
Article
Integrating transcription-f
actor abundance with
chromatin accessibility in human erythroid lineage
commitment
Graphical abstract
Highlights
d We developed InTAC-seq, a method to profile chromatin

accessibility from fixed cells

d InTAC-seq profiles rare cell populations defined by

intracellular protein abundance

d InTAC-seq matches live-cell ATAC in data quality,

robustness, and cost of assay

d GATA-1-high BM progenitors are epigenetically and

functionally erythroid primed
Baskar et al., 2022, Cell Reports Methods 2, 100188
March 28, 2022 ª 2022 The Authors.
https://doi.org/10.1016/j.crmeth.2022.100188
Authors

Reema Baskar, Amy F. Chen,

Patricia Favaro, ..., Eric T. Kool,

William J. Greenleaf, Sean C. Bendall

Correspondence
wjg@stanford.edu (W.J.G.),
bendall@stanford.edu (S.C.B.)

In brief

Baskar et al. present a multi-omic

epigenetics approach to assay chromatin

accessibility of fixed cells defined by

intracellular regulators (e.g., transcription

factors). Their method, InTAC-seq,

generates high-quality data with low cell

numbers and links chromatin-binding

protein levels to epigenetic landscapes

within rare and transient cell states in

human tissue.
ll

mailto:wjg@stanford.edu
mailto:bendall@stanford.edu
https://doi.org/10.1016/j.crmeth.2022.100188
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2022.100188&domain=pdf


OPEN ACCESS

ll
Article

Integrating transcription-factor
abundance with chromatin accessibility in human
erythroid lineage commitment
Reema Baskar,1,2,8 Amy F. Chen,3,8 Patricia Favaro,1 Warren Reynolds,1 Fabian Mueller,3 Luciene Borges,1 Sizun Jiang,1

Hyun Shin Park,4 Eric T. Kool,4,5 William J. Greenleaf,3,6,7,* and Sean C. Bendall1,9,*
1Department of Pathology, Stanford University, Stanford, CA 94305, USA
2Cancer Biology Program, Stanford University, Stanford, CA 94305, USA
3Department of Genetics, Stanford University, Stanford, CA 94305, USA
4Department of Chemistry, Stanford University, Stanford, CA 94305, USA
5ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
6Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
7Chan Zuckerberg Biohub, San Francisco, CA, USA
8These authors contributed equally
9Lead contact

*Correspondence: wjg@stanford.edu (W.J.G.), bendall@stanford.edu (S.C.B.)

https://doi.org/10.1016/j.crmeth.2022.100188
MOTIVATION Cellular differentiation is a tightly regulated process where key lineage-determining tran-
scription factors (TFs) play an important role in gene regulation. The abundance of these TFs influences
epigenetic priming of cells toward different cell fates. In order to better understand this complex process,
we developed InTAC-seq to capture epigenetic states of cells marked by particular TFs and to better asso-
ciate TFs with differentiation and lineage restriction. We benchmark InTAC-seq in a homogeneous cell line,
K562, in order to link GATA-1 protein abundance to chromatin changes in regular culture conditions and
then extend it to the analysis of rare, primary human hematopoietic progenitor cells. Using InTAC-seq,
we were able to profile chromatin accessibility landscapes associated with GATA-1 in bone marrow rare
progenitor cells and characterize high GATA-1-expressing cells as erythroid-committed progenitors.
SUMMARY
Master transcription factors (TFs) directly regulate present and future cell states by binding DNA regulatory
elements and driving gene-expression programs. Their abundance influences epigenetic priming to different
cell fates at the chromatin level, especially in the context of differentiation. In order to link TF protein abun-
dance to changes in TF motif accessibility and open chromatin, we developed InTAC-seq, a method for
simultaneous quantification of genome-wide chromatin accessibility and intracellular protein abundance in
fixed cells. Our method produces high-quality data and is a cost-effective alternative to single-cell tech-
niques. We showcase our method by purifying bone marrow (BM) progenitor cells based on GATA-1 protein
levels and establish high GATA-1-expressing BM cells as both epigenetically and functionally similar to
erythroid-committed progenitors.
INTRODUCTION

Transcription factors (TFs) are the master drivers of cell identity

and differentiation, and their binding to specific regulatory se-

quences across the genome controls gene networks conferring

cell phenotype and function. The exact binding sites of a TF

can depend on various factors including the pre-existing chro-

matin landscape, the presence of cooperative and antagonistic

TFs, and the concentration of the TF in the cell (Spitz and

Furlong, 2012). It has been shown that subtle differences in TF
Cell R
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levels can have significant effects on cell determination, as evi-

denced by classical studies on TF gradients in defining ante-

rior-posterior axis patterning in Drosophila embryogenesis

(Courey and Huang, 1995; Rivera-Pomar and J~ackle, 1996).

Similarly, studies of hematopoiesis in mice have shown that

different levels of the master TF PU.1 can drive myeloid versus

lymphoid fate, while insufficient levels of PAX5, a driver of the

B cell lineage, can result in cells adopting an abnormal bipotent

myeloid/lymphoid phenotype (DeKoter and Singh, 2000; Sim-

mons et al., 2012). These examples highlight the importance of
eports Methods 2, 100188, March 28, 2022 ª 2022 The Authors. 1
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interrogating the molecular mechanisms underlying the conse-

quences of TF levels on cellular phenotype. However, the effects

of endogenous TF abundance on its set of target DNA-binding

sites are difficult to interrogate in unmanipulated primary human

tissue despite improvements in inducible gene-expression sys-

tems in precisely controlling expression and protein abundance

(Pedone et al., 2019).

The identification of regulatory regions in a cell has been facil-

itated by techniques that map regions of open chromatin, such

as the assay for transposase-accessible chromatin by

sequencing (ATAC-seq) (Buenrostro et al., 2013; Corces et al.,

2017). Measuring the association between TF abundance and

chromatin accessibility in cells can link master TFs that drive

cell-fate decisions to the epigenetic events that influence these

decisions. Still, methods to directly measure regulatory protein

abundance in a cell and link changes in their levels to genome-

wide changes in chromatin accessibility are lacking. The chal-

lenge of revealing these relationships is exacerbated when cells

of interest are rare and regulatory proteins are transiently ex-

pressed in primary human tissue, such as in hematopoietic line-

age commitment in the bone marrow. However, by overcoming

these challenges, measurements of protein abundance for line-

age-defining TFs in minimally manipulated primary tissues could

be integrated with epigenetic priming information through chro-

matin accessibility, thereby providing unprecedented granularity

into cell-fate decision mechanisms.

There have been a number of attempts to link gene expression

to chromatin-accessibility profiles employing single-cell ATAC-

seq (scATAC-seq) alone or in combination with RNA sequencing

(RNA-seq) in the same cell (Cao et al., 2018; Granja et al., 2019;

Ma et al., 2020; Satpathy et al., 2019). While RNA levels are infor-

mative, they do not always reflect existing protein levels in the

nucleus or account for post-translational regulation, which can

dictate the functional state of a cell (Schwanhäusser et al.,

2011; Vogel and Marcotte, 2012; Vogel et al., 2010). Protein

expression has also been previously linked to chromatin acces-

sibility in single cells (protein-indexed ATAC [piATAC]) (Chen

et al., 2018). However, transcription start site (TSS) enrichment

scores were considerably lower than those from live-cell

ATAC-seq libraries, and piATAC datasets had comparatively

few unique reads per cell. The lower enrichment in signal over

background and decreased library complexity resulted in diffi-

culty associating differences in TF protein abundancewith signif-

icant changes in chromatin accessibility at predicted binding

sites. Therefore, improvements in data quality are needed to

quantitatively assess how protein regulators (i.e., TFs, chromatin

modifiers, upstream signaling molecules) influence epigenetic

states. Such methods will enable the robust, combinatorial mea-

surement of specific chromatin-binding proteins, such as TFs,

that affect gene expression and link their protein abundance to

chromatin changes, thereby improving our understanding of

the complex interplay between TF abundance and gene regula-

tory programs involved in cell fate.

Here, we present InTAC-seq, a method that profiles chromatin

accessibility from cells isolated based on abundance of cell sur-

face and intracellular proteins-of-interest, that has data quality

and cost comparable to standard ATAC-seq on live cells. In-

TAC-seq can be applied to chromatin-binding protein factors
2 Cell Reports Methods 2, 100188, March 28, 2022
such as TFs and generates high-quality, quantitative data from

primary tissue to robustly measure genome-wide chromatin

accessibility associated with TF levels. We first benchmarked In-

TAC-seq with the GM12878 lymphoblastoid cell line. We then

demonstrated that variation in GATA-1 protein abundance was

associated with altered chromatin accessibility at sites across

the spectrum of GATA-1 binding affinity in the K562 erythroleu-

kemic cell line. We further applied InTAC-seq to bone marrow

progenitor cells isolated based on GATA-1 expression to profile

GATA-1-associated chromatin accessibility in the context of

human hematopoietic differentiation. The high-quality profiles

produced by InTAC-seq enabled us to integrate our results

with previous scATAC- and RNA-seq bone marrow datasets.

