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Abstract: The use of crystal engineering to convert liquids into crystalline solids remains a powerful
method for inhibiting undesired degradation pathways. When nicotine, a liquid sensitive to both
light and air, is combined with the GRAS-listed compound, gentisic acid, the resulting crystalline
solid, exhibits enhanced photo and thermal stability. Despite a modest ∆Tm of 42.7 ◦C, the melting
point of 155.9 ◦C for the nicotinium gentisate salt is the highest reported for nicotine-containing
crystalline solids. An analysis of the crystal packing and thermodynamic properties provides context
for the observed properties.

Keywords: crystal engineering; solid-state; nicotine salt; nicotine; gentisic acid

1. Introduction

There is an evolving need to stabilize volatile and sensitive chemicals that exist as
liquids at ambient conditions [1,2]. In comparison to solids, liquid-state chemicals may
present particular hazards with respect to their safe handling and storage [3]. Of particular
interest is the stabilization of substances intended for human consumption such as active
pharmaceutical ingredients (APIs). A multitude of drug candidates exist as liquids at
ambient conditions that exhibit some form of instability such as sensitivity to moisture or
UV light sources [4].

To stabilize these drug candidates, pharmaceutical formulations are developed which
convert the liquid APIs into crystalline solids. One approach, co-crystallization, combines
an API with a selected molecular partner (i.e., a coformer) through robust non-covalent
interactions. Co-crystallization has been demonstrated as a method to stabilize volatile
compounds, modulate select properties [5,6], and inhibit API degradation [7,8].

One API that is starting to garner industrial and academic interest is nicotine [9–14].
Nicotine is one of the most widely consumed drug compounds across the globe, yet
pure nicotine, an oily liquid under ambient conditions, exhibits an array of degradation
pathways upon exposure to air, light or excessive temperatures [15,16]. Upon exposure
to ultraviolet (UV) radiation sources, nicotine degrades into relatively benign products
such as nicotinic acid as well as potentially harmful degradation products such as diradical
methylene which may cause undesirable biological effects [17].

The ability to isolate nicotine in the solid-state through co-crystallization was demon-
strated in 2017 by Capucci et al. [18] wherein they “tamed” nicotine by isolating it through
co-crystallization using several halogenated coformers. However, the selection of these
particular coformers rendered the obtained materials unsuitable for human consumption.
Utilizing coformers or salt formers which are suitable for human consumption presents
the prospect of isolating nicotine as a solid, crystalline material with improved degrada-
tion properties over pure nicotine and improved safety over nicotine materials containing
halogenated compounds.
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To create the targeted safer materials, US Food and Drug Administration (FDA)
generally recognized as safe (GRAS) listed compounds and other food safe molecules
such as flavoring agents can be utilized as coformers or salt formers [19,20]. GRAS listed
compounds are substances that the US FDA has rigorously tested and approved as being
safe for human consumption [21,22]. Herein, 2,5-dihydroxybenzoic acid (gentisic acid)
was selected as it is a common metabolite of drug compounds such as aspirin and it is
also found naturally in many fruits such as kiwis and apples [23]. In addition, gentisic
acid was selected as it possesses a pKa1 value of 2.53. As expected, protonation occurs at
the pyrrolidine of the nicotine (pKa = 8.02, ∆pKa = 5.49) as opposed to the pyridyl group
(pKa = 3.12, ∆pKa = 0.59) [24]. In this work the synthesis, single crystal X-ray diffraction
(SC-XRD) structure, photostability, and thermal characterization of a salt comprised of
the starting materials nicotine and gentisic acid is discussed (Scheme 1). These results are
compared to previously published nicotinium salts that were created utilizing the GRAS
listed salt former malic acid and orotic acid, as well as the halogenated nicotine co-crystal
counterparts.

Scheme 1. Chemical structures of the API (S)-nicotine (left) and the salt former gentisic acid (right).

