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Abstract: The integral collection of information such as strains, cracks, or temperatures by ultrasound
offers the best prerequisites to monitor structures during their lifetime. In this paper, a novel approach
is proposed which uses the collected information in the coda of ultrasonic signals to infer the condition
of a structure. This approach is derived from component tests on a reinforced concrete beam subjected
to four-point bending in the lab at Ruhr University Bochum. In addition to ultrasonic measurements,
strain of the reinforcement is measured with fiber optic sensors. Approached by the methods of
moment-curvature relations, the steel strains serve as a reference for velocity changes of the coda
waves. In particular, a correlation between the relative velocity change and the average steel strain
in the reinforcement is derived that covers 90% of the total bearing capacity. The purely empirical
model yields a linear function with a high level of accuracy (R2 = 0.99, RMSE ≈ 90µstrain).

Keywords: ultrasound; coda wave interferometry; structural health monitoring; strain; stress; rein-
forced concrete; moment-curvature relationship; tests; cracking; fiber optic sensors

1. Introduction

Civil engineers have long been aware of the gradual aging of infrastructure. Global
availability of raw materials, ease of workability, almost arbitrary formability, and economic
considerations have led to the vast majority of existing structures being made of reinforced
concrete (RC). Its increasingly critical state of preservation has driven their activities.
Today, regular inspection on-site, i.e., of bridges, is part of the daily business of structural
inspectors. However, annual intervals of visual inspection [1] do not reach the root of all
problems. Rather, they enable reacting to existing (visible) damage. Until damage becomes
visible, time passes by and is lost to take countermeasures early. What can be done in
the meantime when damage is not yet visible from the outside? This is where structural
health monitoring comes into play. Research streams in in this field are copious (e.g., [2–5]).
Available options to technically equip structures are plentiful (fiber optic sensors (FOS),
acoustic emission, strain gauges, displacement transducers, etc.). They address all typical
issues of bridges [6] and promise to detect and monitor any changes continuously and is
immediately reported if predefined limits are exceeded. Non-destructive techniques are
usually preferred since they limit the impact on already weakened structures.

Distinction can be made according to the information content ascribed to a sensor
(0D/1D/2D/3D), the number of sensors required in a network to detect and track local or
global changes, but also regarding the measuring principle (electrical, (fiber-)optical, acoustic).

Acoustic Ultrasonic (US) measurement methods are characterized by the fact that a
wide volume can be investigated already with a single transmitter-receiver pair. Traditional
transmission and reflection methods mainly analyze the direct wave between the transmit-
ter and receiver by means of the time of flight [7,8]. Thus, they provide information on

Materials 2022, 15, 738. https://doi.org/10.3390/ma15030738 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15030738
https://doi.org/10.3390/ma15030738
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-5361-3255
https://orcid.org/0000-0001-8697-6378
https://orcid.org/0000-0002-2337-1571
https://orcid.org/0000-0002-2501-2249
https://orcid.org/0000-0003-1812-2148
https://doi.org/10.3390/ma15030738
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15030738?type=check_update&version=3


Materials 2022, 15, 738 2 of 17

changes or larger defects on the direct path only. Other methods focus on the late part of
the US signal that follows the direct wave, the coda. The coda is scattered several times and
thus interacts with larger regions. It is known to be sensitive to small changes in mechanical
strain (compressive and tensile) [9–15], temperature [16–18], moisture [19–21] as well as
cracks or other discontinuities in the concrete [22–26]. Since strain is the fundamental state
variable of RC [27]; it seems most promising to establish a direct correlation between it and
the coda to infer the health of structures.

Much effort has been spent on the material level on small compressive strains of
concrete in the elastic domain [9–14]. Using the acousto-elastic effect, good agreement with
US results has been found on micro-scale. By contrast, due to concrete’s significantly lower
capacity in tension, purely tensile strains have seldom been investigated [15]. While the
non-cracked domain ends around 30–40% of the maximum strength in compression (about
350µstrain), in tension, it already ends at about 100µstrain. However, from a structural
point of view, both is of minor interest on the macro-scale.

Basically, RC structures are that successful due to the symbiosis of the two materials,
steel and concrete. They are usually subjected to bending, which causes local compressive
and tensile zones, and designed in such a way that (tensile) failure is always announced
in good time and in a ductile manner. Once concrete cracks in tension, the embedded
reinforcement takes all tensile forces (by bond) and enables exploiting RC’s capacity far
beyond the elastic range. Macro-cracks (of limited width for durability reasons) are thus
an elementary part of the construction method and by no means an exclusive indicator of
imminent failure. They are inevitable, and thus, proper monitoring must cope them and
only alert authorities when critical limits are reached.

