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1 | INTRODUCTION

Stavros Nikolakopoulos' |

Kit C. B. Roes?

Summary

In rare diseases, typically only a small number of patients are available for a
randomized clinical trial. Nevertheless, it is not uncommon that more than
one study is performed to evaluate a (new) treatment. Scarcity of available evi-
dence makes it particularly valuable to pool the data in a meta-analysis. When
the primary outcome is binary, the small sample sizes increase the chance of
observing zero events. The frequentist random-effects model is known to
induce bias and to result in improper interval estimation of the overall treat-
ment effect in a meta-analysis with zero events. Bayesian hierarchical model-
ing could be a promising alternative. Bayesian models are known for being
sensitive to the choice of prior distributions for between-study variance (het-
erogeneity) in sparse settings. In a rare disease setting, only limited data will
be available to base the prior on, therefore, robustness of estimation is desir-
able. We performed an extensive and diverse simulation study, aiming to pro-
vide practitioners with advice on the choice of a sufficiently robust prior
distribution shape for the heterogeneity parameter. Our results show that
priors that place some concentrated mass on small = values but do not restrict
the density for example, the Uniform(—10, 10) heterogeneity prior on the log
(z%) scale, show robust 95% coverage combined with less overestimation of the
overall treatment effect, across varying degrees of heterogeneity. We illustrate
the results with meta-analyzes of a few small trials.
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To reach firm conclusions, randomized controlled trials (RCTs) commonly require large enough sample sizes, but this
is not always feasible for (very) rare diseases' in which the limited patient population leads naturally to small RCTs.? In
RCTs, dichotomous outcomes are common as they facilitate straightforward clinical interpretation for both efficacy and

Abbreviations: RCTs, randomized Clinical Trials; MA, meta-analysis; logOR, log odds ratio; CrI, credible interval.
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safety. When combined with small sample sizes and low to moderate event rates, such outcomes lead to a large proba-
bility of observing zero events on one or more trial arms.

Even in rare diseases usually more than one trial is available for evaluating a (new) treatment.** The small sample
sizes make it particularly valuable to pool the data in a meta-analysis (MA). To synthesize available RCTs, the standard
random-effects MA model is usually applied, also known as the normal-normal hierarchical model.

When zero events are observed, a complication arises for commonly employed frequentist MA methods. Continuity
corrections are needed, usually through adding a constant number to the zero cells. These corrections may affect the
study-specific treatment effect estimates and inflate their variances.” Kuss evaluated likelihood-based MA methods,®
which incorporate information from trials with zero events in one or both treatment arms without the use of such cor-
rections and showed that these performed adequately in settings with non-small samples and a sufficient number of
RCTs in the MA. In a similar setting, either variations on the type of treatment effect measure or the use of the Mantel-
Haenszel method has been suggested in previous simulation studies.’™®

Bayesian MA methods were shown to perform more robustly in MA with only a few small trials.”**> When synthe-
sizing conveniently large trials, the choice of prior distributions does not impact inference considerably.’*"” On the
contrary, when pooling a few small trials, only a small number of observations contribute to the model likelihood,
therefore, inference becomes prior driven.'® For the normal-normal hierarchical model, a reference prior was suggested
that has the ability to maximize the data impact on inference."* Under a normal-normal hierarchical model, the use of
priors that cover plausible heterogeneity () ranges has been advocated for a Bayesian MA of a few trials.'>***° Such
priors may not behave similarly when there are zero events in one or both arms, and specific choices of prior shapes
may be preferable; that is, according to the way they distribute prior mass across = — values. The normal-normal hierar-
chical model has been shown to perform poorly in the presence of zero events in a meta-analysis of rare diseases.”’ The
use of different distributional model assumptions such as the binomial-normal hierarchical model may be preferable as
(a) it avoids the need for continuity corrections, (b) it directly models the events through a logit link function and (c) it
can impose dissimilar baseline effects.

The focus of this paper is to investigate the impact of alternative heterogeneity priors on the (interval) estimation of
the overall treatment effect and to provide suggestions for a robust Bayesian MA of a few small sparse-event trials.
Robust priors should retain sensible and predictable operational characteristics throughout a range of unknown param-
eter values. The paper is organized as follows. In Section 2 we describe a basic Bayesian MA hierarchical model, along
with different types of heterogeneity priors. Section 3 presents two motivating examples and their analysis. In Sections 4
and 5 we describe a simulation study that evaluates the selection of priors. In Section 6 we revisit the examples. Finally,
in Section 7, we summarize the main findings, while the paper ends with a discussion, as well as recommendations for
practitioners.

