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ABSTRACT

One of the obstacles hindering a better understanding
of cancer is its heterogeneity. However, computa-
tional approaches to model cancer heterogeneity
have lagged behind. To bridge this gap, we have de-
veloped a new probabilistic approach that models in-
dividual cancer cases as mixtures of subtypes. Our
approach can be seen as a meta-model that summar-
izes the results of a large number of alternative
models. It does not assume predefined subtypes nor
does it assume that such subtypes have to be sharply
defined. Instead given a measure of phenotypic simi-
larity between patients and a list of potential explana-
tory features, such as mutations, copy number
variation, microRNA levels, etc., it explains phenotypic
similarities with the help of these features. We applied
our approach to Glioblastoma Multiforme (GBM).
The resulting model Prob_GBM, not only correctly
inferred known relationships but also identified new
properties underlining phenotypic similarities. The
proposed probabilistic framework can be applied to
model relations between similarity of gene expression
and a broad spectrum of potential genetic causes.

INTRODUCTION

Uncovering genetic causes of complex diseases is one of
the most challenging open questions in systems biology
research. Complex diseases are typically heterogeneous.
This disease heterogeneity can be observed on many
levels: (i) organismal level phenotype such as survival
time, (ii) molecular level phenotype such as gene expres-
sion and (iii) underlying causes such as mutations, gene
copy number variations (CNVs) or perturbations in
microRNA expression level. This intricate phenotypic
and genotypic landscape makes it challenging to connect
phenotypes to their genotypic causes.

In the past decade systems biology emerged as a key
approach to connect phenotypes to their causes (1–13).
However, in the case of cancer, the relation between

genotype, dysregulated pathways and higher level disease
phenotypes is nontrivial owing to heterogonous nature of
the disease. One attempt to deal with this heterogeneity is
using set cover approaches, which provide a strategy to
select a representative set of disease-associated genes from
a diverse set of patient cases (2,4,5). More recently, Kim
et al. (14) generalized the set cover approach to module
cover. While these methods help to overcome patient-to-
patient variability in inferring dysregulated genes/
pathways, they do not directly model disease heterogen-
eity. A second line of research to understanding disease
heterogeneity is through disease classification. In particu-
lar, supervised classification methods seek to learn the
features distinguishing two or more predefined disease
categories. Pioneered by the work of Chuang et al. (15),
several approaches used expression and network connect-
ivity information for disease classification (16–18). More
recently, Setty et al. (19) developed a regression-based
model for a supervised classification of Glioblastoma
Multiforme (GBM). Unfortunately, obtaining reliable
disease categories is highly nontrivial in most cases.
Bypassing this problem, unsupervised disease classifica-
tion methods typically use clustering of disease cases
based on physiological or molecular characteristics such
as gene expression. In the case of Glioblastoma, classifi-
cation attempts used gene expression (20,21) and/or
microRNA expression (22) or simultaneous clustering
genome-wide DNA copy number, methylation and gene
expression data (23). While each of these categorizations
provides a reasonable subtyping, they are not always con-
sistent. Such lack of consistency results in part from using
different data sets and different classifying features, but
also in part from attempting to classify into a small
number of subtypes a set of cancer cases that does not
necessarily admit a sharp partition into categories. In par-
ticular, recent studies revealed heterogeneity of cancer
cells even within one patient (24).
To address these challenges, building on an idea of topic

model previously used for uncovering semantic structures
of text networks (25), we propose a probabilistic method
of modeling of cancer heterogeneity. Our approach offers
important new perspectives. First, in our approach,
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individual cancer cases are represented as mixtures of
subtypes. These subtypes are not predefined but rather
uncovered as a part of model building. Importantly, we
do not assume that there exists a sharp partition into
subtypes. Instead subtypes are defined in a probabilistic
fashion and can be ‘fuzzy’. Next, rather than simply
grouping cancer cases based on similarity of features of
interest as has been done before, we distinguish two classes
of features: phenotype descriptors and causative features.
Phenotype descriptors are used to measure similarities
between disease cases, while causative features are compu-
tationally inferred so that similar phenotypes are
underlined by similar causative features.
Specifically, our model is based on two components: (i)