The load-bearing behavior of RC after the first crack is crucial. However, previous
research could only establish correlations for the non-cracked state. This article is dedicated
to the (almost) entire load-bearing behavior of RC, including the cracked state.

Attempts to establish a direct correlation between strain and coda characteristics ex-
perimentally beyond the elastic range have failed so far [28]. Employed as an integral coda
characteristic, the relative velocity change, obtained from coda wave interferometry (CWI)
with step-wise reference, has always shown the same sign independent of stress. Thus,
without augmented information employing other techniques for reference, a differentiation
between compression and tension remains impossible. Nevertheless, in [28], the course of rel-
ative velocity change was found bi-linear and prominent kink at a level of about 1.3 times the
cracking force. This indicates a fundamental similarity to the integral load-bearing behavior
of RC structures as reflected by the well-known moment-curvature relationship [29–32].

This similarity shall be used here specifically to establish integral correlation on
structural level. Abandoning everywhere highly resolved local strains, this is done in
reflection of an integral but representative velocity change of a scanned partial volume
between sensor pairs analogous to the specification of an average steel strain. For this
purpose, an RC beam subjected to 4-point bending has been tested at Ruhr University
Bochum. In addition to US measurements, the strain in the reinforcement is measured with
FOS. The results of this experiment are presented here. Focus is laid on the investigation of
the load-bearing behavior of RC members. An approach is presented that allows evaluating
the almost entire load-bearing behavior of RC members (i.e., up to the cracked range at
about 90% of the maximum load).

The article first introduces the methodology used for US measurements and discusses
the key parameter computed thereof. This is followed by a mathematical description of
the load-bearing behavior of RC components, and the experiments carried out. Based
on these fundamentals, the load-bearing behavior is first analyzed phenomenologically
(qualitatively) using various transmitter-receiver combinations. From the similarity to the
material behavior of RC, a correlation relationship is developed that enables infering the
member condition via US measurements.
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2. Methods
2.1. Sensing Structures with Ultrasound
2.1.1. General Aspects

Elastic-wave-based techniques have become an essential part of the non-destructive
testing (NDT) portfolio in civil engineering. Today, methods such as the impact echo [33,34],
US transmission and reflection [7,8] are well-established for material testing [35–37]. Mea-
surements with US waves—waves featuring frequencies ≥ 20 kHz—are able to analyze
the thickness of components and detect major faults. Their application always requires
a trade-off between resolution and penetration depth. With higher frequencies, smaller
features will be detected; meanwhile, the attenuation of US is increased due to interactions
with grains and pores in concrete. Planès and Larose [12] distinguish four domains for
US in concrete. Differentiation takes into account the macroscopic size of the specimen L,
the US wavelength λ, the concrete grain size d and the intrinsic absorption length la. The
wavelength is a frequency f and velocity v dependent quantity defined by λ = v/ f . Their
four domains are limited as follows:

1. The low frequency range and stationary wave regime, where the wavelength is greater
than the specimen itself. This regime is typically limited to f ≤ 20 kHz.

2. The single scattering regime where the wavelength is longer than the grains but
smaller than the macroscopic size of the structure (d < λ < L). In this regime
and 20 kHz ≤ f ≤ 150 kHz, intrinsic absorption can be neglected since la > L.

3. The multiple scattering regime ( f ≤ 1 MHz where λ < d but intrinsic absorption does
not dominate signal spreading).

4. The attenuative regime with f > 1 MHz where scattering and intrinsic absorption
prevent elastic waves from significant spreading.

Classical transmission-based US NDT techniques analyze ballistic waves—waves that
have directly traveled from transmitter (T) to receiver (R) (see Figure 1). These techniques
are situated on the lower end of the frequency ranges since they transmit significant parts
of energy on the direct path. When frequency and scatter in inhomogeneous materials such
as concrete increase, more wave energy is scattered and no longer travels on the direct path.
Then significant portions of energy are recorded at the receiver after the ballistic part. This
multiply scattered part of recorded waves is called coda [38].

w1 w2 w3

Influence 1 Influence 2 Influence 3

Figure 1. (Top): Simplified 3D representation of the volume scanned by US. (bottom): Model
representation of different influences on the signal. The contribution of these influences to CWI
characteristics depends on the affected region and a weighting factor.

Researchers in seismology and US have successfully used the coda to detect minute
changes in the earth’s crust and scattering media such as concrete (e.g., [39–41]). Multiply
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scattered coda waves sense a certain volume between transmitter and receiver (Figure 1 top).
Because they integrate information from the entire volume, the scattering medium acts like an
interferometer that merges 3D information to a receiver location. Therefore, the coda probably
joins information from different material zones with specific properties and superimposes
impacts from, e.g., temperature, moisture, mechanical stress variations and permanent changes
such as cracks. All influence the coda to a different degree, dependent on the geometry, the
environmental conditions, and the severity of changes (Figure 1 bottom). The analysis of such
superimposed information stored in the coda is called coda wave interferometry.