2 | BAYESIAN INFERENCE IN META-ANALYSIS
2.1 | Bayesian hierarchical model for meta-analysis

We consider a set of k two-armed RCTs with a binary outcome; patients are randomized over two groups: treatment
(T) and control (C) resulting in a 2 X 2 table (Table 1).

In each trial i € (1, 2, ..., k) and treatment group j €{C, T}, the number of events is modeled to follow a binomial dis-
tribution r; ~ Binomial(z;;, ny). By x; we denote the probability of an event and by n; the number of subjects of treat-
ment arm j of trial i.** Under a random-effects assumption, a commonly-used Bayesian two-level binomial-normal
hierarchical model**** can be written, using the control group as reference, as follows:

TABLE 1 Two-way table notating

Treatment Control Total
the ith trial of a meta-analysis
Events tic viT m;
Non Events Nic — Tic nir — it N; —m;

Total Ric Nir N;
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rij NBinomial(mj, nij)
logit(mir) = p; + 0.5+ W
logit(mic) = p;—0.5%5;

where 6; ~ N(8, ), so that 7> denotes the between-study variance and 6; denotes the study-specific effects of treatment
vs control on the log odds ratio (logOR) scale.
We assume a fixed weakly diffuse normal prior on the overall treatment effect § ~ N(0, 100) throughout and a dif-

k

fuse normal prior on u; ~ N(uo, 100) centered around p,= > ;/k > In comparison to another common choice of
i=1

hyper-parameter variance value & ~ N(0, 1000), we lowered the assumed prior variance to produce more stable infer-

ences.”® The chosen prior on & has a 95% range of (—19.6, 19.6) in the logOR scale. The heterogeneity parameter can be

modeled through alternative prior distributions so that for a transformation of 7, g(z) ~ f(.), where g(z) denotes a trans-

formation of = and f{.) denotes a probability density function.

2.2 | Priors on heterogeneity

While conducting a meta-analysis, the estimation of heterogeneity is rarely of primary interest. In cases of small and sparse
meta-analyzes, estimation of z can quickly become infeasible. Therefore, the choice of heterogeneity priors shall also be
driven by its ability to aid the proper estimation of the treatment effect. Different priors have been suggested in the literature,
for several functions of = (Table 2). In such sparse settings, the impact and behavior of each prior is based primarily on its
distributional shape. Therefore, a sensible manner of clustering such priors would be to evaluate the way they distribute
prior mass on the same scale, that is, on 7 scale. In this context, priors can be clustered in, at least, the following four groups.
First, Type A priors place more mass close to 0 but support very large values of 7 as well'>'* (see Figure 1). This type of priors
contain the Gamma(a, f3) prior distributions (AG, ag) on the precision (v, = 1/7%) and the less restrictive prior on Uniform
(=10, 10) on the log(z®) scale (AU). Type B priors place more mass in larger values of z; that is, Uniform on 7> scale (C, c).
Type C priors place mass uniformly in a selected range of = (ie, Uniform on t scale [B, b]). Finally, Type D priors place most
of the mass in small values of = but they naturally bound the prior range to more plausible values than Type A priors. Exam-
ples of Type D priors are the Half-normal priors (DN, dn) on 7 and the more informative prior version of Uniform(-10,
1.386) on the log(z*) (du). Type D prior distributions are advocated for MA of a few trials.'>'**”*® Within each prior we
examine two options based on the informativeness provided by their hyper-parameters, one less restrictive (AG, AU, B, C,
DN) and one more restrictive (ag, b, ¢, dn, du) alternative (Table 2).