Thus, we could position the isolated GATA-1 cells within this

multi-omic landscape of human hematopoietic lineage commit-

ment and link high GATA-1 expression to erythroid priming. By

using surrogate surface markers, we show clonally homoge-

neous erythroid differentiation from GATA-1-high progenitor

cells. Taken together, our method enabled measurement of

chromatin accessibility associated with endogenous GATA-1

TF abundance in human bone marrow, thereby characterizing

high-GATA-1-expressing progenitors as epigenetically and

functionally similar to erythroid progenitors in human red blood

cell (RBC) development.

Design
The main challenge with combining ATAC-seq with intracellular

protein quantification lies in the fixation and permeabilization of

cells required for direct measurement of intracellular proteins us-

ing affinity reagents, such as antibodies, and subsequent para-

formaldehyde crosslinking reversal at high temperatures prior

to library amplification. The previously applied 65�C crosslink

reversal step results in dissociation and loss of shorter fragments

that contribute to a large fraction of the final ATAC-seq library,

resulting in reduced library complexity and lower TSS enrich-

ment scores (Chen et al., 2018). To improve data quality, the

InTAC-seq protocol uses a shorter fixation time with mild

permeabilization and reversal of formaldehyde crosslinks with

a catalyst to allow crosslink reversal to occur at 37�C (Karmakar

et al., 2015; Figure 1A).

RESULTS

InTAC-seq libraries are comparable in quality
to ATAC-seq libraries generated from fresh cells
Libraries generated from fixed GM12878 cells using InTAC-seq

exhibited enrichment in Tn5 insertions at TSSs comparable to

TSS enrichment in ATAC-seq libraries from unfixed live cells

and approximately 2-fold greater than that in published bulk piA-

TAC libraries (Chen et al., 2018; Figure 1C). The fragment length

distribution for InTAC-seq libraries was also similar to the

distribution in libraries from live cells due to preservation of

sub-nucleosomal fragments at 37�C (Figure S1A). The retention

of sub-nucleosomal fragments translated into a larger estimated

number of unique ATAC-seq fragments from InTAC-seq and live

ATAC libraries relative to piATAC libraries (Figure 1D). To

compare InTAC-seq libraries with unfixed libraries, we plotted

the correlation of reads in consensus peaks and found a strong
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Figure 1. InTAC-seq data from fixed cells is of comparable quality to ATAC-seq data from live cells and allows interrogation of chromatin

accessibility associated with TF protein abundance

(A) Overview of InTAC-seq experimental protocol.

(B) Genome coverage of ATAC-seq data generated from live cells, fixed cells using InTAC-seq, or fixed cells using piATAC at the EBF1 locus in GM12878 cells.

(C) Normalized Tn5 insertion profiles centered at transcription start sites (TSSs) for the indicated ATAC-seq libraries.

(D) Scatterplot of estimated library size versus normalized TSS insertion score across all replicates of compared protocols.

(E) Scatterplot of reads in consensus peaks averaged across replicates between InTAC-seq and live ATAC samples, with calculated Spearman correlation

coefficient as shown.

(F) FACS plot of forward scatter (linear scale) versus GATA-1 protein abundance (log10 scale) and the gating strategy to isolate the highest and lowest 15% of

GATA-1-expressing K562 cells.

(G) MA plot of log2 fold change in accessibility between GATA-1-high and GATA-1-low K562 populations versus log2 mean number of reads at all consensus

peaks. Peaks with significant changes in accessibility are highlighted in red or blue.

(H) Most significantly enriched TF motifs in differentially accessible peaks in GATA-1-high cells calculated using Fisher’s test.

(I) Average accessibility of GATA-1 motif sites across all consensus ATAC-seq peaks binned by GATA-1 motif score. Accessibility is defined here as the area

under the curve of a plot of bias-corrected, normalized Tn5 insertions centered at GATA-1 motif sites (as in Figure S1G), integrated from �50 to +50 bp and

excluding the TF footprint from �10 to +10 bp.

(J) Difference in GATA-1 motif accessibility between GATA-1 high and GATA-1 low samples normalized to the accessibility in the GATA-1 low population for each

motif score bin.
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correlation between InTAC-seq data generated from fixed cells

and ATAC-seq data generated from live cells (Figures 1E and

S1B). Genome Browser tracks further illustrated the concor-
dance between InTAC-seq data and live-cell ATAC-seq data

(Figure 1B).We further demonstrated that InTAC-seq can be per-

formed on as low as 100 cells, enabling profiling of rare cell types
Cell Reports Methods 2, 100188, March 28, 2022 3
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(Figure S1C). Together, these results show that the InTAC-seq

protocol produces data on par with live ATAC-seq, with compa-

rable signal-to-background (as defined by TSS enrichment

scores) and library complexity.

InTAC-seq is sufficiently sensitive to detect differences
in chromatin accessibility associated with varying TF
protein abundance
We next aimed to use InTAC-seq to detect chromatin accessi-

bility differences in cells endogenously expressing different

levels of chromatin-binding protein such as TFs. We compared

the chromatin-accessibility profiles in K562 cells expressing

the highest or lowest 15% of GATA-1 levels using InTAC-seq

(Figures 1F and 1G). With ChromVAR (Schep et al., 2017), we

found that GATA-binding motifs were among the most variable

in accessibility across samples (Figure S1E). Specifically, we

observed increased accessibility in cells with high levels of

GATA-1 at GATA-1 motif sites (Figures S1G, S1H, and 1H).

Differentially accessible peaks (false discovery rate [FDR] <0.1)

between cells with high versus low GATA-1 were almost exclu-

sively more accessible in GATA-1-high cells, and they were

most significantly enriched for GATA motifs relative to all other

peaks present across samples (Figures 1H and S1F), suggesting

that accessibility differences are likely due to differences in

GATA-1 abundance. However, we observed slight increases in

accessibility at motif sites for other erythroid TFs in GATA-1-

high cells, which could indicate that GATA-1-high cells within a

K562 culture are further along in erythroid differentiation. It there-

fore remains possible that the increased accessibility at GATA-1

sites could be due to factors other than GATA-1.

We next asked how increases in accessibility at GATA-1 motif

sites can vary based on the predicted binding affinity of the pu-

tative GATA-1 binding site. To address this, we grouped all

consensus peaks into 20 bins of equal size based on the quality

of their GATA-1 motif score and measured the average accessi-

bility across these bins in cells with high versus low GATA-1

abundance. We found that cells with high GATA-1 levels exhibit

a general increase in accessibility at GATA-1 motif sites above a

threshold motif score that likely represents the minimum score

for a true GATA-1 binding site (Figure 1I). However, we observed

that the greatest change in accessibility between cells with high

versus lower GATA-1 occurred at sites of moderate predicted af-

finity (i.e., bin 18), suggesting that the highest-affinity GATA-1

binding sites may be saturated even at lower GATA-1 levels (Fig-

ure 1J). These results showcase the ability of InTAC to measure

subtle differences in chromatin accessibility among populations,

allowing us to link natural variation in TF abundance to accessi-

bility differences at specific genomic loci such as putative TF-

binding motif sites.

InTAC-seq links high expression of GATA-1 protein to
erythroid-committed bone marrow (BM) progenitors
While clinically significant for both cell-based therapies and he-

matopoietic dysplasia (Zivot et al., 2018), the regulatory land-

scape of erythropoietic cell homeostasis in the human bone

marrow (BM) compartment is not well understood. BM progeni-

tor populations are traditionally defined and isolated based on

expression of cell-surface proteins, which viably preserves these
4 Cell Reports Methods 2, 100188, March 28, 2022
cells for downstream functional assays (Akashi et al., 2000;Manz

et al., 2002; Mori et al., 2015; Seita and Weissman, 2010). How-

ever, these surface molecules are not always functionally related

to the cellular state that we associate them with, thereby result-

ing in oversimplification of the complex hematopoietic system

(Paul et al., 2015). We therefore hypothesized that intracellular

regulatory protein abundance would identify cellular states with

higher fidelity and enable more accurate molecular characteriza-

tion. To test this, we focused on human erythroid progenitor

cells, which are regulated by GATA-1 (Gutiérrez et al., 2020; Sta-

chura et al., 2006; Suzuki et al., 2003) but are generally defined

by unrelated surface molecules, such as a CD45RA-negative

population separated based on FLT3 (Doulatov et al., 2010) or

IL3RA (CD123) (Manz et al., 2002), with the latter gating subse-

quently referred to as CD123– megakaryocyte-erythroid progen-

itor cells (MEPs; fully defined as CD34+/CD38+/CD10–/

CD45RA–/CD123–). We applied InTAC-seq to interrogate the

link between the abundance of the lineage-defining TF, GATA-

1, and epigenetic changes related to GATA-1 abundance differ-

ences in RBC development.