2.1.2. The CWI-Method

Small changes in the coda between two consecutive measurements are analyzed by the
cross-correlation of the associated signals. Figure 2 shows two consecutive measurements,
where the influence of a minute change in the material parameters is only visible in the
coda, but not in the first arrival. Several techniques are available to calculate characteristic
velocity changes from the cross-correlation and to analyze the evolution of velocity changes
in a scattering medium such as concrete (see [12]). In recent years, most researchers applied
the so-called stretching technique to obtain the velocity change (e.g., [42–45]):

− dv
v

= arg max
α∈R

CC(t, α) = arg max
α∈R

∫ t2
t1

u1(t(1− α)) u2(t) dt√∫ t2
t1

u2
1(t(1− α)) dt

∫ t2
t1

u2
2(t) dt

(1)

As in other techniques, such as the doublet technique [12], this method compares
two consecutively recorded signals u1 and u2. The level of similarity of these signals in
a time window [t1, t2] is expressed by the correlation coefficient (CC); −1 ≤ CC ≤ 1. CC
close to one indicates very similar signals. If the two signals are 180 ◦ phase-shifted, CC is
close to negative one. If the two signals are not similar anymore, CC approaches zero. To
determine a velocity change with Equation (1) the signal u2 is compared to a stretched (or
compressed) version of u1. The stretching factor α that maximizes CC is the relative velocity
change dv/v for the sensed volume. In monitoring experiments, where several consecutive
measurements are evaluated, either the initial state can be chosen as a fixed reference or the
reference is updated step-wise. The latter is advantageous in cases where strong changes
are expected, as strong differences between u1 and u2 (meaning CC < 0.7) are avoided,
while the relative velocity change can still be related to the initial state. Therefore, this
step-wise procedure is used here throughout.
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Figure 2. US measurement of the same transmitter-receiver combination, before and after an influence
has changed.
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For analysis, the relative velocity change dv/v has another, yet decisive advantage
over the correlation coefficient CC, since it develops strictly monotonically with time or
with load. Its evolution can therefore be expected to run affine to that of common structural
quantities such as strains.

As mentioned, the US coda is sensitive to small changes in the sensed material
(e.g., [9,10,12,17]). When monitoring civil engineering structures, the analysis of stress
(strain) changes in a structure is of special interest, as it can be an early indicator of damage.
This dependency of US velocity to stress (strain) is covered in the acousto-elastic theory by
the inclusion of non-linear elastic laws to the equations of motion. Then the relative velocity
change depends on non-linear parameters. A detailed description of the acousto-elastic
theory can be found in [46,47].

2.2. Load-Bearing Behavior of Flexural RC Members

Due to its low tensile strength that amounts to about 10% of its compressive strength
( fct ≈ 10% fck), plain concrete is commonly not used to build structures. Its combination
with (reinforcing) steel, which, in contrast, possesses significant tensile strength, compen-
sates for this drawback. Embedded reinforcing steel is designed to take over the stresses
released by concrete if necessary. While pouring, it is bonded to the concrete and usually
placed in the tensile zone of flexural members (stretched fiber) expected from loading. In
structural design, flexural members are commonly denoted as beams, a term that will be
used synonymously in the following.

Due to global availability of raw materials, ease of workability, almost arbitrary formabil-
ity, and costs, RC has become the most frequently used construction material worldwide.

2.2.1. Phenomenological Characterization of RC

The composite RC composed of concrete and steel possesses a complex load-bearing
behavior. As far as the top hierarchy is concerned, it can be classified into a non-cracked
and a cracked domain (state I / II, cf. Equations (3)–(6)). With increasing load, RC beams
pass through these states. Depending on the static system (location of the supports and
the external loads) and the point of interest observed along the beam, the internal forces
(stresses) also vary. As a result, the beam is usually in different states along its length (x),
dependent on the internal stresses.

As the tensile is considerably lower than the compressive strength, the load-bearing
behavior is typically classified using the tensile capacity. The non-cracked state À is
characterized by linear elastic behavior. Both concrete and steel are entirely intact and
exhibit identical strains on the same level (fiber) in the cross-section (see Figure 3 left). Then,
bond stresses between the reinforcement and the concrete do not exist.

However, as the load increases, the stresses exceed the tensile strength on a certain
level depending on the concrete grade, the concrete cracks. The bending crack starts from
the outermost tensile fiber and runs perpendicular to the neutral axis at center.