2. Results & Discussion
2.1. SC-XRD Analysis

As seen in Figure 1, when combined in a 1:1 ratio and evaporated from methanol,
(S)-nicotine and gentisic acid crystallize to form a 1:1 salt (S)-nicotinium gentisate (CCDC
deposition number 2168648). That a salt is formed within the lattice is supported by the
presence of a q-peak (0.55 e−/Å3) near N1 corresponding to the transferred proton. Addi-
tionally, the C1-O2 and C1-O1 bond lengths of 1.2554(15) Å and 1.2754(14) Å, respectively,
are consistent with the presence of a carboxylate group. Within the asymmetric unit there
are two hydrogen bonding interactions of note (Table S2). An intramolecular S(6) type
motif occurs within the gentisate salt former resulting in a 2.5483(14) Å interaction. The
second is observed between the gentisate carboxylate and the pyrrolidyl nitrogen of the (S)-
nicotinium wherein a discrete (D-type graph set) motif is observed resulting in a 2.6775(13)
Å hydrogen bonding interaction. This type of hydrogen bonding between the carboxylate
of the salt former and the pyrrolidyl nitrogen of the nicotinium is similar to those found in
the malate salts and the orotate salt.

To form the bulk structure, infinite 1-D chains of the type C(7) are formed between
the hydroxyl group in the 5-position of a gentisate molecule and the carboxylate group of
an adjacent gentisate. This creates 1-D wires consisting of asymmetric unit blocks running
along [100]. These wires stack along [010] forming sheets which consequently stack along
c* with each subsequent sheet being rotated 180◦ about c* (Figure 2).
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Figure 1. Asymmetric unit of the (S)-nicotinium gentisate salt. The gentisate shown is generated
through the symmetry operation −x + 1, y + 1/2, −z + 1. Appropriate atomic labels are shown.
Atom colors: oxygen (red), nitrogen (blue), carbon (gray), hydrogen (white). Hydrogen bonding
interactions are depicted by red dashed lines.

Figure 2. Figures displaying the bulk structure packing as observed down [100] (right) and down
[001] (left). Wires can be observed running along [100] and stacking along [010] forming sheets.
These sheets then stack along c* with each subsequent sheet being rotated 180◦ about c*. Hydrogen
bonding interactions are depicted with dashed light blue lines. a*, b and c* are standard labels for
crystallographic axes.

2.2. Hirshfeld Surface Analysis

Hirshfeld surfaces are a critical tool that can assist in the understanding of a variety
of properties, such as the electrostatic potential, shape index or the dnorm of a crystal
system [25–27]. Through the evaluation of such properties, information may be ascertained
with regard to the type and quantity of interactions present for an API. Such data can then
be utilized to engineer additional systems involving the targeted API [28].

The interaction environment of the API (S)-nicotinium was analyzed for the (S)-
nicotinium gentisate salt described herein. This allowed for a direct comparison of the
API interaction environment across several previously reported nicotinium salts, includ-
ing the family of (S)-nicotinium malate salts [CCDC REF codes: QAXQOZ (Malate I),
QAXQOZ01 (L-Malate II), QAXQOZ02 (DL-Malate), and QAXRAM(D-Malate)], as well
as the (S)-nicotinium orotate hemihydrate salt (CCDC REF code: PEKXAI) [14,29,30]. As
seen in Figure 3, in the fingerprint plots of the Hirshfeld surface a small central spike
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corresponding to H-H interactions was observed as peaking around 1.1 Å di (internal
distance) × 1.1 Å de (external distance). Peaking around 0.7 Å di × 1.0 Å de, a large spike
corresponding to the H-O/O-H interactions was observed. Two smaller peaks consistent
with the N-H/H-N type interactions were observed as peaking around 1.0 Å di × 1.4 Å de
and 1.4 Å di × 1.0 Å de. Two larger wings were observed which corresponded the more
distant C-H/H-C interactions. The remaining C-C, C-O/O-C, and N-O/O-N interactions
were all relatively small and distant interactions as indicated by the fingerprint plots.
The gentisate salt API environment possessed 16.7% H-O/O-H type interactions, 49.9%
H-H type interactions, 20.5% H-C/C-H type interactions, 10.2% H-N/N-H type interac-
tions, 0.8% O-C/C-O type interactions, 1.3% C-C type interactions, and 0.6% N-O/O-N
type interactions.