a measure of phenotypic similarity between the patients,
(ii) a list of features—possible disease causes such as mu-
tations, CNV, microRNA levels, etc. Phenotypic
similarities are used to construct a phenotype similarity
graph referred to as the patient phenotype similarity
network. Features in the list are used as possible explan-
ations. We use this data to build a distribution of disease
subtype models where each model is defined as a specific
probability distribution of the features. This probability
distribution is constructed so that the neighbors in the
patient phenotype network are likely to have the same
subtype assignment. We stress that we do not assume
that there exists ‘the’ disease subtype model but rather
we consider a distribution of such models.
Our probabilistic model allows identification of genetic

aberrations, which are responsible for similarities and dif-
ferences in patients’ phenotypes, pinpointing dependencies
among such aberrations, and emerging probabilistic
subtypes. It also provides a probabilistic way of inferring
the genotype–phenotype relationship.
We applied our approach to The Cancer Genome Atlas

(TCGA) GBM data to obtain a probabilistic model of the
disease, Prob_GBM. We used gene expression to describe
disease phenotypes, consequently the patient network was
built based on gene expression similarity. This helped us
to compare results inferred from our model with the study
of expression-based TCGA GBM subtypes (20). We show
that while our model is largely consistent with the current
knowledge about GBM, it also leads to new hypotheses.
To the best of our knowledge, this is the first time that a

probabilistic model explaining patient similarity relation
has been proposed in the context of studying of biological
heterogeneity. Specifically, by building Prob_GBM we
obtained an unsupervised model that explains expression
similarities by similarities of mutations, CNVs and
microRNA levels. Thus unlike pattern-discovery
methods, such as iCLUSTER (26,27), which introduces
hidden variables for subtype membership to associate
genotypic variations with gene expression, our approach
models the actual relation between putative genetic causes
and expression phenotype. Specifically, it ensures that
pairs of patients with a similar gene expression pattern
(patients connected by an edge in the patient similarity
graph) are underlined by similar features and that
subtypes are defined as a probability distribution of
these features. Because our model construction ensures
that the distribution of features has explanatory power,

in the case when the considered genotypic variations
cannot explain expression variations the model cannot
be built. There is no requirement for sufficient explanatory
power of causative features in co-clustering methods.

MATERIALS AND METHODS

The general framework for the construction of the new
probabilistic meta-model

The input for building the model are (i) a patient similarity
network where each node corresponds to a patient and
edges are defined based on phenotypic similarity
between patients (here gene expression), (ii) a set of
features assigned to each node (patient). The features
describe genotypic alternations or perturbed regulatory
elements and are selected so that similarities between
these alterations explain observed (pairwise) phenotype
similarities. The disease is represented by a distribution
of disease subtype models, where each disease subtype
is defined by a set of features and their probabilities.
The outline of the method is illustrated graphically in
Figure 1. In the subsequent subsections, we will explain
each element of the approach in more detail.

Patient network and explanatory features

The patient network represents the similarity between
patients’ disease phenotypes. This network can be
defined based on a diverse set of data. Specifically, we
assume that patients’ attributes are of two types. One
group describes patient phenotype and is used to define
patient similarity network. In this study using GBM
TCGA data, we regard gene expression profile as the
phenotype. Consequently, in our patient network, two
patients are connected when their expression patterns
are similar as assessed by the Pearson correlation coeffi-
cient. Using expression data to define patient phenotypic
similarity allows us to relate our probabilistic model to the
expression-based classification from the GBM literature.
The second group of attributes consists of features used to
explain phenotypic similarities. Because we wanted to
uncover genetic underpinning of phenotypic similarities,
we used mutations, gene CNVs and microRNA dysregu-
lation, all of which have been reported to affect the
susceptibility of many disorders including cancers
(28,29). Here, we focus on regulatory roles of
microRNAs in cancer even though their expressions can
also be considered as molecular-level phenotypes. When
treating microRNA as phenotypes, however, we would
need to have the information on their causative genomic
abnormalities including copy number changes and muta-
tions, which are generally unavailable. At the same time, it
is reasonable to use microRNA expression level as a
causative feature for gene expression. In summary, we as-
sociate with each patient the set of genotypic features that
characterize this patient with the aim of identifying
abnormalities to explain phenotypic similarities and
using their distribution to define subtypes as described
below.
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Model formalism