Only cracked, RC develops its full potential. Its complex load-bearing behavior is usu-
ally further subdivided into three complementary ranges (Á – Ã, according to e.g., [31,32,48]).
In the range of cracking (Á) and since the tensile strength is subject to inherent variation,
the first crack does not inevitably form at the point of maximum load (cf. Figure 3 left).
Rather, the location of the first crack is always a trade-off between load and tensile strength,
and thus depends to some extent on chance.

At cracks, the concrete stress and hence the strain immediately drops to 0. Then, the
stress that has been borne by the concrete before is redistributed to the reinforcing steel by
the bond. As a result, the stress (strain) in the reinforcement is maximum at the crack. Thus,
reinforcement and concrete do no longer exhibit identical strains at the same depth (fiber).
Over the transfer length lt, the bond reintroduces the steel forces into the concrete. Finally,
both strains converge on the same level again, while the rest of the beam at a distance lt
from the crack remains non-cracked and still responds linear elastic.
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Figure 3. Concrete and steel strains (left) for the three ranges of the σs-εsm-relation (right).

When the reinforcement has transferred the entire force released by the first crack into
the concrete again, the next crack emerges at the then weakest location (Figure 3 left cf. [49]).
Successive cracking repeats until the stress no longer exceeds concrete’s tensile strength.
This may be caused by: (1) Either the external load is no longer sufficient to exceed the
tensile strength or (2) the distance between the cracks becomes too small to transfer enough
force into the concrete via bond. The range of cracking (Á) ends at approximately another
30% of the force that has been necessary to generate the first crack (1.3 · Fcr) cf. [32].

In the third range (Â completed crack pattern), no new cracks form anymore. The
crack spacing is final and lies between lt and 2 lt. With increasing load, the existent
cracks widen while the steel strain rises. At some point (Ã), the yield strength of the
reinforcing steel is exceeded in a crack (location is again a trade-off between yield strength
and load), the reinforcement yields. No more stresses or forces can be overtaken. From
now, load increase goes along with significant elongation and strains and thus crack
width. Neglecting potential failure of concrete in the compressive zone (stresses exceed the
maximum compressive strength), the beam fails when reaching the tensile strength of the
reinforcement at some location. This failure is strongly ductile since it is well-announced
by significantly increasing strains before.

2.2.2. Intermediate Resume

Crack before failure is the fundamental design principle of RC. Thus, RC structures are
always designed on the safe side, assuming the purely cracked state and neglecting any
contribution of concrete to the tensile capacity of the member. In the check of equilibrium
of internal forces, all stresses in the compressive zone are ascribed to the concrete while
tensile stresses are appointed to the reinforcement. However, what is safe and simple in the
design is too extensively idealized regarding realistic deflection prognoses on service level.
Taking that simplified assumption, the actual deflection would be strongly overestimated.

Thus, in service conditions, it is of utmost importance to carefully take into account the
concrete’s contribution to the tensile capacity. That capacity of concrete between the cracks,
which increases the total stiffness of the member, is often referred to as tension stiffening.
Two alternatives are established to take it into account. One distinguishes a concrete-based
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formulation [29,30] from a steel oriented approach [31,32,48,50]. The latter formulation
via an average steel strain (cf. Figure 3 right) is used here since both the steel strain and
relative velocity change, are integral properties of associated characteristic volumes and
alter during cracking. This correlation shall be exploited.

2.2.3. Computational Approach

Mathematically, the—due to cracking—fluctuating steel strain along the beam εs(x)
can be averaged. The average steel strain εsm is obtained from Equation (2) by integration
and division through the integration length. That way, realistic steel strains for serviceability
conditions can be computed.

εsm =
1
lt

∫ lt

0
εs(x) dx (2)

Please recall that the calculation of strains in the non-cracked state À is elementary.
Without cracks, the strain along the beam εI

s varies only according to the external forces. On
each location, its distribution over the depth is linear and zero at the neutral axis. Upwards,
this range is limited by the steel stress associated with concrete cracking σI

sr.

À: εsm = εI
s for 0 < σs ≤ σI

sr (3)

For convenience, the following range of cracking Á is first skipped. First, focus is set
on the range of completed cracking Â. When cracked, the force between concrete and steel
is transferred by bond. Bond is mathematically captured by a bonding law that generally
idealizes the location and slip-dependent shear force transfer between concrete and rebar.
It describes how the steel strain in the vicinity of a crack develops. The average steel strain
in range Â follows from Equation (4).

Â: εsm = εI I
s − βt · ∆εsr for 1.3 · σI I

sr < σs ≤ fy (4)

Herein, βt governs the postulated bonding behavior, i.e., it indicates the steel stress
development starting from the crack. Taking the simplest assumption βt is constant,
the bonding behavior is constant, too. This explicitly means: it does not change with
load increase. More accurate approaches to account for changing bond properties due to
local cracking are published elsewhere [32,48,51]. The strain gain in the reinforcement at
transition from the non-cracked to the cracked state is denoted ∆εsr.