Figure 3. Hirshfeld surface fingerprint plots of the (S)-nicotinium gentisate salt. The type of interac-
tion and quantity is shown for each plot.
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Like all reported nicotinium salts, H-H interactions were the most abundant type
surrounding the API (Figure 4). Significantly fewer H-O/O-H type interactions were
observed in the gentisate compared to the other salts, likely due to the gentisate hydroxyl
group on the five-position interacting very strongly with adjacent gentisate molecules thus
distancing itself too far from the nicotinium to significantly contribute. The H-N/N-H
type interactions were similar in abundance to each of the malate salts. The abundance
of H-C/C-H interactions were almost double that of the L-malate I and DL-malate salts
and around 8% more than the L-malate II and D-malate salts. The remaining three types of
interactions found in the gentisate API environment (O-C/C-O, C-C, and N-O/O-N) were
in relatively low abundance and distant across all of the reported salts. Details pertaining
to the quantity of each interaction around the API for the gentisate and all other previously
reported salts can be found in Table S3.

Figure 4. Interaction types and percentages for the nicotinium gentisate salt described herein in
comparison to the orotate hemihydrate salt and the family of malate salts that have previously been
synthesized.

2.3. Thermal Properties

As observed in the nicotinium malate salts and nicotinium orotate hemihydrate salt,
it has been shown that nicotine thermal properties in the solid-state can be modulated
through the selection of a salt former [29,30]. Through the understanding and application
of the thermal properties of an API, further materials may be rationally designed with
targeted properties [31]. To assess the thermal properties of the synthesized salt, four
replicates of the material were analyzed on a Stuart SMP10 melting point apparatus and
consequently analyzed via differential scanning calorimetry (DSC). Approximately ten-
gram sample was scanned twice from 0 ◦C to 200 ◦C and back to 0 ◦C each time (Figure 5).
An endothermic transition associated with the anticipated melting event was observed as
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peaking at 155.9 ◦C. Integration of the endotherm yielded an enthalpy of fusion (∆H
◦
f usion)

of 29.97 kJ mol−1. This led to an entropy of fusion (∆S
◦
f usion) value of 6.986 × 10−2 kJ

mol−1 K−1 when computed using the Gibbs free energy equation (Table S4). This salt
exhibits a glass transition during the second DSC scan as the material is amorphous after
the endothermic transition in the first scan and does not recrystallize.

Figure 5. DSC scans of (S)-nicotinium gentisate with exothermic processes having positive heat flow.
The first scan depicted by a solid purple line and the second scan depicted by a dashed green line. An
endothermic transition associated with melting is observed in the first scan, while the second scan
possesses a glass transition as the material is amorphous and does not recrystallize.

These thermodynamic properties were then compared to the halogenated nicotine
co-crystals and the nicotinium malate salts to assess the overall performance of this newly
synthesized salt. The nicotine co-crystals reported by Capucci et al. possess a range of
melting points between 54 ◦C to 92 ◦C, much lower than the 155.9 ◦C melting point observed
for the system described herein [18]. Additionally, the nicotinium malate salts possessed
melting points ranging from 93.4 ◦C to 122.2 ◦C, with enthalpies of fusion ranging between
11.22 kJ mol−1 and 18.62 kJ mol−1 [29]. Thus, nicotinium gentisate represents one of the
highest melting nicotine solids reported in peer-reviewed literature.