First, we used InTAC-seq to profile the accessible chromatin

landscape of GATA-1-high- (top 8%) and GATA-1-mid and

low-expressing cells (referred to as GATA-1-mid/low cells in

the lower 87%) within the landscape of the general BM progen-

itor compartment (i.e., CD34+CD38+) to determine if GATA-1-

high cells were enriched for erythroid epigenetic signatures

(Figure 2A). InTAC-seq libraries generated from these isolated

subpopulations had TSS enrichment scores similar to ATAC-

seq libraries from live GM12878 cells, indicating that InTAC-

seq performs well on primary human samples (Figures S2A

and S2B).We observed amarked increase in accessibility at reg-

ulatory regions surrounding the GATA-1 locus in GATA-1-high

versus mid/low progenitors, consistent with GATA-1 expression

levels, along with a decrease in accessibility at regulatory

regions within the SPI1 locus, which encodes a TF known to

antagonize GATA-1 activity and repress erythroid commitment

(Arinobu et al., 2007; Nerlov et al., 2000; Rekhtman et al.,

1999; Zhang et al., 2000) (Figure 2B). The bindingmotifs for these

two TFs also exhibited strong differences in accessibility be-

tween GATA-1-high and GATA-1-mid/low progenitors (Fig-

ure 2C). We further observed a broader trend of increased

accessibility surrounding the motifs for TFs that drive erythroid

fates (e.g., GATA-1, Mecom [Shimizu et al., 2002]) and

decreased accessibility at motifs for TFs that drive myeloid

and lymphoid lineages (e.g., SPI1 [Hromas et al., 1993; Klemsz

et al., 1990], EBF1 [Nechanitzky et al., 2013]) in GATA-1-high

progenitors (Figure 2C). Analysis of differentially accessible

peaks showed enrichment of these erythroid TF motifs in sites

more accessible in GATA-1-high progenitors and enrichment

of a variety of myeloid and lymphoid TFs in sites more accessible

in GATA-1-mid/low-expressing progenitors (Figures 2D, 2E, and

S2C). Deeper analysis into accessibility at GATA-1 motif sites of

varying binding affinities across the genome showed that high

GATA-1 abundance in progenitors is associated with marked in-

crease in accessibility above a threshold motif score (�12; Fig-

ure 2F). The greatest increases were observed at sites with the

highest predicted GATA-1 affinity, suggesting the preferential

binding of GATA-1 to the genome at these sites. Altogether,
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Figure 2. GATA-1-high BM progenitors show strong priming for erythroid lineage

(A) BM aspirate is ficolled and enriched for CD34+ cells before gating for CD34+/CD38+ cells and selecting GATA-1-high population (top �8%) and remaining

GATA-1-expressing cells (denoted as GATA-1 mid/low) (bottom �87%).

(B) InTAC-seq genome coverage plots at GATA1 and SPI1 loci for GATA-1-high and -mid/low BM progenitors.

(C) Heatmap of chromVAR deviation scores across GATA-1 high and mid/low BM progenitors for top 50 most variable motifs.

(D) MA plot of log2 fold change in accessibility between GATA-1 high andmid/low BMprogenitors versus log2mean number of reads in consensus peaks. Peaks

with significant changes in accessibility are highlighted in red or blue.

(E) Most significantly enriched TF motifs in differentially accessible peaks between GATA-1-high and -mid/low BM progenitors calculated using Fisher’s test.

(F) (Top) Average accessibility of GATA-1 motif sites across all consensus ATAC-seq peaks binned by GATA-1 motif score. Accessibility is defined here as the

area under the curve of a plot of bias-corrected, normalized Tn5 insertions centered at GATA-1 motif sites, integrated from �50 to +50 bp and excluding the TF

footprint from�10 to +10 bp. (Bottom) Difference in GATA-1 motif accessibility between GATA-1 high and mid/low samples normalized to the accessibility in the

GATA-1 mid/low population for each motif score bin.

(G) UMAP of previously published and annotated BM scATAC dataset with Seurat clusters manually annotated as key BM populations.

(H) Normalized GATA1 gene expression across BM progenitors in UMAP space (expression derived from scRNA-seq data integrated with scATAC-seq data).

(I) Bulk BM progenitor InTAC-seq data simulated as scATAC counts and projected onto scATAC UMAP space.
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these data suggest that high GATA-1 expression in human he-

matopoietic progenitors is likely linked to an erythroid epigenetic

program while repressing alternative lineage fates.

To further assess the position of these progenitors within the

hematopoietic hierarchy, we projected our InTAC-seq samples

onto a scATAC-seq uniformmanifold approximation and projec-

tion (UMAP) of filtered BM mononuclear cells (BMMCs) from

published datasets to identify their closest hematopoietic cell

type using ArchR (Granja et al., 2019, 2020). Given our focus

on erythropoiesis, we performed a more fine-grained analysis

of the erythroid cluster and separated it into early, mid, and

late erythroid progenitor populations based on differences in

gene accessibility and chromVAR deviation scores of key TFs

(Figures 2G, S2D, and S2F). Despite diffuse GATA1 expression

across hematopoietic populations, we see highest enrichment

of GATA1 gene expression at the erythroid arm of UMAP (Fig-

ure 2H). Likewise, when projected, we found that progenitors

with high GATA-1 protein abundance, represented by the top

8% of GATA-1-expressing BM progenitor cells, were positioned

within the mid erythroid progenitor branch while mid/low-GATA-

1-abundance progenitors spanned scRNA-annotated granulo-

cyte/monocyte progenitor (GMP), lymphomyeloid primed

progenitor (LMPP), and commonmyeloid progenitor (CMP) clus-

ters (Figure 2I). Strikingly, the position of GATA-1-high progeni-

tors at the mid erythroid cluster (Figure 2I) combined with the

overall enrichment of erythropoietic programs (Figures 2C–2E)

suggests that the GATA-1 highest expressing cells are most

similar to progenitors in the erythroid fate arm of the BM map.

Single-cell proteomic map of erythroid development
complements InTAC-seq to reveal GATA-1 co-
expression patterns
We next sought to better understand GATA-1 protein abundance

dynamics in relation to other key TFs in erythroid progenitor devel-

opment. We curated a 35-plex antibody panel comprised of key

TFs implicated in hematopoiesis, such as GATA-1, GATA-2,

BMI-1, and PBX-1 (Figure 3A). The panel also included surface

markers for BM progenitor gating strategies and markers previ-

ously shown to be involved in erythropoiesis to better understand

their dynamics relative to GATA-1 in erythroid commitment (Fig-

ure 3A). In order to construct a map of the BM progenitor space,

we embedded our density-downsampled dataset from�1 million

BM progenitors into a force-directed layout (Jacomy et al., 2014)

and visualized the topology of cell-state distributions in high-

dimensional space (Traag et al., 2019; Wolf et al., 2018) (Figures

3B andS3B).We then overlaidmanually gated, previously defined

progenitor population labels (Manz et al., 2002) (Figures 3B, left,

and S3A, progenitor gating). Expectedly, reference populations

do not project in the previously established hierarchical manner

and insteadpresent as a continuumof states fromearly progenitor

to distinct endpoints characterized by an erythroid-primedbranch

(indicated by GATA-1), CMPs or GMPs (indicated by CD123),

common lymphoid progenitors (CLPs; indicated by CD10), and

myeloid cells (immature myeloid indicated by CD117 and mature

myeloid by CD33) (Paul et al., 2015) (Figures 3B, right, 3C, and

S3C, surface marker distributions).

The CD123– MEP population (Manz et al., 2002) occupies a

large portion of the map indicating heterogeneity of states within
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this population, which is also exemplified by numerous Leiden

clusters in this space that show enrichment of distinct cell states

(Figures 3B, bottom right, 3D, 3E, S3E, and S3F). Previous work

has shown myeloid-primed states existing within CD123– MEPs

(Manz et al., 2002), and we also observe these cells in clusters 3

and 4, marked by high CD117 and CD33 (Psaila et al., 2016) (Fig-

ure S3F). The large number of BM cells assayed (about 1 million)

also enabled us to detect a small frequency of lymphoid-primed

CD123– MEPs marked by mid to high CD45RA and high CD10

expression in cluster 5 (Figure S3F). In contrast, cells expressing

the highest GATA-1 are primarily localized within the erythroid

arm (Figure 3C, orange arrow). Together, these results confirm

the lineage-priming heterogeneity present in the CD123– MEP

population and localize cells with high expression of GATA-1 to

erythroid-primed progenitor space.