Thus, in view of Equation (4) and Figure 3 right, it is inferred that the term βt · ∆εsr
corrects the purely cracked state for tension stiffening. Moreover, in terms of stress, region
Â is bounded to the top by yielding of the reinforcement (≤ fy). Towards the bottom, it
is limited by transition to the range of cracking (> 1.3 · σI I

sr ). From compatibility to the
ranges À and Â, the average steel strain in the range of cracking Á is deduced which yields
Equation (5).

Á: εsm = εs −
βt · (σs − σI I

sr ) + (1.3 · σI I
sr − σs)

0.3 · σI I
sr

· ∆εsr for σI I
sr < σs ≤ 1.3 · σI I

sr (5)

When yielding has occurred (index y), the ultimate load-bearing capacity of the
beam associated with ft is almost reached. With just small gains in the stress level
( ft/ fy ≈ 105–110%), strains and deformation in range Ã grow fast. Then, the average
steel strain is obtained from Equation (6) wherein δd accounts for the ductility of the
reinforcement (δd = 0.8 high ductility and δd = 0.6 normal ductility).

Ã: εsm = εsy − βt · ∆εsr + δd ·
(

1− σI I
sr
fy

)
· (εs − εsy) for fy < σs ≤ ft (6)
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Considering all four ranges, a piece-wise defined function of the average steel strain is
available that covers all phenomenological aspects introduced above. Elsewhere, it has already
been applied to compute realistic deformations of a wide variety of RC structures [52–54].
For this purpose, the average steel strain must first be converted into an average curvature
and then (numerically) integrated. Through additional deliberations, the same approach has
also been extended to cover other, even more difficult, composite materials such as steel fiber
reinforced concrete SFRC [55,56].

3. Experiments
3.1. Experimental Setup

To substantiate the supposed principle correlation between the average steel strain
and the relative velocity change as a key property of ultrasound obtained from CWI, an ex-
periment has been set up at the lab at Ruhr University Bochum. One simply supported RC
beam with rectangular cross-section shown in Figure 4 and dimensions 250/500/3500 [mm]
(width/depth/field length) subjected to four-point bending was manufactured. To cover
bending and shear demands with respect to EC 2 [57], it has been equipped with longi-
tudinal reinforcement (3 Ø 20 mm) and stirrups (Ø 12 mm/300 mm/2). This simple setup
meets the experimental objectives quite well since the central shear-free zone between the
two vertical loads yields a plateau of constant bending moment. Herein, pure bending
induces constant strains in each fiber and a neutral axis at the center. The strain distribution
over the depth is linear. Thus, the principal stresses are strictly orientated horizontally
along the beam. Interference with shear (indicated by inclined principal stresses) must
not be expected. In this region, a distributed crack pattern with random characteristics as
discussed above (cf. Section 2.2.1) will develop while the external load remains simple and
controllable. During the test, the load will be increased step-wise and slowly to track all
intermediate changes and to record the strains up to bending failure.

[mm]

180

180

300

2 Ø 8

3 Ø 20

Ø 12 / 300 / 2

Rebar with FOS

UST

UST

8 11 17148 11 1714

7 10 1613

9 12 1815

19

Figure 4. Beam geometry, reinforcement layout and loading along with the US transducer (UST) network.

3.2. Placement of Measuring Equipment

To record US data, a transducer network has been installed all along the beam
(Figure 4). It covers the central region of the beam on three levels. At the bottom and
top layers, the transducers are attached to the longitudinal and constructive reinforcement
(2 Ø 8 mm, cf. Figure 4), respectively. The central layer is fixed to the stirrups. Embedded
US transducers (type SO807 from Acoustic Control Systems (Sarrebruck, Germany), Ltd.)
were used. They consist of a piezoceramic cylinder and have a central frequency of approx-
imately 60 kHz. The radiation was already characterized in [58,59] and is approximately
uniform in the plane perpendicular to the piezo ring. Newly developed fasteners made
from quick-cement (see Figure 5 left) fix the transducers to the reinforcement. Since their
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material is similar to the beam’s concrete, they do not significantly impair wave propagation
and load-bearing behavior.

Figure 5. (Left): US transducer attached to the reinforcement with a quick-cement fastener. (center):
Gluing a FOS to the rebar. (right): Beam before the experiment in the test bench.