TABLE 2 Description of considered heterogeneity (z) priors for a Bayesian meta-analysis

ID - Abbr. g(7) ~f(.) Restrictive 7 Median 7 (95% range)
AG 1/7* ~Gamma(0.001, 0.001) Less >100 (>100, +o0)
ag 1/7% ~Gamma(0.1, 0.1) More 0.3 (12.9, > 100)
AU log(z%) ~Uniform(-10, 10) Less 1 (0.01, > 100)
du log(z?) ~Uniform(-10, 1.386) More 0.1 (0.01,1.7)
B 2 ~Uniform(0, 1000) Less 224 (5,31.2)

o ~Uniform(0, 4) More 1.4 0.3,2)
C T ~Uniform(0, 100) Less 50 (2.5,97.5)
© T ~Uniform(0, 2) More 1 (0.05, 1.95)
DN T ~Half-normal(0, 100), Less 6.75 (0.3,22.4)
dn T ~Half-normal(0, 1), More 0.7 (0.03, 2.24)
E So/(So + 7) ~Uniform(0, 1) — — —
e 2 ~Half-normal(0, ®[0.75]/so), — — —

Note: so=+/k/> (s72) and s? are the within-study variances. ID - Abbr.: Identification letter and abbreviation for each prior.
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FIGURE 1 Prior distributions classified by their density shapes. Type A priors include both Gammas on v, (AG, ag) and the less
restrictive Uniform(—10, 10) on log(z?) (AU) The Gamma prior has a very small peak near zero, while the peak of the Uniform type A prior is
higher both support very large z-values. Type B priors include both Uniform on 7* (B, b), Type C priors include the Uniforms on z priors (C,
¢), Type D include both the Half-normal on 7 priors (DN, dn) and the more informative Uniform(—10, 1.386) on log(z) prior (du). The less
restrictive options per considered prior are presented in this figure, while the more informative options within each prior retain a similar
shape but cover a smaller range of values, except for the Uniform(—10, 1.386) on log(z®) prior. This prior results in a form closer to Type D
priors. For clarity of results the x — axis is graphically truncated for values larger than 100. Figure 3 in Data S1 provides a comparison
between the less and more restrictive prior options

Finally, we use the estimates of the within-study variances (s?) to examine two data-driven priors (E, e) that both
incorporate the harmonic mean (so = \/k/>_(1/s?) ,i=1,2,...,k) of the s? of the trials included in the MA.*>** More
specifically, prior E, also known as the DuMouchel prior has been suggested for very small sample sizes and, by uti-
lizing s, it induces shrinkage on the 7 prior distribution.*® Small values of s, result in a narrow-tailed prior distribu-
tion on 7 and more shrinkage, while large values of s, result in a wide-tailed prior distribution on 7 and less
shrinkage.

In the following section we introduce two motivating examples, illustrate the results when different priors are used
and discuss the implications.
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3 | MOTIVATING EXAMPLES

Multifocal motor neuropathy is a progressive rare disorder in which the muscles weaken gradually. Multifocal motor
neuropathy is not often fatal but can lead to a significant degree of disability for the patient. Prevalence is estimated at
1-2 cases per 100 000.*! A literature review and MA assessed the efficacy and safety of intravenous immunoglobulin in
multifocal motor neuropathy.’ The same evidence was presented in the European Medicines Agency Public Assessment
Report of Kiovig.** The primary outcome was the improvement in disability scale using MRC (Medical Research Coun-
cil) scores that evaluate the muscle strength. Three two-arm studies reported the outcome, accounting for a total of
36 recruited patients with seven reported events in the intravenous immunoglobulin arm and two in the placebo arm.
The original MA reported no heterogeneity.?

For the second example, we consider Guillain-Barre syndrome with a MA of four available studies. Guilen-Barre
syndrome has a prevalence of 1-9 cases per 100 000*" and refer to a number of rare post-infection neuropathies. A litera-
ture review and MA summarized RCTs that compared intravenous immunoglobulin to control (plasma exchange).* For
one of the secondary outcomes, treatment discontinuation, a few arms reported zero events. This example has been
used for evaluating a number of heterogeneity estimators under the inverse-variance method and has been shown to
produce conflicting inferences.?' Data for both examples are illustrated in Table 3.

3.1 | Analysis of motivating examples

A robust choice of prior is not trivial for our examples. To examine the behavior of the priors, we use Rjags®>** to fit
three chains of 850 000 samples after a burn-in of 150 000 samples and a thinning interval of 35 samples for each
model. Figure 2 presents the posterior median (as a point estimate) and credible intervals of § and 7 for the two motivat-
ing examples under different priors. The letters in Figure 2 correspond to the letters in Table 2.