In brief, we model the patient network with a probabilistic
generative process. Assuming K latent disease subtypes,
features are considered as observations generated by a
probabilistic process composed of K subprocesses each
corresponding to one of the disease subtypes. The
method of selecting appropriate K used in this study is
described in the results section. Each patient is assumed
to belong to each of the subtypes with some probability
and each subtype is defined by a probability distribution
of the explanatory features. Thus the explanatory features
of each patient are generated according to a distribution,
which is a mixture of the distributions of all subtypes
(Figure 1B). The links between patients are modeled as
binary variables whose distribution is based on the simi-
larity of the subtype memberships of the two patients
(Figure 1C). This allows defining disease subtypes using

features that are not used to describe disease phenotype
while ensuring that patients with similar disease pheno-
type will have similar subtype assignment. Intuitively,
our probabilistic model can be seen as a meta-model
defined by combining 1000 models.
More formally, P patients are profiled with a set of N

underlying features (genomic aberrations) where each
feature is described by a discrete value (microRNA expres-
sion is also represented by integers as described in
methods). We describe the ith aberration in pth patient
as a discrete random variable gp,i.. Patient network is
described by P2 binary random variables lp,p0 where lp,p0
is set to 1 if there is a link between patients p and p0. Each
disease subtype �k is defined as a distribution over the
genomic aberrations. This observed patient network is
assumed to be generated by the following hierarchical
sampling process. First, for each patient p, draw subtype
proportions �p from the K-dimensional Dirichlet

Figure 1. Inference of the probabilistic model of disease subtypes. (A) The input to the inference algorithm is the patient phenotype similarity
network and a set of genomic factors (mutations, CNVs, etc.) (B) Each disease subtype (K=4) is modeled by a distribution of the factors (shown as
boxes). Each patient has some probability of belonging to each subtype thus genetic factors of each patient are mixtures of genetic characteristic of
each subtype. (C) The links between patients are modeled as binary variables where a probability of a link is defined by the similarity of the
probabilistic subtype assignment. (D) Final model where patients are colored based on the most likely subtype assignment and uncolored nodes
represent defining genomic factors.
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distribution. For each genomic factor gp,i, draw the latent
subtype assignment zp,i from the multinomial distribution
defined by �p and randomly choose a genomic factor
from the corresponding multinomial distribution.
Finally, for each pair of patients (p, p0) draw the
binary link variable lp,p0 from the distribution defined
by the link probability function c. This function is ex-
ponentially dependent on the inner product of two
vectors of subtype assignments zp and zp0 that generated
their genomic aberrations. This means that the specific
subtypes used to generate the genomic aberrations are
those used to generate the links.
From this generative process, the latent variable

�={�p} associates patients with subtypes and
Z={zp,i} determines the probability of links in the
patient similarity graph and the subtype assignments of
features, which are distributed according to B={�k}. By
estimating �, B and Z, we obtain the probability with
which each patient belongs to each subtype, the distribu-
tion of genomic aberrations defining each subtype, and
probability with which each two patients are linked in
the patient network.