For reference, a broad spectrum of strain measurement techniques (strain gauges, digital
image correlation DIC, FOS, etc.) is available [60]. However, not all methods are equally
suited. Conventional strain gauges face difficulties in allocating the measured data to a distinct
position. Due to the physical length of a gauge about 3 to 6 mm, the strain is always averaged
over that length. So the resolution is limited by the length. Another limiting factor concerns
the number and density of individual gauges glued on concrete or steel surfaces and the
associated effort. Furthermore, gauges always deliver highly local one-dimensional directed
information. Moreover, since the decision where a gauge is to be placed has to be taken in
advance (long before the experiment starts), the chance is great to miss the strain hot-spot
at a crack whose location is random by nature as discussed above (cf. Section 2.2.1). These
deficiencies leave strain gauges marginally relevant for the intended application. However,
they yield highly precise local strain references to double-check or calibrate other devices.

Thus, measurement techniques that provide higher information density (1D to 3D
strain data) seem to be essential. With DIC, exclusively two-dimensional surface strains
are observable, which is good for concrete strains but makes the acquisition of steel strains
of embedded reinforcement infeasible. Furthermore, strain measurement with FOS is a
trade-off. One-dimensional strains along optical fibers are obtained in (sub)millimeter
resolution. When appropriately applied (gluing in a groove in the rebar [28,60,61], see
Figure 5 center), strains can be acquired along entire reinforcement bars in high resolution.
Installation effort and precision depend on the right combination of core, coating and
cladding [60].

3.3. Concreting and Curing

Approx. 0.8 m3 of concrete was mixed for the test specimen and several concrete cubes
and cylinders (to determine the material properties). The fresh concrete was poured into
the prepared formwork and compacted with the aid of a vibrating table. After 28 days of
curing, the test was carried out. On the test day itself, the accompanying material tests
(concrete and reinforcement) gave the material parameters listed in Table 1. All values are
an average of three individual samples tested.

Table 1. Material properties of the concrete and reinforcement, respectively.

fcm fctm Ecm fy
[N/mm2] [N/mm2] [N/mm2] [N/mm2]

33.0 2.8 28,800 552.0
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3.4. Load Control

Moreover, strain measurements with FOS can be performed quasi continuously (at
defined intervals). In contrast, US measurements require load steps during testing since
they measure differences between load stages. On each load level (under constant load),
the US measurements are conducted transmitting from one US transducer and receiving
at another. Successively all other combinations are worked through before the load is
increased to the next level.

As discussed above, the time of cracking (end of the range À, corresponding load Fcr)
is a tipping point for both the load-bearing behavior of RC and the results of ultrasound.
For this reason, the load is finer graded in the initial range. Up to 2 · Fcr ≈ 100 kN, it is
increased in 5 kN steps. Thereafter, the increment is doubled until the reinforcement yields
(end of range Â, corresponding load Fy ≈ 340 kN). The significantly reduced stiffness of
the specimen beyond this level rapidly leads to inconstant strains when yielding even on a
fixed load level. Then US results can no longer be assigned to a distinct load level without
doubt, and testing is consequently stopped.

The environmental conditions in the laboratory are held constant at approx. 22 °C and
52% relative humidity.

3.5. Proof of Concept

With the FOS on the flexural reinforcement, strains are quasi continuously sensed
along the entire beam (spacing of measurement points < 1 mm). Figure 6 displays such
strain readings in the reinforcement (in blue) for a load of F = 100 kN. Cracks in the
concrete are clearly indicated by the peaks. They are induced by the strains transferred
from the reinforcement through bond. Their spacing is regular, as can be expected for the
range of completed cracking Â. From the strain record, it can be seen that at that load,
cracks have occurred almost over the entire specimen, not only in the central region of
constant moment between the loads. Besides a rapid increase of the strains around the
cracks, the curve is characterized by scatter. However, the magnitude of the scatter is small
compared to the strain peaks.

For comparison the average steel strain in the reinforcement (orange) is computed
employing Equations (3)–(6). Throughout the piece-wise defined mean function idealizes
the measured course quite well. Depending on the bending moment in longitudinal
direction, individual parts of the beam are assigned to the different ranges. The non-
cracked region close to the supports is followed by the range of cracking Á and the cracked
region with completed crack-pattern Â at center.

In the measuring field between the loads, the strain is constant due to the con-
stant bending moment. Here, the average steel strain (green) can be obtained, analog
to Equation (2), from averaging the FOS readings over the measuring length, too.

εsm =
1

1200 mm

∫ 2350 mm

1150 mm
εs(x) dx (7)

This average strain (εsm,meas = 571µstrain) is plotted in green in Figure 6. It nearly
coincides with the theoretically predicted mean from calculation (εsm,calc = 572µstrain,
orange). No doubt, at other load levels, the difference may be greater. However, in general
computational prediction of material behavior by Equations (3)–(6), albeit idealizing, seems
suitable and in good agreement with the high-resolution measurements by FOS.
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Figure 6. (Top): Strain records of the FOS on the flexural reinforcement compared to theoretically
expected average steel strains. (Bottom): Associated ranges employing the σs–εsm—relation on an
equivalent load level.