The choice of prior for  has substantial impact on the posterior credible intervals for §. The posterior median for §
varies substantially as well. More specifically, in the multifocal motor neuropathy example, the posterior median § has
a range of (2.31, 3.27) depending on the 7 prior choice (Figure 2A). In the Guillain-Barre syndrome example, the poste-
rior median § has a range of (—2.52, —2.80) (Figure 2B). The posterior mean of § in both examples shows even greater
diversity. Interval estimation of § also varies substantially. Different priors and types of priors lead to considerably
divergent inference (Figure 2). All Type A priors show a similar behavior upon the estimation of § in both examples.

4 | SIMULATION STUDY

To incorporate heterogeneity successfully in both study arms, we simulated study-specific logits for each arm, following
the simulation strategy of Hartung and Knapp (Reference 35, pRandom in Reference 36). Hence, we assumed an initial
fixed event probability in the control group and we calculated the event probability in the treatment group, based on a
true overall treatment effect. Further, we simulated study-specific logits from a normal distribution with between-study

TABLE 3 Motivating examples; (A) Efficacy endpoint: Improvement in disability, Therapy: Intravenous immunoglobulin vs Placebo,
Condition: Multifocal motor neuropathy (B) Efficacy endpoint: Treatment discontinuation, Therapy: Intravenous immunoglobulin vs
Plasma Exchange, Condition: Guillain-Barre syndrome

(A) Multifocal motor neuropathy - Improvement in disability>  (B) Guillain-Barre syndrome - Treatment discontinuation®

Author rir Mgr—tir Tic Ric—Tic 7 Wi i Author rir mgr—rtir Ttic MRMc—Tic 7 Wi, in
Azulay 0 5 0 5 0 - Meche 0 74 12 61 0.08 0.39
Berg 3 3 0 6 0.25 0.20 Bril 0 26 0 24 0 -
Lger 4 3 2 5 0.43 0.80 PSGBS 3 127 18 103 0.09 0.58
Nomura 1 22 1 23 0.04 0.03

Note: r; j event in control/treatment group, n; ; — r; j non-event in control/treatment group 7; = observed probability of event in each trial,
w;, i, = weight of initial analysis.
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FIGURE 2 Posterior medians and 95% credible intervals of the overall effect (log odds ratio) and the between-study SD (z) for the two
motivating examples (A) Multifocal motor neuropathy and (B) Guillain-Barre syndrome. (AG, ag) - Gamma on v,, (AU, du) - Uniform on log
(%), (B, b) - Uniform on 72, (C, ¢) - Uniform on , (DN, dn) - Half-normal on z, (e) Half-normal on 7%, (E) - DuMouchel prior. (AG, AU, B, C,
DN) are less restrictive priors on 7 and (ag, dn, b, ¢, dn) are more informative priors on z

SD equal to 7/+/2 for the control and treatment arm. We utilized the simulated logits to compute the study-arm event
probabilities by back-calculating and finally we simulated events for each study arm.*®

We evaluated a number of scenarios by varying the number of trials (k), the number of patients per trial arm (n;),
the control event rate (x.), the between-study heterogeneity (r) and the overall treatment effect (). More specifically,
the number of trials varied as k €{2, 4, 6} while we assumed equal number of patients per trial arm (n;c = n;7) and uni-
formly sampled either between 40 to 50 or between 5 to 10. These sample sizes were selected to represent realistic sce-
narios for efficacy and safety endpoints of rare and ultra-rare diseases.” The control event rate (z.) in each trial took set
values as follows; very low event rate (0.05), low event rate (0.1), moderate event rate (0.3). Specific combinations of
sample size and control group event rates lead to particular percentages of zero-event trials in MAs of the simulated
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data (Data S1 - Table 1). The between-study SD took values between 7 €{0.01, 0.5, 1}. Finally, we examined three values
for the overall treatment effect on the logOR scale, § €{0, 0.5, 3}.

First, the 12 clustered priors above are evaluated for all scenarios and then a number is selected for further evalua-
tion. Therefore, the number of scenarios is in total 1994. For each scenario we generated 1000 simulated datasets. We
performed simulations using JAGS* and R*” via a High Performance Cluster. We fitted every model via three parallel
chains of 30 000 samples, a burn-in of 4500 samples and a thinning interval of three samples.