The ∆Tm property has previously been established as a performance statistic for the
halogenated nicotine co-crystals by Capucci et al. and the nicotinium malate salts. This
value is derived by taking the salt melting point and comparing it to that of the salt former
melting point (Tm), with the difference being reported as ∆Tm [18]. Like the malate salts,
the gentisate salt reported herein exhibits an increased ∆Tm between the non-API salt
former and the synthesized crystalline salt. As the salt former gentisic acid has a melting
point of 203.1 ◦C, the (S)-nicotinium gentisate salt possesses a ∆Tm value of 47.2 ◦C [32].
This is lower than the nicotine containing co-crystals reported by Capucci et al. which
had a reported range of 55–78 ◦C [18]. The gentisate did, however, possess a ∆Tm value
that was greater than any of the nicotinium malate salts as they possessed a ∆Tm range of
5.0–33.8 ◦C [29]. However, the orotate salt had a much larger ∆Tm value of 215.4 ◦C [30].

2.4. Photostability Analysis

It has been well established that pure (S)-nicotine is not stable upon exposure to
ultraviolet (UV) irradiation. Some degradation products such as nicotinic acid may not be as
harmful as other degradation products such as methylamine [33]. It has been demonstrated
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previously that the transformation of nicotine into nicotinium salts effectively eliminates
the formation of undesired products upon prolonged irradiation [14,29,30].

The photostability of (S)-nicotinium gentisate was analyzed by exposing a sample to a
broad-spectrum UV irradiation light source for 24 h. After 24 h had passed, a representative
portion of the sample was taken and analyzed via 1H-NMR. The spectrum acquired post
irradiation was then compared to a 1H-NMR spectrum acquired from a portion of the
sample taken prior to UV irradiation. The spectra were then compared to check for any
observable photodegradation. This was also completed for the API nicotine and the salt
former to inspect their photostability.

As a control, a sample of pure (S)-nicotine was stored in the dark with no UV exposure
for 24 h. 1H-NMR spectra were taken from the sample of (S)-nicotine before after 24 h of
being in the dark. This control had little to no observable degradation in the spectra. A
separate sample of pure (S)-nicotine was also exposed to 24 h of UV irradiation, which
led to a multitude of new peaks being observed in the post irradiation spectrum when
compared to the spectrum acquired prior to irradiation (Figure S7). There was no detectable
degradation in the spectrum of the acid salt former (Figure S6) acquired after UV irradiation
when compared to the sample taken prior to the UV irradiation, while pure liquid nicotine
did demonstrate the expected degradation as many new peaks were observed (Figure S8).
Meanwhile, the gentisate salt had no observable degradation in the 1H-NMR spectrum
after the UV irradiation (Figure 6). Phase purity of the salt was confirmed via PXRD
analysis both before and after the irradiation period (Figure S14). This demonstrates that
the solid-state can offer protection against UV induced degradation of (S)-nicotine. This
falls in line with the photodegradation testing results of the nicotinium malate salts and the
orotate salt, wherein no detectable products of photodegradation were observed.

Figure 6. 1H-NMR spectra of dimethyl sulfoxide-d6 (DMSO-d6) solutions of (S)-nicotinium gentisate
prepared from samples in which the crystalline phase received either no UV irradiation (upper) or
24 h of UV irradiation (lower).
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3. Materials and Methods
3.1. Materials

(S)-nicotine (98%) and gentisic acid (98%) were purchased from Alfa Aesar (Ward Hill,
MA, USA) and Combi-Blocks (San Diego, CA, USA), respectively. Methanol (HPLC grade
99.9%) and n-heptane (99%) were each purchased from Fisher Scientific (Fair Lane, NJ,
USA). Dimethyl sulfoxide-D6 (D, 99.9%) and Methanol-D4 (D, 99.8%) were purchased from
Cambridge Isotope Laboratories Inc. (Andover, MA, USA)

3.2. Salt Synthesis

Gentisic acid (770.6 mg, 5.0 mmol) was added into a 20 mL scintillation vial. Methanol
(6.0 mL) was added with vigorous agitation. (S)-Nicotine (0.8 mL, 5.0 mmol) was added
via micropipette in the dark to avoid degradation. The resulting solution was capped and
vortexed for 30 s at 3000 rpm on a VWR Mini Vortexer MV I. The solution was then stored
in the dark uncapped to allow for crystal formation while the solvent slowly evaporated.
Once the solvent evaporated, the crystalline product was collected via vacuum filtration,
washing with n-heptane (3 × 5 mL) (1.472 g, 93.05%). The yield was computed based upon
the formula weight of (S)-nicotinium gentisate (F.W. 316.4 g/mol).