Inference of the model
The generative process presented in the previous section
corresponds to the following joint distribution of observed
and latent variables:

p B,�,Z,G,Lð Þ ¼
Y
k

pð�kÞ
Y
p

pð�pÞ

�
Y
n

pðzp, ij�pÞpðgp, ij�zp, i
Þ

 !Y
p,p0

cðlp,p0 jzp,zp0 Þ:

Now, our goal turns to the computational problem, that
is, to calculate the following posterior distribution of the
latent variables �, Z and B conditioned on the observed
patient network represented by G and L:

p B, �,ZjG,Lð Þ ¼
p B, �,Z,G,Lð Þ

pðG,LÞ
:

Here, p(G,L), the marginal probability of observations,
is a major obstacle to achieving our goal. Theoretically,
this can be obtained by marginalizing out the latent vari-
ables, namely, summing the joint distribution over every
possible instantiation of the latent variables. In practice,
however, it is often computationally intractable because
the number of possible cases is innumerable. Many re-
searchers in various fields have tried to come up with
new algorithms for more accurate and more efficient ap-
proximation of this probability. In this study, we adopt
the collapsed Gibbs sampling algorithm (http://cran.r-
project.org/web/packages/lda/) for relational topic
models that has been successfully applied to processing
document network data (25) as described below.

Estimation of the model
Each feature in the patient data sets is considered in turn,
and the probability of assigning each feature into each
subtype is estimated conditioned on the subtype

assignments to all other features. This conditional distri-
bution can be represented as follows:

p zp, i ¼ kjzp,�i, gp, i ¼ n, gp,�i, l,�, �
� �
/

Cn
�i, k+�PN

n¼1 C
n
�i, k+N�

C
p
�i, k+�PK

k¼1 C
p
�i, k+K�

Y
p6¼p

0 cðlp, p0 jzp, zp0 Þ,

where zp,�i represnts all other assignment excluding the
current assignment, � and � are the Dirichlet
hyperparameters for subtype proportions and feature
multinomial distributions, respectively. cn�i, k denotes the

number of times feature n is assigned to subtype k excluding
the current assignment, and c

p
�i, k denotes the number of

times subtype k is assigned to some features in a patient
excluding the current assignment. An exponential link

probability function is applied so that c lp, p0 ¼ 1
� �

rapidly approaches 1 when the inner product of two
vectors of subtype assignments zp and zp0 is large. Here, it
should be noted that � (association of patients with
subtypes) and B (distribution of features) are integrated
out when sampling of subtype assignments is performed.
Such a collapsed Gibbs sampling starts with random as-
signments of subtype, thus the samples from the early
stages of the process may inaccurately represent the poster-
ior distribution. In practice, however, it has been shown to
work well and can speed up the convergence of standard
(noncollapsed) Gibbs sampling over �, B and Z.

By the above sampling algorithm, we obtained the
number of times features in each patient were assigned
to each subtype. This means that we can estimate the em-
pirical subtype distributions per patient �̂pk as follows:

�̂pk ¼
c
p
k+�PK

k¼1 c
p
k+K�

:

Supplementary Figures S4A–E illustrate these
probabilities for each patient in our GBM dataset when
we set K=4. The sampling algorithm also provides the
number of times a feature was assigned to a subtype.
From this number, we can similarly estimate the probabil-
ity of each feature n under subtype k as follows:

�̂nk ¼
cnk+�PK

k¼1 c
n
k+N�

:

Because the ordering of subtypes is exchangeable
between runs of the algorithm, subtype k in one run
might be different from subtype k in another run. Thus,
we assess the stability of algorithm by considering how
many times a pair of patients (or features) and patient–
feature pairs have the same subtype assignments in
multiple runs. For each run of algorithm, we check if

argmax
k

�̂pk is equal to argmax
k

�̂p
0

k (or argmax
k

�̂nk is equal to

argmax
k

�̂n
0

k ) and argmax
k

�̂pk ¼ argmax
k

�̂nk. How often these

statements are true for 1000 runs of algorithms, that is,
patient–patient (or feature–feature) and patient–feature as-
sociation probabilities are illustrated in Figures 2B and 3.
In every run, both a and g are set to 0.1, respectively.
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Figure 3. Integrated result from 1000 subtype models for feature–feature and feature–patient relations. The two heat maps illustrate frequencies with
which each feature–feature (A) patient–feature (B) pair has the same subtype assignment according to the empirical distribution (see ‘Materials and
Methods’ section). Supplementary materials online allow exploring the heat map in an interactive way zooming in on individual features).