In sparse settings the parameters’ Markov chain Monte Carlo sampling convergence is of concern. We conducted
selective convergence checks on the Markov chain Monte Carlo algorithms via trace plots, convergence diagnostics via
the CODA package® and focused on the most extreme scenarios of sparsity. We fitted every model via three parallel
chains and we accounted for autocorrelation by applying a thinning interval of five samples. Overall, convergence was
achieved. We analytically report on diagnostics in the Data S3, where we compare the convergence of different priors.
Diagnostic assessment was performed for both the examples (via generation of 1,000,000 Markov chain Monte Carlo
samples) and the simulation study (via generation of 34,500 Markov chain Monte Carlo samples).

Each scenario was mainly evaluated by the following performance measures: (a) average posterior median for 4,
(b) coverage of the 95% credible interval (CrI). We also report and discuss the mean square error of § and the average
posterior median estimates of r for exploratory purposes and completeness. Prior robustness was defined by adequate
overall measures and small observed fluctuations in coverage of the 95% credible interval among the scenarios
considered.

5 | RESULTS OF SIMULATION STUDY

For relatively large sample sizes and higher ., regarding the posterior estimation of §, all priors perform similarly
(Figures 3 and 4).The overall performance of the priors deteriorates at a low control group event rate (z. = 0.05) for a
few small RCTs MA, as the average posterior median of § is overestimated (Figures 3 and 4) at all levels of true hetero-
geneity. Furthermore, we observe an overall positive bias in the posterior median estimation of §, when ¢ is large.

All Type A priors retain more robust 95% coverage in comparison to other prior groups (Figures 3 and 4). More spe-
cifically, the Uniform(—10, 10) on log(z*) scale prior (AU) retains a more robust 95% coverage at small values of 7, inde-
pendently of sample size and it properly estimates the posterior median logOR on average as well (Figures 3 and 4).
The DuMouchel empirical prior (E) shows a comparable behavior. The 95% coverage of Type B, C and D priors varies
throughout the evaluated scenarios from conservative in larger sample sizes to liberal 95% coverage in smaller sample
sizes (Figures 3 and 4). All priors encounter issues regarding the 95% coverage when the treatment effect is large
(6 = 3), the sample size is limited and the control event rate is very small (z = 0.05) (Figure 4).

More informative priors for 7 (b, ¢, dn, du) tend to produce a less variant posterior point estimate of §, while less
restrictive priors that mostly support larger values for z (B, C, DN) tend to overestimate § heavily (Figures 3 and 4).
Moreover, the use of the latter group of priors at any level of 7. results in conservative inference for & (Figures 3 and 4).
This set of less restrictive priors and (du) prior, a prior that also has the smallest prior z median (Table 2), all four priors
performed poorly in terms of 95% coverage irrespective of the sparseness of events.

It should be noted that even though Figures 3 and 4 only provide a general view of all simulated scenarios, we did
not observe deviations regarding the average posterior median of the overall treatment effect (§) when investigating spe-
cific scenarios. Additional averaged and scenario-specific simulations are presented in Data S2.

For clarity of results, after studying all priors (Figures 3, 4 and Data S2), we focus on four priors (AG, AU, dn, E)
which either (1) performed more robustly in the current simulation study (AU, E), (2) are commonly used in the litera-
ture (AG) and/or (3) have been suggested in recent literature for meta-analysis of rare diseases (dn).” We present
selected scenarios for § = 3 in the main manuscript (Figures 5 and 6).

51 | Coverage of the 95% CrlI for the overall treatment effect (6)

The value of the treatment effect does not heavily affect the coverage of the 95% Crl. Specifically, for a MA of four trials,
most robust coverage is generally produced by the two Type A priors, the Gamma(0.001, 0.001) prior on v, (AG) and
(AU), alongside with (E) empirical prior (Figure 5). However, in a MA of less than four trials, prior (AG) induces sys-
tematically larger deviations from the nominal 95% coverage in comparison to priors (AU) and (E) (Figure 5). The Type
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FIGURE 3 Scatter plot of average posterior median overall effect (log odds ratio) against its mean coverage of the 95% CrI for all
simulated scenarios (Overall effect: § = 0.5, between-study SD: = €{0.01, 0.5, 1}, number of trials: k €{2, 4, 6}) of a meta-analysis with control
group event rate: z. €{0.05, 0.1, 0.3} with small sample size trials (n; ~ Uniform[5, 10]) or large sample sized trials (n; ~ Uniform[40, 50]).
(AG, ag) - Gamma on v,, (AU, du) - Uniform on log(z?), (B, b) - Uniform on 72, (C, c) - Uniform on z, (DN, dn) - Half-normal on z, () Half-
normal on 7°, (E) - DuMouchel prior. (AG, AU, B, C, DN) are less restrictive priors on 7 and (ag, dn, b, c, dn) are more informative priors
onrt