Next, we aimed to better understand changes in levels of and

relationships between functional markers in erythroid progenitor

developmentwith respect toGATA-1.We constructed adifferen-

tiation trajectory from hematopoietic stem cells (HSCs) to high

GATA-1 cells (i.e., putative erythroid progenitors) using

computed diffusion pseudotime (DPT) (Haghverdi et al., 2016)

(Figures 3F, red arrow, and 3G). Notably, the erythroid arm is

adjacent to early progenitors (both in single-cell proteomic and

transcriptomic space), corroborating previous claimsof erythroid

progenitors arising directly from HSCs without intermediate

states (Grinenko et al., 2018) (Figures 3F and S3G). When binned

across normalized DPT, the ordering of cells enabled us to quan-

tify key TF and surface marker trends through erythroid commit-

ment (Figure 3G). We observe that CD71 and CD84, both known

markers of erythroid commitment (Psaila et al., 2016; Sanada

et al., 2016; Zaiss et al., 2003), increase during erythroid differen-

tiation (Figures 3G and S3D). Our trajectory also showed

expected trends in erythroid lineage-priming TFs, with GATA-2

being expressed earlier than GATA-1 in early progenitors (clus-

ters 2 and 7, respectively) (Suzuki et al., 2013) (Figures 3G and

S3F). Interestingly, stemness maintenance TFs, PBX-1 and

BMI-1, that have previously been implicated in mouse RBC

development (Kim et al., 2015; Manavathi et al., 2012) showed

expression in erythroid progenitor clusters, indicating a potential

role in human erythroid development (Figures 3G, 3C, and S3D).

PBX-1 is likely acting to promote self-renewal in lineage-primed

progenitor pools as indicated by its expression in early myeloid

and early erythroid progenitor clusters (clusters 3 and 7) (Fig-

ure S3F). PBX-1 and GATA-1 show the highest mutual informa-

tion only in cluster 8 despite lower PBX-1 abundance, supporting

their known co-regulation through humanPBX-1-interacting pro-

tein (PBXIP1/HPIP) (Manavathi et al., 2012) (Figure 3H). Addition-

ally, we observe co-expression of BMI-1 with GATA-1, which is

supported by previous work implicating BMI-1 in regulating

self-renewal and ribosome biogenesis in erythroid progenitors

at late-stage erythroid commitment (Gao et al., 2015; Kim et al.,

2015; Liu et al., 2021) (Figure S3D). BMI-1 abundance increases

with GATA-1 expression only toward later-stage erythroid pro-

genitor states (cluster 8), hinting at unipotency at this stage

(Figure 3G). Our single-cell, high-dimensional proteomic map

complements our InTAC-seq assay in revealing trends of relevant

surface markers and TFs in GATA-1 high cells within the context

of erythroid progenitor development in human BM.
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Figure 3. High-dimensional, single-cell proteomic analysis of BM progenitors identifies TF and surface-marker trends in erythroid

commitment
(A) BM aspirate is ficolled and enriched for CD34+ cells before staining with antibodies to surface marker panel and key TF to capture single-cell protein

abundance using mass cytometry. High-dimensional data with over 1 million cells were used to delineate heterogeneity in BM progenitors and find surface-

marker surrogates for GATA-1 TF abundance for further functional validation.

(B) Force-directed layout (ForceAtlas2) of density downsampled (to 250,000 cells) CD45+-gated BM progenitors colored by manually gated populations.

(C) Normalized marker expression of key surface and TF proteins (in orange) across force-directed layout. Orange arrow denotes GATA-1-high region in single-

cell map.

(D) Leiden clusters of BM progenitors (resolution = 1) visualized on force-directed layout.

(E) Barplot of frequency of manually gated BM progenitor populations across 11 Leiden clusters.

(F) Normalized diffusion pseudotime calculation visualized on force-directed layout with trajectory from HSCs to erythroid-primed progenitors across Leiden

clusters 3, 1, and 11 (in red).

(G) Row-normalized heatmap of median marker abundance at 100 bins across diffusion pseudotime-aligned trajectory. Orange font and arrows indicate TF

protein trends, and bold font with black arrows indicate key surface marker trends in trajectory.

(H) Column-normalized heatmap of mutual information scores calculated on cells in Leiden clusters 2, 7, and 8 and normalized across key TF and surface-marker

pairs.
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GATA-1-high BM progenitors exhibit significant clonal
enrichment for erythroid-committed cells
To functionally assess erythroid progenitor commitment in

high-GATA-1-expressing cells, we sought to benchmark them

against CD123– MEPs (fully gated as CD34+CD38+CD10�

CD123–CD45RA–) using a colony-forming assay for clonal he-
matopoietic lineage potential. In order to isolate viable cells with

high GATA-1 abundance for the assay, we first identified sur-

face-protein surrogates for GATA-1 using our BM cytometry by

time-of-flight (CyTOF) data. We found that CD71 and CD84,

both known to be enriched in erythroid cells (Psaila et al., 2016;

Sanada et al., 2016; Zaiss et al., 2003), best represented high
Cell Reports Methods 2, 100188, March 28, 2022 7
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Figure 4. Surface-marker-defined BM population surrogate for high GATA-1 protein abundance clonally enriches for erythroid lineage
(A) Spearman correlation plot of surface markers and GATA-1 abundance in BM progenitors as measured by mass cytometry.

(B) Top 8% of GATA-1-expressing cells in CD34+/CD38+ BM progenitors gated as GATA-1-high BM cells, and remaining GATA-1-mid/low cells used for sub-

sequent analysis.

(C) Boxplots of normalized surface-marker abundance of GATA-1-high BM progenitors (top �8% of expression) and GATA-1-mid/low BM progenitors (bottom

�87% of expression) from mass cytometry.

(D) Violin plots of GATA-1 protein abundance in manually gated target populations (as defined by CD71+, CD84+, CD33–), CD123– MEP populations, and in other

BM progenitor populations.

(E) Boxplot of clonal differentiation frequency of target population and CD123- MEP population to different lineages/population types across 4 biological

replicates. (p values calculated using Student’s t test)
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GATA-1 expression (Pearson correlation = 0.372 and 0.378,

respectively; Figure 4A). The myeloid-enriched surface protein

CD33wasalsomildly anti-correlatedwithGATA-1 (Pearsoncorre-

lation = �0.079). Additionally, when we selected the highest ex-

pressing GATA-1-high progenitors (Figure 4B) at a frequency

similar to that used to sort for GATA-1-high progenitors in the In-

TAC-seq experiment (�8%), we observed an enrichment for

CD71 andCD84 and a depletion for CD33 in the high-GATA-1-ex-

pressing cells relative tomid/low-GATA-1 progenitors (Figures 4B

and 4C). A data-driven, back-gating approach (Aghaeepour et al.,

2018) was employed, andCD33,CD84, andCD71were predicted

to best gate for the high-GATA-1-expressing target population

with an F score of 0.99 (FiguresS4A andS4B, red cells). By select-

ing for CD71+CD84+CD33� cells within the CD34+CD38+

compartment, we confirmed that these cells have higher expres-

sion of GATA-1 relative to cells in the CD123– MEP gate (Figures

S4C and S4D).

We then compared the hematopoietic colony-forming poten-

tial of the CD71+CD84+CD33� (i.e., GATA-1-high) population

with CD123– MEPs using a methylcellulose assay. While it is

known that CD123– MEPs are heterogeneous (Mori et al.,

2015; Sanada et al., 2016) and contain erythroid progenitors as

well as other lineage-primed progenitors (Figures 4E and S4D),

in comparison, our GATA-1-high surrogate cell population

(CD71+CD84+CD33�) was significantly (p = 0.048) enriched for

erythroid (BFU-E) colonies (Figures 4E and S4D). These data

confirm that the highest GATA-1 expressing cells within human

CD34+CD38+ progenitors have erythroid potential by functional

colony-forming assay and are consistent with the epigenetic

programs we observed in our InTAC-seq data.
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Consistent with their mixed-lineage potential demonstrated by

colony-forming unit (CFU) analysis, the CD123– MEPs have a

spread of expression for GATA-1 (Figure 5A). To examine the

nature of high-GATA-1 expressing cells from within CD123–

MEPs and how they compare to the high GATA-1

CD34+CD38+ progenitors, we isolated them and carried out In-

TAC-seq (Figure 5A). Despite the low cell numbers obtained

from these rare primary BM populations (down to �250 cells),

the resulting data were of high quality (Figures S5A and S5B).

As expected, projection of high GATA-1-expressing cells iso-

lated from CD34+CD38+ progenitors and CD123– MEP compart-

ments onto the scATAC UMAP of BMMCs demonstrated similar

embedding within the mid-erythroid population (Figure 5B).

These data suggest that they are indeed similar cells, further

confirming that high GATA-1 expression in CD34+CD38+ BM

progenitors is sufficient to enrich for erythroid-committed pro-

genitors without further gating.

High GATA-1 protein expression overlaps with
epigenetic switch in BMprogenitors to erythroid lineage
During erythropoiesis, BM progenitors undergo global changes

in TF activity and chromatin accessibility in order to restrict

non-erythroid lineage potential and drive the erythroid program.