4. Results and Discussion
4.1. Development of the Relative Velocity Change with Time and Load

On the left in Figure 7, the force F on the specimen is plotted versus the relative
velocity change dv/v from CWI. All results of transmitter-receiver combinations from
the compressive (orange) and tensile (green) zones, as well as the neutral axis (blue), are
displayed. However, the selection has been limited to the next neighbors (sensor distance
30 cm) of the horizontal combinations only. For each zone, three curves are plotted since
one sensor in the neutral axis failed.

Due to the constant bending moment between the concentrated loads, all three com-
binations on each level form a set and theoretically represent identical states. In the
non-cracked state, this is more easily recognized, since a homogeneous stress distribution
theoretically exists throughout. Certainly, in the cracked state, this expectation seems
justified, too, due to the uniformly distributed cracks caused by the load pattern and the
integral sensing of the material by the US signal.

Consequently, no further distinction must be made between the individual curves
on the same level. They all have the same features and show the same characteristics.
Deviations of the curves in a set from each other are attributed to inherent scatter, while the
differences between the sets are seen significant in view of material response.

In general, all curves in the diagram show two almost linear branches and a range of
transition in between. In the range from 0 to 50 kN, they have an initial slope which becomes
flatter in transition between 50 and 75 kN and then remains approximately constant until
the end. The change in slope is most pronounced for the tensile curves and weakest for
the compressive ones. The US signal is more affected in the tensile range than in the
compressive range, which is attributed to concrete cracking. Regarding their limits, the
three ranges agree with the known limits of the material behavior.

Great similarity to the average strain in the reinforcement computed from the FOS
readings according to Section 3.5 can be observed in Figure 7 on the right. Therein, the
evolution of the average steel strain with load is shown. The parallelism between the
characteristics of the F-dv/v relation and those of the εsm-σs relation becomes apparent.
The following conclusions are drawn:
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1. Cracking strongly affects the US signal and the key quantities computed with CWI,
the correlation coefficient CC and the relative velocity change dv/v.

2. The relative velocity change is always negative.
3. Characteristic points associated with significant changes in the material response Fcr

and 1.3 · Fcr can be identified in the F-dv/v relation, too.
4. A fundamental change of the load-bearing behavior happens in the range of cracking

Á and is also predicted by the F-dv/v relation.
5. In agreement with the decreasing slope of the εsm-σs relation , the slope of the F-dv/v

relation decreases in transition from the non-cracked to the cracked state.

As expected and illustrated in Figure 7, the curves of sensor pairs in the neutral axis fall
between the compressive and tensile sets of curves. More precisely, they are first oriented
towards the curves of the compressive set. However, then, with cracking, they tend to
follow the tensile set, which leads to the following conclusions:

1. The closer a sensor pair is located to the tensile zone, the more the relative velocity
change drops.

2. With load increase, cracks gradually grow towards the compressive zone at top. This
is well-reflected by the trend of the central axis’ gradient towards the tensile one. As
the cracks approach the centerline transducers, the US signal is affected more like the
signal in the tensile zone.

3. Not even in the non-cracked state with linear elastic material behavior, the central
trend is the average of compressive and tensile trends. Thus, the relative velocity
change develops non-linear with the load.

Confined to purely mechanical considerations, influences from elastic strain and, above
all, from cracks are inseparably linked to the signal. The scanned volume (cf. Figure 1)
integrates and mixes impacts from unloaded, elastically loaded and cracked regions. Their
proportions are reflected in the magnitude of the relative velocity change.
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Figure 7. Load of the specimen plotted versus the relative velocity change (left) with particular focus
on the non-cracked À and cracking Á range and average steel strain (right).

Moreover, uncertain onset of cracking, load-dependent crack growth, as well as the
variable compressive and tensile zone heights, cause these proportions to vary with time
and load. Different sensitivity to tensile and compressive strains in general and with respect
to the material state, cracked or non-cracked, is another factor that affects the magnitude of
the relative velocity change.
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4.2. Establishing a Correlation Function

Figure 8 combines the average steel strain computed from the FOS results and the
relative velocity changes of the US transducer pairs in the tensile zone from Figure 6. Both
are coupled via the load level. Three nearly straight curves are obtained. Even at first
glance, average steel strain and relative velocity change appear to be linearly correlated. By
linear regression, the correlation function according to Equation (8) can be established with
great confidence.

εsm = c · dv/v

with c = const.
[
µstrain

%

] (8)

Therein, strain is to be inserted in µstrain and the relative velocity change in %.
The constant c has to be determined on each individual member. In our case c equals
−280µstrain/%. This model yields a coefficient of determination of 0.99 explaining 99%
of the strain variation by variation of the relative velocity change. The error is small and
quantified to 88µstrain on average by the Root Mean Squared Error (RMSE).