D Half-normal(0, 1) prior (dn) prior either induce (1) over-coverage for low levels of true heterogeneity (z < 1) or low
event rates or (2) large under-coverage for large true heterogeneity (r = 1), regardless of the event rate. In comparison
to the three priors described above, the (dn) prior shows the least robust coverage throughout all scenarios and more
particularly for varying sample sizes or levels of 7 (Figure 5 and Data S2).

5.2 | Mean square error of the overall treatment effect ()

All priors produce comparable levels of mean square error (Data S2 - Figures 1-3 and 12-15). The priors that produce
the least optimal and most divergent behavior in comparison to the rest are the (DN) and (B) priors.

5.3 | Exploring the heterogeneity estimate behavior (7)

All 12 priors produced biased results. In less sparse scenarios (n; ~ U[40, 50]), k = 4, 6) the type A priors (AU) and
(AG) show the least bias on , irrespective of the true heterogeneity level (Figure 6 and Data S2). Prior (dn), behaved

similarly to all other more informative prior choices and showed difficulty in identifying any level of true heterogeneity
(Figure 6).
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FIGURE 4 Scatter plot of average posterior median overall effect (log odds ratio) against its mean coverage of the 95% CrI for all
simulated scenarios (Overall effect: § = 3, between-study SD: 7 €{0.01, 0.5, 1}, number of trials: k €{2, 4, 6}) of a meta-analysis with control
group event rate: 7z, €{0.05, 0.1, 0.3} with small sample size trials (n; ~ Uniform[5, 10]) or large sample sized trials (n; ~ Uniform[40, 50]).
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6 | REVISITING THE MOTIVATING EXAMPLES

Following the results of the simulation study, prior type A Uniform(—10, 10) on the log(z*) prior (AU) is preferred for
the Guillain-Barre syndrome example (four trials, low event rates, relatively large sample size). When we apply this
prior, the primary inference of these studies would produce a posterior probability of § > 0 equal to 96%. This is less
than the 99% posterior probability which is produced by the Type D Half-normal(0, 1) prior (dn) on z, a prior that
showed non robust overall but sufficient coverage at low to moderate z, combined with low to moderate z settings
(Figure 5). Therefore, inference with both priors suggests efficacy of intravenous immunoglobulin in comparison with
plasma exchange in terms of treatment discontinuation and result in comparable posterior distributions (Figure 7) and
medians for the 1ogOR (6, = —2.51 - 64, = —2.49).

Likewise, for the more sparse multifocal motor neuropathy example (3 trials, moderate event rates, relatively small
sample size), prior (AU) would also be preferred. When we apply this prior, the primary inference for these studies
would produce a posterior probability of § > 0 equal to 93%, but when prior (dn) is applied, the posterior probability
becomes 97%, which would have overstated our confidence in the effectiveness of intravenous immunoglobulin regard-
ing improvement in MRC scale, based on results of the simulation study. Similarly to the Guilen-Barre syndrome case
study, relying on priors (AU) or (dn) produces comparable posterior median 1ogORs (4 = 2.32 - 84, = 2.31), as
expected by the reported simulation study (Figures 3 and 4).
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FIGURE 5 Coverage of the 95% CrI line plots of the overall effect (log odds ratio) on different control group event rate levels for a large
true overall effect (§ = 3), three values of 7 €{0.01, 0.5, 1} and small sample size trials (n;; ~ Uniform[5, 10]) or large sample sized trials

(n ~ Uniform[40, 50]). (AG): Gamma(0.001, 0.001) on v,, (AU): Uniform(-10, 10) on log(z%), (dn): Half-normal(0, 1) on z, (E): DuMouchel
prior. Results for 6 trials can be found in Data S2
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In both examples, data-driven prior (E) produces similar probability statements and posterior median logORs to the
Type A (AU) prior, a behavior which is aligned with the results of the simulation (Figure 5). Based on the simulation
study, a Type A prior (ie, AU) that showed robust 95% coverage should be chosen as it provides less variable
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behavior in comparison to the studied alternatives under both known and unknown parameters (Types B, C and
D), as well.