In order to model this process and understand the epigenetic

transitions associated with GATA-1 acquisition, and erythroid

commitment, we calculated a pseudotime ordering of cells

from HSCs to the late erythroid cluster from BM scATAC-seq

data (Granja et al., 2019) (Figure 5C). Using our InTAC-seq data

from high GATA-1-expressing cells as a landmark, we identified

thepositions of their closest scATACBMcellswithin the erythroid
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Figure 5. High GATA-1 protein abundance delineates epigenetic program for erythroid commitment in RBC developmental trajectory

(A) BM aspirate is ficolled and enriched for CD34+ cells before gating for CD123– MEP population (CD34+/CD38+/CD10–/CD45RA–/CD123–) and selecting high-

(25%–40%) and mid- (�lower 30%) GATA-1-expressing cells within each compartment.

(B) GATA-1-high cells from CD34+/CD38+ and CD123– MEP compartments InTAC-seq data were simulated as scATAC counts and projected on scATAC UMAP

space.

(C) Putative erythropoiesis trajectory constructed from HSCs to late erythoid populations and overlaid on scATAC UMAP.

(D) Heatmap of top variable TFs by ChromVAR deviation scores across constructed erythroid trajectory with the projected position of GATA-1-high InTAC-seq

samples indicated in red as the point of GATA-1-high overlap, in blue as the before point, and in green as the after point. Top: line plot of InTAC-seq-denoted

GATA-1-high-simulated scATAC cells as binned across pseudotime.

(E) Top 20 genes significantly enriched (of fold change 2 and above) in integrated scRNA-seq data between the 3 bins, before, at, and after GATA-1-high overlap

points in trajectory.

(F) Summary schematic of continuous differentiation to erythrocytes in BM with downregulation of lymphoid/myeloid TF activity and gene expression programs

and upregulation of erythroid TF activity and gene expression programs. High GATA-1 protein abundance overlaps epigenetic program shift to erythroid lineage

commitment in human BM.
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trajectory (Figure S5H). To assess the chromatin accessibility

changes across erythroid differentiation, we then plotted chrom-

VAR deviations for variable TFmotifs along this derived erythroid

trajectory. We observed a coordinated decrease in accessibility

at motif sites for TFs that drive alternative lineages and an in-

crease in accessibility at erythroid TF motif sites precisely where

our high GATA-1-expressing progenitors are positioned within

the trajectory (Figure 5D). Interestingly, there is a global increase

in accessibility of the GATA TF family motifs during erythroid dif-

ferentiation coinciding with high GATA-1 protein expression (Fig-

ure 5D). The preceding stage of erythroid differentiation still

shows persistence of non-erythroid TF motif accessibility, sug-
gesting that functional lineage restriction anderythroid fatedeter-

mination is tied to GATA-1 protein abundance.

Using existing scRNA-seq data from the same BM samples,

we next integrated measured TF protein abundance data with

gene expression, gene accessibility (gene score), and motif

accessibility along a differentiation trajectory. We observe that

gene accessibility changes before and after our experimentally

determined GATA-1-high trajectory point concur with expected

trends for lymphoid/myeloid and erythroid genes, respectively

(Figure S5J). Differential analysis of integrated scRNA-seq

data at these 3 stages of erythroid differentiation reveal key he-

moglobin subunit genes (e.g., HBD, HBA1, HBB) and heme
Cell Reports Methods 2, 100188, March 28, 2022 9
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metabolism (TMEM14B/C) after our determined GATA-1 high

point (Figure 5E, green and red). We also observe differential up-

regulation of histidine decarboxylase (HDC), an enzyme in the

histamine-synthesis pathways, in cells at the GATA-1 high point,

with decreasing HDC expression as cells move into the final

erythroid stage. HDC has been implicated in RBC development

in mice (Otsuka et al., 2021), and its expression in adult BM co-

incides with our InTAC-seq-identified GATA-1 high point in the

erythroid developmental trajectory. In contrast, preceding the

GATA-1 high point, we see enrichment for genes involved in

various non-erythroid lineages, including NRIP1 for hematopoi-

etic stem cell quiescence (Forsberg et al., 2010; Huang et al.,

2008) (Figure 5E). Our integrated plots further reveal the discord

between the different regulatory layers for GATA1 and GATA2

genes and highlight the importance of directly measuring protein

levels of key TFs and associated chromatin accessibility

(Figure S5I).

Given that CD123–MEPs havemixed GATA-1 expression (Fig-

ure 5A) and correspond to mixed commitment to the erythroid

lineage (Figure 4E), we also examined how the high and mid

GATA-1-expressing CD123– MEPs differed. For example, we

observed differences in accessibility at the gene locus for the

erythropoiesis-enhancing TF MYB, a known target of GATA-1

binding and repression, between these two populations, consis-

tent with their GATA-1 abundance levels (Figure S5C). Globally,

we found that GATA-1 expression marked distinct cellular sub-

sets with thousands of differentially accessible sites between

GATA-1 high and mid GATA-1-expressing CD123– MEP popula-

tions (Figures S5D and S5E). While megakaryocyte and erythroid

TF motifs were enriched in GATA-1 high cells, motifs for TFs

involved in myeloid and B cell development were enriched in

other subsets (Figures S5F and S5G). These results suggest

that mid GATA-1-expressing cells within the CD123– MEP pop-

ulation retain some myeloid and/or lymphoid potential, likely re-

sulting in their mixed lineage functional output in clonal assays.

These observations are consistent with a previous study that

described a subpopulation of cells within the CD123– MEP

compartment exhibiting both erythroid and myeloid potential

based on functional assays, although lymphoid potential was

not tested (Psaila et al., 2016).

DISCUSSION

In summary, we have developed a robust protocol for profiling

chromatin accessibility in fixed cells that enables staining and

isolation of populations based on protein levels of intracellular

regulators prior to ATAC-seq. This protocol, which we termed In-

TAC-seq, enables us to integrate endogenous differences in key

TFs with associated chromatin accessibility profiles to probe the

link between their protein level abundance and accessibility

across TF-binding motif sites. We use our approach to reveal

GATA-1-associated epigenetic profiles and infer motif binding

stoichiometry.

Importantly, our protocol captures high-quality data from pri-

mary human tissue and can be used with low (�100 cells) inputs,

which allows robust integrated profiling of intracellular functional

drivers and associated genome-wide chromatin accessibility in

rare populations such as progenitors in human BM.We identified
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high GATA-1 protein expression as associated with epigenetic

priming to erythropoiesis in human BM (Figure 5F) and believe

current methods do not enable an equivalent analysis of such

rare cells in unmanipulated primary human tissue. We further

demonstrated that, as predicted based on their epigenetic pro-

files, these rare cells within the BM compartment that are highest

in GATA-1 expression are clonally enriched for RBC differentia-

tion. In addition, our single-cell proteomic map captured the

dynamics of relevant TFs and surface markers in GATA-1-high

progenitor cells within the trajectory of erythroid development.

InTAC-seq enables biologists to connect levels of functionally

pertinent intracellular proteins such as TFs and other chro-

matin-binding proteins to chromatin accessibility profiles in or-

der to answer gene-regulatory questions and assess transient

cellular molecular states previously difficult to access. By

measuring endogenous intracellular regulators in complex bio-

logical contexts, InTAC-seq delineates epigenetic landscapes

associated with master TFs or chromatin remodelers in primary

human tissue. This allows us to interrogate how levels of these

key proteins and their cooperative and antagonistic partners

could influence global chromatin accessibility and local binding

to drive cellular state and function. This technique provides

information complementary to that provided by more targeted

chromatin-binding assays such as CUT&Tag (Kaya-Okur et al.,

2019), which can directly assay chromatin binding by a regulato-

ry protein but cannot provide information on how changes in the

protein’s abundance influences its target-site accessibility or the

overall epigenetic landscape.

Using InTAC-seq, one could also devise more complex isola-

tion schemes based on the expression of a multitude of intracel-

lular regulators rather than those which could be accomplished

with CUT&Tag (Kaya-Okur et al., 2019). Such an approach could

identify cooperative or antagonistic functions with the key pro-

teins-of-interest and associate their expression levels with spe-

cific cell states. Alternatively, we can design experiments that

introduce exogenous factors into biological systems and use In-

TAC-seq to isolate and profile populations with a range of

expression of the exogenous proteins to understand the relation-

ship between their abundance and chromatin architecture. In-

TAC-seq is also complementary to single-cell genomic tech-

niques such as scATAC-seq and scRNA-seq as it can be

integrated with existing single-cell data to study populations-

of-interest within the context of the larger biological system.

Overall, InTAC-seq enables the profiling of chromatin accessi-

bility of cell populations defined by abundance of intracellular

proteins such as TFs with a cost-effective alternative and with

ease and robustness that is on par with standard ATAC-seq.

Limitations of study
Our method combines fluorescence-activated cell sorting (FACS)

with a modified ATAC-seq protocol that can robustly capture

chromatin-accessibility profiles of low numbers of fixed cells.

Thereby, we note assay limitations shared by chromatin accessi-

bility profiling methods such as ATAC-seq (Buenrostro et al.,

2013; Corces et al., 2017) and by antibody-based quantification

methods such as flow cytometry (McKinnon, 2018). As we mea-

sure genome-wide chromatin accessibility, we infer activity of

multiple TFs through changes in accessibility of DNA regions
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flanking putative TF motif sites. Our method cannot determine

definitive TF occupancy on chromatin unlike chromatin immuno-

precipitation sequencing (ChIP-seq) or CUT&Tag assays (Kaya-

Okur et al., 2019; Park, 2009) that directly measure TF binding.