3.3. X-ray Diffraction (XRD)

X-ray diffraction data were collected using a Bruker SMART APEX-II CCD diffrac-
tometer (Bruker AXS, Billerica, MA, USA) installed at a rotating anode source (MoKα
radiation, λ = 0.71073 Å) and equipped with an Oxford Cryosystems (Cryostream700; Ox-
ford Cryosystems Ltd, Long Hanborough, England) nitrogen gas-flow apparatus. Five sets
of data (360 frames each) were collected by the rotation method with 0.5◦ frame-width (ω
scans) with a 2.0 s exposure time for the single crystalline sample. The sample was run at
90 K. Using Olex2, the structure was solved with intrinsic phasing via the ShelXT struc-
ture solution program and refined with the ShelXL software suite (George M. Sheldrick,
Göttingen, Lower Saxony, Germany) using least squares minimization [34–36]. A q-peak
(0.55 e−/Å3) was located 0.838 Å from N1 and was assigned as a proton consistent with
charge transfer from the carboxylic acid of the salt former. The atomic coordinates of H
atoms attached to heteroatoms were freely refined with thermal parameters constrained
to be Uiso(H) = 1.5Ueq(N) or 1.5Ueq(O). H atoms connected to carbon atoms were placed
geometrically (C–H = 0.95 Å) and refined with thermal parameters constrained to be
Uiso(H) = 1.2Ueq(C). Images of the structures were created using Olex2 and the CSD: Mer-
cury Visualization and Analysis of Crystal Structures software suite (Clare F. Macrae,
Cambridge, UK) [37]. Absolute configuration was assigned based upon the stereochem-
istry of the API (S)-nicotine. The Flack parameter was removed in accordance with IUCr
standards for reporting a structure in which the absolute configuration is assigned based
upon a known reference molecule, which in this structure is (S)-nicotinium.

3.4. Crystal Melting Points

A Stuart SMP10 melting point apparatus was utilized to measure the melting point of
the synthesized compounds. 4 replicates were run for the salt.

3.5. Differential Scanning Calorimetry

A differential scanning calorimeter, model DSC Q200 (TA Instrument, New Castle,
DE, USA) was used to measure the thermal transitions of the sample. About 10 mg of
the synthesized compound was placed into an aluminium pan and sealed. The salt was
scanned from 0 ◦C to above the melting point observed on the Stuart SMP10 at 20 ◦C/min
under argon and nitrogen flow (10 mL/min. each) for 2 full cycles. Exothermic transitions
are displayed as positive heat flows. The enthalpy of fusion was computed from the
integrated area under the curve and the entropy of fusion computed by applying the Gibbs’
free energy equation in accordance with equilibrium between the solid and liquid state
being achieved at the fusion point.
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3.6. UV Photodegradation

NMR analysis was performed on a sample of the salt former orotic acid, (S)-nicotine,
and the synthesized (S)-nicotinium orotate hemihydrate salt. Each sample was then irra-
diated with ultraviolet (UV) light in a home-built vented box with air flow for 24 h using
four Southern New England Ultraviolet Company RPR—3000A (Branford, CT, USA) UV
bulbs (λ = 300 nm). NMR analysis was then carried out on each sample to screen for any
UV photodegradation of products.

3.7. Nuclear Magnetic Resonance (NMR)

NMR analysis was carried out using a Bruker NEO 400 MHz NMR (Bruker AXS,
Billerica, MA, USA) spectrometer equipped with an iProbe, AutoTune assembly with
variable temperature control, as well as a SampleCase autosampling unit. Eighty transients
were run for each sample. Appropriate deuterated solvents are labeled in each spectrum.