A comparison between the two priors that performed robustly through the simulation study (AU and E) and the
commonly used half-normal prior (dn) is presented in Figure 7 for the multifocal motor neuropathy and Guillain-Barre
syndrome examples respectively. In both examples, when prior (AU) is applied, the posterior distribution of 7 differs
considerably from its prior. However, when prior (dn) is applied, the posterior distribution of 7 becomes more prior-
driven, a behavior which is also depicted in our simulation (Figure 6). In Data S1 (Table 2), interested readers can find

the extended results of all considered prior choices.
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7 | MAIN FINDINGS

i. The choice of type of prior and prior distribution for z heavily influences not only the posterior mean/median esti-
mates of 7 but also the posterior mean/median estimates of § in a sparse-events MA of a few small trials.

ii. In a sparse meta-analysis of a few small (n; ~ [5, 10]) studies, priors that place most of the mass in small values of
7 but naturally restrict the range to more plausible values (D) (ie, dn, du) should be avoided as they do not provide
robust point and proper interval estimation of é.

iii. Type A priors that place more mass on small values without excluding very large = prior values (e.g. AU) are
suggested as a robust choice for a sparse-events MA of a few small trials.

iv. In many scenarios and even for very sparse settings, the Type A prior Uniform(—10, 10) on the log(z*) scale prior
(AU) shows good coverage overall combined with less overestimation of § or 7 in comparison to other prior choices.
The DuMouchel prior (E) shows a similar behavior.

v. The less restrictive choices of priors that place mass uniformly in a selected range (B) and/or priors that place more
mass in larger values of z (C) and the empirical prior (DN) are not appropriate for a sparse-events MA of a few
small trials, as they overestimate r and produce conservative inferences, while resulting in improper estimation of
6. Their more informative alternatives (b, ¢ and dn) produce more reliable inferences at high 7., but they result in
liberal inferences when combined with large true heterogeneity (z = 1) and low z.. All six prior choices have diffi-
culties to identify varying levels of z.

8 | DISCUSSION

Based on previous research, it is generally accepted that the choice of prior distribution on 7 largely impacts the poste-
rior interval estimation of & in a meta-analysis of a few small trials.”'**?®* We demonstrated that in very sparse settings
measures, such as the overall posterior median of §, can become very inconsistent under alternative priors on z as well.
Even though, the final choice of prior should take into account the specific characteristics of each conducted meta-anal-
ysis, a solution in such sparse conditions would be to identify prior shapes that show robustness in the operational fea-
tures of the posterior estimation of §.

In this study we demonstrated that priors which place mass on small values of 7 but sufficiently support larger
values as well (Type A priors, eg. AU - Uniform(—10, 10) prior on log(rz) scale) showed on average robust behavior
in most scenarios, followed by DuMouchel empirical prior (E), in comparison to other choices. Type D priors such
as the dn - Half-normal(0, 1) on 7, a prior that has been compared under an approximate normal setting and has
been evaluated in settings of a few small trials,”'° did not perform satisfactorily neither under large levels of true
heterogeneity nor under different settings of trial size and number of trials. Type A priors and DuMouchel empiri-
cal prior place larger uncertainty around 7 (Table 2) and produce a more data-driven inference on 6, in comparison
to Type D priors such as the Half-Normal (dn) prior or the more informative Uniform(—10, 1.386) on log(z?) scale
prior (du), which produces a more prior-driven inference on §. Furthermore, we demonstrated that the use of
priors with either less restrictive or very confining prior range may be equally problematic, in terms of operational
features and robustness.

8.1 | Findings in perspective
Our study extends previous research on Bayesian hierarchical models' evaluations'®*>*® in sparse-events MA of small
populations. Contrary to previous evaluations on priors for heterogeneity,”'®'**® we focused on a sparse-event setting,
we then grouped the evaluated priors based on their shape. Except for observing the expected variations in the posterior
intervals of 6, we observed a variation in the posterior medians of & as well. Namely, priors that favor small 7 are the
ones that misestimate § the least at very low event rates.

