 
melanocytes may be responsible for the poor OS, which 
indicates inadequate immune stimulation.

SPP1 (secreted phosphoprotein 1), also called osteo-
pontin, is a member of the small integrin-binding ligand, 
N-linked glycoprotein family of proteins [22]. The gene 
is located on chromosome 4 (4q21-4q25) in humans 
and has five alternatively spliced transcripts. As a mul-
tifunctional phosphoglycoprotein, it is expressed in a 
wide range of cells, including osteoblasts, neurons, epi-
thelial cells, and lymphoid cells. The SPP1 gene has 
been reported to participate in cancer development and 
progression [23]. It is often overexpressed in the tumor 
microenvironment and elevated in the peripheral blood. 
Overexpression of SPP1 is linked to worse prognosis in 
many cancers, including hepatocellular carcinoma, colo-
rectal cancer, lung cancer, breast cancer, bladder cancer, 
and acute myeloid leukemia [22, 24]. CD44 is a nonki-
nase transmembrane glycoprotein encoded by the CD44 
gene located on the short arm of chromosome 11p13 
[25]. CD44 was first identified on lymphocytes and is 
overexpressed in several cell types, including cancer stem 
cells [26]. It is recognized as a cell adhesion protein and 
is involved in cell–cell and cell-matrix interactions [27]. 
Our results showed that SPP1-CD44 signaling, at least in 
part, contributed to the malignancy of UM through the 
promotion of proliferation and metastasis. Therefore, 
understanding the function and regulation of the SPP1 
pathway in UM will provide potential treatment options 
in the future.

One of the striking features of UM is the infiltration 
of inflammatory and immune cells that promote tumor 
progression [28–30]. Our data confirmed this result. The 
average proportions of lymphoid cells and myeloid cells 
were 0.35 and 9.08% in healthy samples, respectively. 
Interestingly, lymphoid cells increased to 2.23%, whereas 
myeloid cells decreased to 2.80% in primary UM samples. 
Both cell types were elevated dramatically in metastatic 
UM samples (more than 7% in lymphoid cells and 15% 
in myeloid cells). Although active infiltration of inflam-
matory and immune cells occurs in tumor tissues, the 
prognosis of metastatic UM is not favorable because mel-
anocytes in UM have relatively few tumor-specific neo-
antigens that can be presented to the immune system and 
therefore they evade immune attack [31, 32]. This was 
observed in our data, where we showed that the CD8A-
HLA-C gene pair was significantly increased in T/B cells 
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but decreased in melanocytes, indicating the impairment 
of normal signaling transduction.

The genetic background contributes to the progres-
sion of UM. The most commonly mutated genes in UM 
are GNA11, GNAQ, BAP1, EIF1AX, and SF3B1. Evi-
dence has shown that BAP1 mutation or loss is linked 
to metastatic UM and associated with poor prognoses 
[6, 33]. Immune genes were significantly correlated 
with both BAP1 expression and chromosome 3 copy 
number variation [34]. However, due to the paucity 
of mutation information in scRNA-seq information, 
we could not evaluate the genetic background across 
the datasets. Moreover, as a 3′ mRNA-seq, the 10X 
Genomics single-cell sequencing does not have a great 
change to detect SNP. Smart-seq may be more suitable 
for mutation detection. The original paper performed 
copy number variation analysis of primary and meta-
static UM samples, so we did not repeat the analysis. In 
this revision, we supplemented the gene expression of 
the commonly mutated genes (Fig.S6), indicating a dif-
ferential regulation of these gene in various cell types.

Conclusions
In conclusion, we performed a comprehensive analysis 
of the scRNA-seq datasets of UM, illustrated the cellu-
lar heterogeneity of UM tissues, and revealed dysfunc-
tion of the immune signaling pathway in UM. Different 
mechanisms may exist in the disturbance of immune 
balance and the impairment of the immune system. A 
series of gene pairs in signaling pathways could serve as 
potential novel biomarkers for risk assessment and diag-
nosis. These pathways might constitute an additional 
therapeutic strategy to the current treatment of UM.
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