3.8. Hirshfeld Surface Analysis

The Hirshfeld surface of (S)-nicotinium orotate hemihydrate and the previously syn-
thesized nicotinium malate salts was generated using Crystal Explorer 17.5 [38]. For all
salts the dnorm surface was mapped using the color scale with the range −0.050 a.u. (red)
to 0.600 a.u. (blue). In addition, 2-D fingerprint plots were generated as the outer nuclei
(de) versus the inner nuclei (di) using an expanded interaction distance ranging from 0.6 Å
to 2.8 Å.

3.9. Powder X-ray Diffraction (PXRD)

Powder X-ray diffraction data were collected using a Rigaku Ultima IV X-ray Diffrac-
tion (XRD) System equipped with standard attachment (CuKα radiation, λ = 1.54 Å). Data
collection was performed over the 2θ range from 2◦ to 45◦ utilizing a 0.02◦ incremental step.
A scanning speed of 5◦ per minute was utilized. Slit heights were set as follows: divergence
slit: 2/3◦; divergence height limiting slit: 10mm; scattering slit: 2/3◦; receiving slit: 0.3mm.
PXRD patterns were simulated using the Mercury 4.0 2021.2.0 visualization and analysis of
crystal structures software suite (Clare F. Macrae, Cambridge, UK) [37]. A 0.02◦ step was
utilized for the simulated PXRD pattern along with a full width half max of 0.1. All PXRD
patterns were normalized to a maximum intensity of 10,000 counts.

3.10. Infrared (IR) Spectroscopy

Infrared spectral analysis was carried out on a Perkin Elmer (Waltham, MA, USA)
Spectrum Two FTIR spectrometer equipped with an attenuated total reflectance (ATR)
module. Eight scans were averaged for each spectrum.

4. Conclusions

The novel nicotine salt (S)-nicotinium gentisate was successfully synthesized using
slow evaporation from methanol. This salt exhibited distinctive discrete hydrogen bonding
interactions within the asymmetric unit. Infinite 1-D C(7) chains are formed between the
hydroxyl group in the 5-position of a gentisate molecule and the carboxylate group of
an adjacent gentisate. Thus, 1-D wires are formed consisting of asymmetric unit blocks
running along [100]. These wires stack along [010], forming sheets which consequently
stack along c* with each subsequent sheet being rotated 180◦ about c*.

DSC measurements determined that the salt melts at 155.9 ◦C and possesses an
enthalpy of fusion (∆H