We further noticed a general overestimation when & is large, as well as to a smaller extent when & takes smaller
values. The primary reason for the overestimation of § is the nature of a dichotomous outcome. For positive 6,
more events are observed in the treatment arm, especially when & is large.’® Events in the treatment arm
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combined with zero events in the control arm result in overestimation. We also applied an alternative model that
applies larger variance to logit(z7) than to logit(zc) in comparison to model (1) and Model 2 in Reference 24. Con-
clusions remained comparable, though when the alternative model was applied an underestimation of § was
observed when 7. was very low.

The variance within a single study relative to the estimated heterogeneity between studies determines this study's
impact on the overall inference for 6. Naturally, small studies with zero events would produce a large within-study vari-
ability (standard errors) around the logOR study-specific effect which decreases the study's impact on the posterior
overall effect. However, prior distributions that favor large values for r allow small studies to have a larger weight. As a
result, the contribution of small studies with one or two reported zero arms in a MA is enhanced when considering
priors that support large 7. In both examples we reviewed herein, the increasing weight of studies with no observed
events, mostly in a single arm, explains why the posterior median of § are overestimated when less restrictive priors are
applied (Figure 2 and Data S1 - Table 2). Therefore, in combination with the observed unstable study-specific treatment
effect issues, alternative prior assumptions may enhance the impact of zero events in a few small trials MA, inducing a
“small MA zero-event” bias on §.

8.2 | Main limitations

This work is subject to the assumption of normality for the study-specific effects and the overall treatment effect, by
placing a weakly diffused normal prior on §; and &; instead other dependence structures between é and §; may be pre-
ferred.*® Despite its common use, this assumption may not be appropriate considering the small number of studies and
sparsity of events. Model 1 further assumes that the logit(x;7) and logit(r;c) have equal variances. This can be a restric-
tive assumption for which alternatives have been discussed.* In addition, other priors on y;, &; or § may be considered;
namely, a Uniform, a Student-t, a Truncated-t or a Cauchy prior.*' After partially evaluating these options through simu-
lation, we did not observe changes in our conclusions. In the setting of a few small trials, informative empirical priors
that are based on published MAs of the Cochrane database can be used in a new MA of binary outcomes.**** However,
such empirical priors have not been yet tailored for meta-analyzes in rare diseases and therefore, may not be represen-
tative of heterogeneity commonly observed in such cases.**** Based on preliminary non-reported results, such priors
are expected to result in suboptimal frequentist characteristics similar to the very informative priors studied herein.
Another restrictive option, given the small sample sizes, would be to model the studies as covariates and avoid the nor-
mal random-effects assumption.

In the simulation study we focused on positive treatment effects with low control event rates but not negative treat-
ment effects with larger control event rates assuming that such effects are symmetric and their probabilities of success
are reversed between the treatment arms.

The behavior of a Bayesian MA might depend on the type of binary effect measure (log odds ratio, log risk ratio, risk
difference). Such alternative measures could be of importance with sparse events MAs when normal approximations do
not hold or when the logOR is undefined.*’

Finally, one should consider the issue of inefficient Markov chain Monte Carlo sampling for rare events.***” In such
extremely sparse settings, our findings might be sensitive to the sampling engine of the simulation study. Regardless of
the sampler applied, we recommend conducting a formal convergence analysis in such sparse settings.

9 | CONCLUSION

To conclude, a random-effects MA using a Bayesian binomial-normal hierarchical model has the potential to deal
with large numbers of zero events. The sensitivity of Bayesian models to the choice of priors is confirmed and pro-
duces not only diverse credible intervals but also diverse posterior medians for the overall treatment effect (5). We
showed that when performing a Bayesian binomial-normal MA under such sparse conditions, robust priors should
have more mass close to zero, while supporting very large values as well (ie, a less informative Uniform(—10, 10)
prior on log(z%)). Priors that support only large or only mainly small values of heterogeneity (z) result in substantial
misestimation of § in such sparse settings and should be avoided. Aside from robustness researchers should aim to
account for the specific characteristics of each conducted meta-analysis before choosing a prior and setting prior
levels of expected heterogeneity.
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