0 −2 −4 −6 −8 −10
Relative Velocity Change, dv/v [%]

0

400

800

1200

1600

2000

2400

A
v

er
ag

e 
S

te
el

 S
tr

ai
n

, 
 [

µ
st

ra
in

]
ε s

m

F/2 F/2

T12-R09
T12-R15

T18-R15
9 12 15 18

Regression

ε  [µstrain] = −280 · dv/v [%]sm

2R  = 0.99

RMSE = 88 µstrain

εsm

1

2

3

R
an

g
es

Figure 8. Correlation of average steel strain to relative velocity change.

The model is ready to be used to infer from US measuring data and thereof computed
relative velocity changes on the average steel strain in the sensed member.

Finally, the model’s range of applicability shall be discussed. In the experiment,
the load is increased step-wise up to 300 kN at maximum. Up to this load level, relative
velocity changes and reinforcement strains are carefully tracked. From the member’s design
according to EC 2 [57], yielding of the reinforcement is expected at a load level of 340 kN,
while the ultimate load-bearing capacity is reached at 375 kN. Thus, the model covers 80%
of the permissible load range.

Since no significant changes in the load-bearing behavior are to be expected from
mechanical reasons until the reinforcement yields, the model can even be used beyond the
experimentally validated range. With yielding, 90% of the permissible load range would
finally be covered by extrapolation. Both go significantly beyond any other correlations of
ultrasonic and structural parameters of RC members found so far, which are all limited to
the linear elastic range.
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4.3. Impact of the Transducer Distance

The proposed model is based on US measurement data from transducer pairs of 30 cm
distance throughout. This distance is not particularly long, neither with regard to usual
RC members, nor (and even more so) with regard to the monitoring of entire structures.
For reasons of costs and installation, the aim is to use fewer, i.e., more distant, sensors. In
construction practice, the optimum is often a compromise between costs and density of the
sensor network. Therefore, it has finally been investigated whether a tripled/quadrupled
transducer distance has an impact on the obtained results or the found model.

The issue is addressed in Figure 9. At first, a mean response (dashed line) is computed
from the results of the three sensor pairs per level already shown in Figure 7. Moreover,
a shaded band of scatter is provided, that marks the minimum and maximum relative
velocity changes on all load levels. Both rest on the short transducer distance of 30 cm.

From the recorded US data, the results for the longest transducer distances are then
computed analogously. They are shown as solid lines and cover distances of 90 up to
120 cm. All three follow the mean courses and preserve the key characteristics of the initial
curves. No clearly deviating trends can be identified. Thus, it is concluded that even with
greater transducer distances, a similar model would be obtained. As long as this is not
available, the proposed model might be used instead. One must not expect significant
deviations in the proposed steel strains.
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Figure 9. Fitting of longer transmitter-receiver combinations in the presented shorter ones.

5. Conclusions

In the context of an ever-increasing need for structural health monitoring of existing
RC structures, the paper links essential key parameters computed from the coda of US
signals to structural state variables and their evolution with time and load. Based on
empirical data obtained on a simply supported RC beam subjected to four-point bending,
a linear model is derived that correlates the relative velocity change of the coda dv/v
to the mean strain of the reinforcement εsm from FOS. Mechanically, εsm integrates all
characteristics of RC structures as known from moment-curvature relations and enables
infering the material state consistently. In detail:

• For the first time, a correlation between a key parameter of ultrasound and a structural
state variable is established that covers 90% of the complex load-bearing behavior of
RC members. It integrates load-dependent stiffness and concrete cracking.
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• For the beam and a sensor distance of 30 cm, a linear model is established with great
confidence: εsm = c · dv/v with: c = −280, R2 = 0.99, RMSE ≈ 90µstrain.

• Tripled sensor distances do not impair the proposed correlation function much.
• Whether in compression or tension, dv/v obtained from step-wise CWI is found to be

negative throughout.
• The closer a sensor pair is located to the tensile zone, the more dv/v drops.
• Although dv/v always integrates elastic effects as well as micro- and macro-cracking,

the latter seems to dominate. Compared to the compressive zone, dv/v is more
sensitive to changes in the tensile zone.

• Conversely, changes in the compressive zone are more difficult to detect because they
are easily superimposed by tension.

Of course, a general, component-independent correlation relationship for arbitrary
RC members has not yet been established. Just a possible approach to achieve this goal has
been shown. To achieve this, further experiments are certainly needed, which have to cover
not only structural quantities or different concrete composition but also environmental
conditions and changes of these. The wide range of influences on the US signal has
to be considered for real-world application of this approach. With the consideration of
environmental conditions and structural influences, the presented approach can be used to
infer the loading of the RC structure by US measurements. A statement about its health
becomes possible.
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