◦
fusion) of 29.97 kJ mol−1. This melting point temperature was higher

than any of the reported nicotine containing co-crystals or nicotinium malate salts. Similar
to all previously reported solid forms of nicotine, (S)-nicotinium gentisate had a significantly
increased melting point in comparison to that of pure (S)-nicotine (−79 ◦C). The gentisate
salt described herein also possessed a ∆Tm value that was larger than any of the nicotinium
malate salts, but not as large as the nicotine co-crystal ∆Tm value that have been reported.
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No detectable photodegradation products were observed after prolonged irradiation of
the nicotinium gentisate salt. This further supports the supposition that the crystallization
of liquid nicotine is a viable means of minimizing and even eliminating potentially harmful
product formation arising from undesirable nicotine degradation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27206853/s1, Figure S1: A single crystal of monoclinic
P21 (S)-nicotinium gentisate; Figure S2: A vial of crystals of monoclinic P21 (S)-nicotinium gentisate;
Figure S3: Diagram of monoclinic P21 (S)-nicotinium gentisate viewed down [010], depicting the
H-bonds that are present between wires and sheets of wires. Hydrogen bond interactions highlighted
with blue dashed lines; Figure S4: 1H-NMR spectrum for (S)-nicotine from the bottle; Figure S5: 1H-
NMR spectrum for gentisic acid from the bottle; Figure S6: 1H-NMR spectra of solutions of gentisic
acid prepared from samples in which the crystalline phase received either no UV irradiation (upper)
or 24 h of UV irradiation (lower); Figure S7: 1H-NMR spectra of solutions of (S)-nicotine prepared
from samples in which the liquid was in a vial in a dark drawer for either 0 h (upper) or 24 h (lower);
Figure S8: 1H-NMR spectra of deuterated methanol solutions of liquid (S)-nicotine prepared from
samples in which the liquid API received either no UV irradiation (upper) or 24 h of UV irradiation
(lower); Figure S9: Infrared (IR) spectrum of (S)-nicotine; Figure S10: Infrared (IR) spectrum of
gentisic acid; Figure S11: Infrared (IR) spectrum of gentisate salt; Figure S12: Infrared (IR) spectrum
of gentisate salt melt; Figure S13: Infrared (IR) spectrum of gentisate salt after 24 h of UV irradiation;
Figure S14: PXRD patterns of (S)-nicotinium gentisate simulated from SC-XRD analysis (upper),
experimentally obtained prior to UV irradiation (middle) and after 24 h of UV irradiation (lower).
The pattern aquired prior to irradiation is offset by 13,000 counts and the Simulated pattern is offset
by 26,00 counts; Table S1: Crystallographic information for nicotinium gentisate; Table S2: Hydrogen
bonding interactions with appropriate interaction distances and interactions angles between donor
atoms (D) and acceptor atoms (A). ESDs are shown in parentheses; Table S3: The Hirshfeld surface
computed interaction percentages for the API in the gentisate salt and in the other previously reported
nicotinium salts. Table S4: Thermodynamic properties of (S)-nicotinium gentisate.

Author Contributions: Data curation, D.J.A., K.J.C. and J.R.; Formal analysis, D.J.A.; Funding
acquisition, J.B.B.; Project administration, J.B.B.; Writing—original draft, D.J.A.; Writing—review
and editing, D.J.A., J.R. and J.B.B. All authors have read and agreed to the published version of
the manuscript.

Funding: Funding for D.J.A. and J.B.B. was provided by the University at Buffalo and the National
Science Foundation, Directorate for Mathematical and Physical Sciences (award No. DMR-2003932).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Deposition number 2168648 contains the crystallographic data for this
paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre
and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures
(accessed on 9 September 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References
1. Goodstein, D.L. States of Matter; Dover Corporation: New York, NY, USA, 1985.
2. Patnaik, P. A Comprehensive Guide to the Hazardous Properties of Chemical Substances; Van Nostrand Reinhold: New York, NY,

USA, 1992.
3. Arslan, O.; Er, I.D. SWOT analysis for safer carriage of bulk liquid chemicals in tankers. J. Hazard. Mater. 2008, 154, 901–913.

[CrossRef]
4. Bacchi, A.; Mazzeo, P.P. Cocrystallization as a tool to stabilize liquid active ingredients. Crystallogr. Rev. 2021, 27, 102–123.

[CrossRef]
5. Aakeröy, C.B.; Wijethunga, T.K.; Benton, J.; Desper, J. Stabilizing volatile liquid chemicals using co-crystallization. Chem. Commun.

2015, 51, 2425–2428. [CrossRef]

https://www.mdpi.com/article/10.3390/molecules27206853/s1
https://www.mdpi.com/article/10.3390/molecules27206853/s1
www.ccdc.cam.ac.uk/structures
http://doi.org/10.1016/j.jhazmat.2007.10.113
http://doi.org/10.1080/0889311X.2021.1978079
http://doi.org/10.1039/C4CC09650A


Molecules 2022, 27, 6853 11 of 12

6. Sandhu, B.; Sinha, A.S.; Desper, J.; Aakeröy, C.B. Modulating the physical properties of solid forms of urea using co-crystallization
technology. Chem. Commun. 2018, 54, 4657–4660. [CrossRef]

7. Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating Cocrystals: A Review of Pharmaceutical Cocrystal Preparation
Routes and Applications. Crystal Growth & Des. 2018, 18, 6370–6387. [CrossRef]