As a result, this method cannot resolve or detect the previously

characterized GATA switch phenomenon in erythroid develop-

ment (Suzuki et al., 2013). Additionally, our method relies on the

validated affinity and binding specificity of the FACS antibody to

transcription or chromatin binding factor-of-interest under stain-

ing conditions. We also note that our method captures chromatin

accessibility in bulk populations and, while being able to profile

down to a few (�100) cells, is not a single-cell method. Other

methods, namely piATAC (Chen et al., 2018), have linked single-

cell chromatin accessibility to protein abundance; however, the

complexity and high costs of such methods are not practical for

most labs to apply at scale. Thus, InTAC-seq fills that niche by

providing similar information at significantly lower cost and higher

data quality.

Though we are able to measure genome-wide chromatin pro-

files associated with specific TF levels such as GATA-1, we

cannot assert direct interaction with chromatin for driving acces-

sibility, including TF motif changes. In complex developmental

systems such as the human BM, there are multiple TFs and

gene regulatory and chromatin binding proteins affecting chro-

matin structure and accessibility for expression and subsequent

cell-fate determination (Wang et al., 2021). We cannot rule out

that the above-mentioned epigenetic profiles measured, while

associated with GATA-1 protein abundance, could be a result

of differentiation and/or other TF activity. Further experimenta-

tion with overexpression of TF, for example, would have to be

carried out to parse out direct causal links. Instead, our study

uses endogenous levels of GATA-1 as a ‘‘lineage reporter’’ in hu-

man BM to understand the epigenetic and functional state of

high GATA-1-expressing BM progenitors. Finally, though we

show significant erythroid commitment through differentiation

in clonal assay, we do not contend that this cell population rep-

resents true MEPs or that they are the definitive erythroid pro-

genitor population in BM. Further work is needed to assess our

GATA-1-high population in comparison to other MEP and

erythroid progenitor populations as defined in the literature (Dou-

latov et al., 2010; Edvardsson et al., 2006; Mori et al., 2015; Notta

et al., 2016; Psaila et al., 2016; Sanada et al., 2016).
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Antibodies

CD45-89Y Fluidigm Cat# 3089003, RRID:AB_2661851

CD235-113In Biolegend Cat# 349102, RRID:AB_10612565

CD71-115 Biolegend Cat# 334102, RRID:AB_1134247

CD61-139La Biolegend Cat# 336402, RRID:AB_1227584

CD3-141Pr BD Biosciences Cat# 561416, RRID:AB_10612021

CD19-142Nd Biolegend Cat# 302202, RRID:AB_314232

CD90-143Nd BD Biosciences Cat# 555594, RRID:AB_395968

CD14-144Nd Biolegend Cat# 301802, RRID:AB_314184

CD164-145Nd Biolegend Cat# 324802, RRID:AB_756020

CD34-148Nd Biolegend Cat# 343502, RRID:AB_1731898

CD105-150Nd Biolegend Cat# 323202, RRID:AB_755954

CD123-151Eu Biolegend Cat# 306002, RRID:AB_314576

CD10-152Sm Biolegend Cat# 312202, RRID:AB_314913

FcER1-153Eu Biolegend Cat# 334602, RRID:AB_1227649

CD84-154Sm Biolegend Cat# 326002, RRID:AB_830813

CD33-158Gd Biolegend Cat# 303402, RRID:AB_314346

CD11c-159Tb Biolegend Cat# 301602, RRID:AB_314172

GATA-1-160Gd Cell Signalling Cat# 3535, RRID:AB_2108288

CD7-162Dy BD Biosciences Cat# 555359, RRID:AB_395762

CD49f-164Dy Biolegend Cat# 555734, RRID:AB_2296273

CD127-165Ho Biolegend Cat# 351302, RRID:AB_10718513

CD66-167Er BD Biosciences Cat# 551354, RRID:AB_394166

CD38-168Er Biolegend Cat# 303502, RRID:AB_314354

CD45RA-169Tm Biolegend Cat# 304102, RRID:AB_314406

CD135-170Er Biolegend Cat# 313302, RRID:AB_314987

CD117-171Yb Biolegend Cat# 313202, RRID:AB_314981

CD133-172Yb Miltenyi Biotec Cat# 130-108-062

CD172ab-173Yb Biolegend Cat# 323802, RRID:AB_830701

CD2-174Yb Biolegend Cat# 309202, RRID:AB_314752

HLA-DR-209Bi Biolegend Cat# 307602, RRID:AB_314680

CD15-biotinylated Biolegend Cat# 301914, RRID:AB_2561326

CD3-biotinylated Biolegend Cat# 300404, RRID:AB_314058

CD7-biotinylated Thermo Fisher Scientific Cat# 13-0079-82, RRID:AB_891490

CD56-biotinylated Biolegend Cat# 362536, RRID:AB_2565653

CD34-FITC Myltenyi Cat# 130-113-178, RRID:AB_2726005

CD38-BV421 Biolegend Cat# 303526, RRID:AB_10983072

CD45RA-AF700 Biolegend Cat# 304120, RRID:AB_493763

CD10-BV650 BD Biosciences Cat# 563734, RRID:AB_2738393

CD123-PECy7 Biolegend Cat# 306010, RRID:AB_493576

GATA-1-PE Cell Signalling Cat# 13353, RRID:AB_2798187

CD38-APC/Cy7 Biolegend Cat# 303534, RRID:AB_2561605

CD71-PE Biolegend Cat# 334108, RRID:AB_10915138

CD33-PE/Cy7 Biolegend Cat# 303434, RRID:AB_2734265
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REAGENT or RESOURCE SOURCE IDENTIFIER

CD84-APC Biolegend Cat# 326010, RRID:AB_2814188

GATA1 Abcam Cat# ab181544

Cleaved caspase 3-PE BD Biosciences Cat# 550821, RRID:AB_393906

Biological samples

Adult bone marrow All Cells Inc https://allcells.com/research-grade-

tissue-products/bone-marrow/

Deposited data

ATAC-seq data This paper GEO:GSE167934

FACS data This paper FlowRepository:FR-FCM-Z539

Mass cytometry data This paper FlowRepository:FR-FCM-Z5ZA

Experimental models: Cell lines

K562 ATCC Cat# CCL-243, RRID:CVCL_0004

GM12878 Coriell Institute Cat# GM12878, RRID:CVCL_7526

Software and algorithms

Cutadapt Martin, 2011 https://cutadapt.readthedocs.

io/en/stable/

Bowtie2 Langmead and

Salzberg, 2012

http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

Picard tools Broad Institute https://broadinstitute.github.io/picard/

ChrAccR Fabian Mueller,

https://doi.org/10.

5281/zenodo.6091218

https://github.com/GreenleafLab/

ChrAccR, https://zenodo.org/

record/6091218

DESeq2 Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

SPADE Qiu et al., 2011 https://github.com/nolanlab/spade

Scanpy Wolf et al., 2018 https://scanpy.readthedocs.io/en/stable/

GateFinder Aghaeepour et al., 2018 https://www.bioconductor.

org/packages/release/bioc/

html/GateFinder.html

ArchR Granja et al., 2020 https://www.archrproject.com/

Harmony Korsunsky et al., 2019 https://portals.broadinstitute.org/

harmony/index.html

MAGIC Dijk et al., 2018 https://github.com/

KrishnaswamyLab/MAGIC

Seurat Hao et al., 2021 https://github.com/satijalab/seurat/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Sean Bendall (bendall@stanford.

edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
InTAC and ATAC-seq data from study have been deposited at GEO and are publicly available as of the date of publication at GEO:-

GSE167934. Accession numbers are additionally listed in the key resources table. Fluorescence-activated cell sorting (FACS) data

have been deposited at FlowRepository and are publically available at FlowRepository:FR-FCM-Z539. Mass cytometry data have

been deposited at FlowRepository and are publicly available as of the date of publication at FlowRepository:FR-FCM-Z5ZA.

This paper does not report original code.

Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.
Cell Reports Methods 2, 100188, March 28, 2022 e2

mailto:bendall@stanford.edu
mailto:bendall@stanford.edu
https://allcells.com/research-grade-tissue-products/bone-marrow/
https://allcells.com/research-grade-tissue-products/bone-marrow/
https://cutadapt.readthedocs.io/en/stable/
https://cutadapt.readthedocs.io/en/stable/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://broadinstitute.github.io/picard/
https://doi.org/10.5281/zenodo.6091218
https://doi.org/10.5281/zenodo.6091218
https://github.com/GreenleafLab/ChrAccR
https://github.com/GreenleafLab/ChrAccR
https://zenodo.org/record/6091218
https://zenodo.org/record/6091218
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://github.com/nolanlab/spade
https://scanpy.readthedocs.io/en/stable/
https://www.bioconductor.org/packages/release/bioc/html/GateFinder.html
https://www.bioconductor.org/packages/release/bioc/html/GateFinder.html
https://www.bioconductor.org/packages/release/bioc/html/GateFinder.html
https://www.archrproject.com/
https://portals.broadinstitute.org/harmony/index.html
https://portals.broadinstitute.org/harmony/index.html
https://github.com/KrishnaswamyLab/MAGIC
https://github.com/KrishnaswamyLab/MAGIC
https://github.com/satijalab/seurat/


Article
ll

OPEN ACCESS
EXPERIMENTAL MODELS AND SUBJECT DETAILS

Cell lines and primary cultures
The human female chronic myeloid leukemia cell line, K562, were obtained from the American Type Culture Collection (Manassas,

VA, USA). The human female lymphoblastic cell line GM12878 were obtained from Coriell Institute. Cells were cultured in RPMI 1640

medium containing 15% fetal bovine serum (FBS) and penicillin/streptomycin, and maintained at 37�C, 5% CO2.

All fresh human adult whole BM used in this study was collected in heparin sulfate anticoagulant and purchased from All Cells, Inc.

BM mononuclear cells (BMMNC) were separated using Ficoll-Paque Plus (Amersham Biosciences). Next, BMMNC were either cry-

opreserved in FBS with 10% of DMSO or previously enriched for CD34+ (CD34 MicroBead Kit, Miltenyi Biotec) before

cryopreservation.

METHOD DETAILS

K562 GATA-1 staining and sorting
Cells were washed once with PBS, then incubated in LIVE/DEADTM Fixable Aqua Dead Cell Stain (Invitrogen L34965) diluted in PBS

for 30 mins on ice. After a PBS wash, cells were fixed with 1.6% formaldehyde in PBS for 1 min, then quenched with an equal volume

of 1X eBioscience permeabilization buffer (Thermofisher Scientific 00-8333-56). Cells were immediately centrifuged for 5min at 600g

and washed once with permeabilization buffer. Cells were then stained with anti-cleaved caspase 3-PE (BD #550821) and anti-

GATA-1 (Abcam ab181544) for 30 mins at room temperature and FITC anti-rabbit secondary (Cell Signaling Technologies

#4412S) for 30 mins. Washes were performed using permeabilization buffer and cells were resuspended in PBS for FACS and sorted

using a BD FACSAria II. Cells positive for Aqua live/dead stain or cleaved caspase 3 were gated out and a narrow FSC gate was used

to control for cell size. Cells in the lowest and highest 15% of GATA-1 expression were then sorted into PBS containing 30% FBS for

InTAC-seq.

Bone marrow processing and GATA-1 sorting
On the day of the sorting, BM enriched CD34+ cells or BMMNC were thawed into cell culture medium supplemented with 25 U/mL

benzonase (Sigma-Aldrich). For BMMNC, cells underwent magnetic lineage depletion according to themanufacturer’s instructions us-

ing BD Streptavidin Particles Plus (BD Biosciences #557812) and the BD IMag Cell Separation Magnet (BD Biosciences) with bio-

tinylated anti-CD3, CD15, CD7, and CD56. Next, cells were incubated with LIVE/DEAD fixable Aqua dead cell stain (Invitrogen

#L34957) for 30 minutes at room temperature (RTP) in dark, followed by a wash with PBS, before Fc receptor blocking (Human

TruStain FcX, Biolegend #422302) for 10 minutes. Surface staining was carried out with CD34-FITC, CD38-BV421, CD45RA-Alexa-

Fluor700, CD10-BV650, and CD123-PECy7 at 4�C in dark. Cells were thenwashedwith cell stainingmedia (PBS + 0.5%BSA). Fixation

was carried out with 1.6% paraformaldehyde for 5 min at RTP before quenching with 1X eBioscience permeabilization buffer (Thermo

Fisher Scientific 00-8333-56). Two washes were carried out with permeabilization buffer at 600G for 5 minutes each. Cells were incu-

batedwithGATA-1-PE in permeabilization buffer for 45minutes at RTP, followedby awashwithCSMand sorting using aBDFACSAria

II (BD Biosciences). GATA-1 high andmid/low gates were applied on BMprogenitors (gated as singlet, viable CD34+, CD38+ cells) and

on CD123- MEP population (gated as singlet, viable, CD34+, CD38+, CD10�, CD123-, CD45RA� cells; antibody panels in Table S2).

InTAC-seq protocol
Fixed, permeabilized cells were counted using a hemocytometer and up to 50,000 cells were used for ATAC-seq where possible.

Cells were spun down at 600g for 5mins and resuspended in transposition mix containing 1X TD buffer, 0.1%NP40, 0.01%digitonin,

and Tn5. Cells were incubated at 37 degrees with 1200 rpm shaking for 1 hour. 2X reverse crosslinking buffer (2% SDS, 0.2mg/mL

proteinase K, and 100mMN,N-Dimethylethylenediamine, pH 6.5 [Sigma Aldrich D158003]) was added at equal volume to transposed

cells and reversal of crosslinks was performed at 37 degrees overnight with 600 rpm shaking. DNA was purified using Qiagen

minelute PCR purification columns and ATAC-seq libraries were generated as previously described (Buenrostro et al., 2013). For

preparation of live ATAC-seq samples from fresh cells as a comparison, samples were prepared as above, except DNA was purified

immediately following transposition rather than performing crosslink reversal.

ATAC-seq data processing
Adapters were trimmed using cutadapt and reads were mapped using bowtie2 with max fragment length of 2000bp to hg19 (primary

bonemarrow samples) or hg38 (all cell lines). We then filtered for non-mitochondrial reads, mapq > 20, and properly paired reads.We

then removed duplicates using Picard tools. Peaks were called using macs2 with the following parameters on Tn5 insertion sites:

–shift -75 –extsize 150 –nomodel –call-summits –nolambda -p 0.01 -B –SPMR

ATAC-seq QC of live and fixed GM12878 samples
For estimating library complexity, libraries were downsampled to 13million read pairs prior to deduplication and library size was esti-

mated using Picard tools EstimateLibraryComplexity. For TSS enrichment, deduplicated libraries were down-sampled to 10 million

read pairs except for cell titration experiments where libraries were down-sampled to 4 million read pairs. TSS enrichment was
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calculated using the getTssEnrichment function in the ChrAccR R package for gencode.v27 protein coding gene transcriptional start

sites.

Differential accessibility analysis
Aligned, deduplicated bam files output from data processing pipeline were loaded into R in HDF5 format using DsATAC.bam

function in the ChrAccR R package. Consensus peakset across technical and biological replicates was calculated using

getPeakSet.snakeATAC function in the ChrAccR R package where peaks have to be consistently absent or present across replicates

to be retained. Countmatrix was calculated as insertion counts across samples at consensus peakset regions using ChrAccR region-

Aggregation function. DESeq2 (Love et al., 2014) was used to calculate differentially accessible peaks and independent hypothesis

weighting (Ignatiadis et al., 2016) was used to correct for multiple testing. ggmaplot package was used to visualize MA plot. Differ-

entially accessible peaks for GATA-1 high ormid/low cells was used to calculatemotif enrichment (getMotifEnrichment function in the

ChrAccRR package) using the CIS-BP TFmotif database (from chromVARmotifs package). Adjusted p value (q value) was converted

to -log(q value) and top enriched motifs were plotted by -log(q value) and odds ratio.

ChromVAR analysis
Raw insertions counts at relevant consensus peakset regions were RPKM normalized, log2 transformed, and quantile normalized.

ChromVAR deviation scores were calculated on the log transformed count matrix using getChromVarDev function in the ChrAccR

R package. Top variable TF motifs’ deviation scores were plotted using ComplexHeatmap R package.

GATA-1 footprinting analysis
To calculate GATA-1 footprinting as a measure of GATA-1 occupancy, we calculated Tn5 bias-corrected, normalized insertions

centered at GATA-1motif sites across theGATA-1 consensus peak set using the aggregateRegionCounts in the ChrAccRR package

using the following parameters: countAggrFun = "mean", norm = "tailMean", normTailW = 0.1, kmerBiasAdj = TRUE, k = 6. To

compare accessibility in K562 cells with high vs lowGATA-1 across GATA-1 sites of different binding affinity, we identified the highest

scoring GATA-1 sequence motif within each consensus peak, binned all sites into 20 equal bins based on the GATA-1 motif score,

and calculated the GATA-1 footprint. We then measured accessibility flanking the GATA-1 motif as the area under the GATA-1 foot-

print plot from�50bp to�10bp and from +10bp to +50bp. For each motif score bin, the fractional change in accessibility was calcu-

lated as the average difference in accessibility between GATA-1-high and GATA-1-low samples normalized to the accessibility in the

GATA-1-low samples.

Mass cytometry experiment
BM enriched CD34 + cells were thawed and stained for viability using cisplatin protocol (Fienberg et al., 2012). After quenching and

washing in CSM (at 250G for 5min), cells were stained for surface markers before fixing in 1.6% paraformaldehyde and permeabiliz-

ing in 100%methanol for 10min at 4C. GATA-1 and cleaved caspase antibodies were stained intracellularly before washing in CSMat

600G for 5min. Cells were then re-fixed in 1.6%paraformaldehyde andDNA intercalator44 before analyzing onHeliosmass cytometer

(Fluidigm). Table S1 details antibodies used, their clones and themetal isotope channels they were conjugated to. Resulting FCS files

from Helios run contains single cell protein level abundance for �1mil BM cells.

Mass cytometry analysis
FCS files were gated on the cytobank platform (Kotecha et al., 2010) for cisplatin low (viability) and then gated for the various BM

progenitors as shown in Figures S3A–S3E. All CD45+, mature lineage depleted BM cells were exported into R, density downsampled

to 250k cell events, and key population of GATA-1 high BM progenitors and candidate population (CD71hi, CD84hi, CD33�) was up-

sampled. Density downsampling was carried out using function in SPADE R package (Gautreau, 2017; Qiu et al., 2011). Data was

arcsinh transformed with a cofactor of 5 and normalized from 0-1 at 0.01-0.99th percentile. Data was annotated with manually gated

population definitions and imported into python for processing in scanpy (Wolf et al., 2018), with kNN run at k = 20, leiden clustering

(Traag et al., 2019) at resolution = 1 and subsequent PAGA graph construction (Wolf et al., 2019) on Leiden cluster nodes. Force-

directed layout (Jacomy et al., 2014) was initialised on PAGA graph.Marker distribution across Leiden clusters was visualised in violin

plots using scanpy.pl.stacked_violin function. Diffusion pseudotime (DPT) (Haghverdi et al., 2016) was calculated using 10 diffusion

components and 0 branching using scanpy.tl.dpt function. Erythroid trajectory was defined as Leiden cluster 2 to 7 to 8 correspond-

ing to a path from HSC to GATA+ high cells. DPT across trajectory was normalized 0-1 and cells aligned accordingly. Cells in trajec-

tory were binned into 100 groups andmedian marker abundance across bins were normalized and plotted as a heatmap using Com-

plexHeatmap R package (Gu et al., 2016). Mutual information between key TFs and surface markers was calculated using knnmi.all

function in parmigene R package at k=20 and normalized across clusters before plotting as a heatmap using pheatmap R package

(visualised with column scaling).

CD34+/CD38+ gated BM progenitor mass cytometry data was then correlated across GATA-1 and all assayed surface markers

using Spearman correlation and plotted using corrplot R package with hierarchal clustering. Boxplots of GATA-1 high and mid/

low BM progenitors were constructed using top 8% of GATA-1-expressing cells and remaining cells respectively in order to match

frequency of GATA-1 positivity captured in sorting for InTAC-seq experiment. Manually gated CD123-MEP population, and deduced
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candidate populations were plotted for GATA-1 abundance using ggplot2 boxplot function. The data-driven, backgating algorithm

GateFinder (Aghaeepour et al., 2018) was applied on all BMprogenitors with candidate population as target with 2 gating step param-

eter and predicted gates were plotted as scatterplots using ggplot2.

Colony-forming unit (CFU) assay
BM enriched CD34+ cells were stained with CD34-FITC, CD38-APC/Cy7, CD71-PE, CD33-PE/Cy7, and CD84-APC and sorted for

our putative GATA-1 high erythroid progenitor subpopulation. We also stained and sorted cells for the CD123- MEP population

(CD34-FITC, CD38-BV421, CD45RA-AF700, CD10-BV650, CD123-PECy7) (Akashi et al., 2000). Antibody panels in Table S2. For

viability, 7-amino actinomycin D (7-AAD) was used. Our putative population corresponding to GATA-1 high BM progenitors were

gated as singlet, viable CD34+, CD38+, CD84hi, CD71hi, CD33- cells. Cells were sorting using a BD FACS Aria II (BD Biosciences)

and collected in IMDM 2% FBS for further CFU assays.

CFU assays were performed using the MethoCultTM H4435 Enriched (STEMCELL Technologies). Briefly, progenitor BM sorted cells

were seeded (250 or 500 cells/well) into 6 well SmartDishTM (STEMCELL Technologies). After incubation for 14 days, at 37�C in 5%

CO2, hematopoietic colony-forming unit were automated counted and analyzed by STEMvisionTM Human (STEMCELL Technologies).

Differentiation frequency was calculated for each sorted population by number of resulting colonies/numbers of starting cells seeded.

scATAC processing and clustering
Raw data files were downloaded from published work which had scATAC and scRNA seq carried out in parallel on PBMC, BM and

CD34-enriched BM (Granja et al., 2019). Processing was done using the ArchR package (Granja et al., 2020), where Harmony (Kor-

sunsky et al., 2019) was used to batch correct and MAGIC (Dijk et al., 2018) was used to impute gene accessibility scores. Further

processing including iterativeLSI and subsequent UMAP embedding was carried out using ArchR’s built-in functions of addIterati-

veLSI and addUMAP. Pre-determined population annotations (from scRNA seq) were integrated into the scATAC data using con-

strained integration of the scRNA seq data (addGeneIntegrationMatrix from ArchR which uses Seurat’s transferAnchor function)

(Hao et al., 2021). Populations were filtered to exclude more differentiated PBMC and BM populations such as B cells, T cells and

monocytes and focus the analysis on BMprogenitors relevant to erythropoiesis. Seurat’s FindClusters approachwas used on dimen-

sionality reduced iterativeLSI embedding to cluster the scATAC data and clusters were labelled using predicted populations from

annotated scRNA seq integration. MACS2 was run on the different scATAC clusters and reproducible peakset was curated using

the addReproduciblePeakSet function with (n+1)/2 reproducibility with a maximum of 500 peaks per cell.

Populations were compared across accessibility in consensus peaks using binomial test after binarizing data and correcting for

TSS enrichment and log10(nFrags) bias in getMarkerFeatures function of ArchR. Features differentially enriched across populations

were plotted in a heatmap with a FDR<0.1 and Log2FC>0.5 cutoff. Key motifs such as GATA-1, CEBPA, GATA2, KLF1, KLF2, SPI1,

RUNX1, IRF4 and IRF8were plotted for chromVARdeviation scores as stacked histogram across populations using plotGroups func-

tion in ArchR.

Bulk sample projection onto scATAC space
Bulk ATAC count matrix calculated from relevant consensus peakset regions was converted into a summarizedExperiment data

class. This was projected into the scATAC UMAP space after calculating iterativeLSI on bulk samples simulated as single cells using

the projectBulkATAC function from ArchR. Resulting simulated single cell ATACUMAP projection from bulk data (250 cells simulated

per bulk sample) was plotted along with the scATAC data in the original UMAP embedding using ggplot. Closest 500 scATAC cells to

simulated GATA-1 high samples’ bulk projection was quantified usingmahanoblis distance to combined bulk sample centroid in pro-

jected UMAP space.

Erythroid trajectory analysis
Erythroid trajectory was quantified by fitting splines through the early progenitor, early erythroid, mid erythroid and late erythroid clus-

ters using the addTrajectory function in ArchR and normalizing pseudotime between 0-100. Trajectory was plotted using the

plotTrajectory function. The GATA-1 high sample demarcations on trajectory was found quantifying closest scATAC cells’ pseudo-

time values on trajectory.

Gene accessibility, expression and chromVAR motif deviation scores for cells across the trajectory were extracted using the get-

Trajectory function from ArchR and heatmaps of top variable features were plotted. Normalized line plots were constructed by ex-

tracting GATA-1 high scATAC counts across 100 pseudotime bins and plotting using ggplot. GATA-1 high scATAC cells (by protein

expression) was defined as GATA-1 high point on trajectory (65-75 on pseudotime scale) and subsequently before and after restric-

tion point was binned (40-60 and 80-100 respectively) as per plotted gene expression inflection points.

Differential scRNA analysis
Integrated scRNA seq data was filtered for the abovementioned 3 InTAC-seq inferred bins (before, GATA-1 high point and after) and

imported into Seurat R package. Data was log normalized with a scaling factor of 10000 and scaled after. FindAllMarkers function

was used to detect only enrichedmarkers in the 3 bins with genes detected in at least 10%of the total number of cells at a foldchange

threshold of 2 using ROC analysis. Top 20 markers for each bin was plotted as a scaled heatmap using DoHeatmap function.
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Graphic design
All figures were constructed in Affinity Designer and schematics created with BioRender.com.

QUANTIFICATION AND STATISTICAL ANALYSIS

DESeq2 was used for identifying differentially accessible peaks as described in the Method Details section, with FDR cut-off of 0.05

(for all comparisons) and log2 fold change of 2 (for GATA-1 high vs mid/low progenitor comparison). For comparing differences in

colony forming ability from different bone marrow populations, a student’s t-test was performed. The number of biological and tech-

nical replicates for each experiment are indicated in the figures and/or figure legends.
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