8. Shan, N.; Zaworotko, M.J. The role of cocrystals in pharmaceutical science. Drug Discov. Today 2008, 13, 440–446. [CrossRef]
[PubMed]

9. Dull, G.M.; Carr, A.; Sharp, E. Nicotine Salts, Co-Crystals, and Salt Co-Crystal Complexes. WO2015183801A1, 3 December 2015.
10. Dull, G.M.; Carr, A.; Sharp, E. Nicotine Salts, Co-Crystals, and Salt Co-Crystal Complexes. US20160185750A1, 30 June 2016.
11. Dull, G.M.; Carr, A.; Sharp, E. Nicotine Salts, Co-Crystals, and Salt Co-Crystal Complexes. WO2017089931A1, 1 June 2017.
12. Dull, G.M.; Del Rio Gancedo, S.; Julia, J.G. Nicotine Salts, Co-Crystals, and Salt Co-Crystal Complexes. US20180051002A1,

22 February 2018.
13. Dull, G.M.; Del Rio Gancedo, S.; Julia, J.G. Nicotine Salts, Co-Crystals, and Salt Co-Crystal Complexes. WO2019049049A1,

14 March 2019.
14. Benedict, J.B.; Angevine, D.J. Nicotine Materials, Methods of Making Same, and Uses Thereof. WO2021126313A1, 24 June 2021.
15. Adamek, E.; Goniewicz, M.; Baran, W.; Sobczak, A. The Study on the Photocatalytic Degradation of Nicotine. CHEM 2015,

2015, 1–5. [CrossRef]
16. Chavarrio Cañas, J.E.; Monge-Palacios, M.; Grajales-González, E.; Sarathy, S.M. Early Chemistry of Nicotine Degradation in

Heat-Not-Burn Smoking Devices and Conventional Cigarettes: Implications for Users and Second- and Third-Hand Smokers. J.
Phys. Chem. A 2021, 125, 3177–3188. [CrossRef]

17. Rayburn, C.H.; Harlan, W.R.; Hanmer, H.R. The Effect of Ultraviolet Radiation on Nicotine. J. Am. Chem. Soc. 1941, 63, 115–116.
[CrossRef]

18. Capucci, D.; Balestri, D.; Mazzeo, P.P.; Pelagatti, P.; Rubini, K.; Bacchi, A. Liquid Nicotine Tamed in Solid Forms by Cocrystalliza-
tion. Cryst. Growth Des. 2017, 17, 4958–4964. [CrossRef]

19. Garg, N.; Sethupathy, A.; Tuwani, R.; Nk, R.; Dokania, S.; Iyer, A.; Gupta, A.; Agrawal, S.; Singh, N.; Shukla, S.; et al. FlavorDB: A
database of flavor molecules. Nucleic Acids Res. 2018, 46, D1210–D1216. [CrossRef] [PubMed]

20. Naveja, J.J.; Rico-Hidalgo, M.P.; Medina-Franco, J.L. Analysis of a large food chemical database: Chemical space, diversity, and
complexity. F1000Research 2018, 7, 993. [CrossRef]

21. Burdock, G.A.; Carabin, I.G. Generally recognized as safe (GRAS): History and description. Toxicol. Lett. 2004, 150, 3–18.
[CrossRef] [PubMed]

22. Hallagan, J.B.; Hall, R.L.; Drake, J. The GRAS provision—The FEMA GRAS program and the safety and regulation of flavors in
the United States. Food Chem. Toxicol. 2020, 138, 111236. [CrossRef]

23. Abedi, F.; Razavi, B.M.; Hosseinzadeh, H. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin:
Comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytother. Res. 2020, 34, 729–741. [CrossRef]

24. Cruz-Cabeza, A.J. Acid–base crystalline complexes and the pKa rule. CrystEngComm 2012, 14, 6362–6365. [CrossRef]
25. Alvarez-Lorenzo, C.; Castiñeiras, A.; Frontera, A.; García-Santos, I.; González-Pérez, J.M.; Niclós-Gutiérrez, J.; Rodríguez-
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