Figure 2. (A) Patient network based on expression correlation. Colors correspond to gene expression-based subtypes identified by Verhaak et al.
where red denotes the Mesenchymal TCGA subtype, blue Classical, purple Proneural and green Neural. The numbers denote the patient groups from
panel B. Note that the Mesenchymal and Proneural subtypes are highly connected, the Classical subtype is somewhat less connected, while the
Neural is not well separated from the Proneural subtype. (B) Patient–patient heat map illustrating frequencies with which each pair of patients has
the same subtype assignment over all 1000 models in our meta-model. (C) TCGA subtype assignment based on gene expression. (D) Probabilistic
subtype assignment over 1000 models (see text).
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The quality of the results can be affected by the selec-
tion of number of subtypes. Too few subtypes would
hinder detection of more subtle differences and too
many might lead to noisy and uninterpretable patient
groups. One way to address this challenge is to consider
various alternatives and then choose the number leading
to the best clustering stability as in Brunet et al. (30).
While it could be a tedious and time-consuming procedure
especially for large data sets, it allows us to select the ap-
propriate number of subtypes for the given dataset based
on a quantitative measure rather than a subjective evalu-
ation. By using patient–patient association probability as
a measure of similarity, an average linkage hierarchical
cluster tree is generated (the order of samples in the heat
map is also derived by this tree). Then, cophenetic correl-
ation coefficients for different K are calculated to evaluate
the quality of alternative solutions. If the pairwise associ-
ations vary little run by run, most association probabilities
are close to 0 or 1. In this case, the cophenetic correlation
coefficient is also close to 1 because it is a measure of how
well the tree represents the association probability. The
results of this procedure for the basic and extended sets
are illustrated in Supplementary Figures S2 and S3, re-
spectively. Here, we selected K=4, which has the largest
cophenetic correlation for the basic set. We note that
despite the difference in the value of K, the patient–
patient heat map did not change significantly.

Data

To construct the patient network, we use a unified gene
expression profile obtained by applying factor analysis to
genes present on three different microarray platforms (31).
After assigning unified expression measures to genes
present on all three platforms, rescaling unified measures
and filtering out unreliable or uninformative genes, final
unified gene expression estimates of 1740 genes for every
patient are acquired (https://tcga-data.nci.nih.gov/docs/
publications/gbm_exp/). As a distance metric, one minus
the correlation between patients is calculated. Copy
number data from several high-throughput technologies
were analyzed using three different computational
methods and reported as gene-specific amplification and
deletion calls (32). For more accurate analysis, we adopt
consensus calls, which are supported by at least two inde-
pendent platforms and two independent methods. (For
five patients that do not have consensus copy number
calls, we obtained the calls from just one platform and
one method.) Each random variable of copy number
genomic factors is set to 1 for single-copy amplification
or hemizygous deletion and to 2 for multiple-copy ampli-
fication or homozygous deletion. (See the supplementary
information of (32) for the implementation of these
methods.) Consensus calls are downloaded from the
cBio Cancer Genomic Portal (33) and 218 variables for
copy number amplification and deletion are finally con-
sidered in our analysis. Through the same portal, we
acquired mutation profiles generated by exon sequencing.
Although these profiles include different mutation types
such as single nucleotide mutation, insertion and
deletion, we treat them equally. Thus, we considered 418

variables for genes that have a mutation in at least one
patient and set their values to 2 when the corresponding
genes are mutated in a particular patient. One hundred
twenty-one highly variable, survival-related or neurodeve-
lopmental-related microRNAs are also selected (22) and
their expression profiles (http://compbio.med.harvard.
edu/Supplements/CancerRes11.html) are standardized by
subtracting the mean expression and dividing the differ-
ence by standard deviation. Similar to random variables
for copy number alterations, two random variables per
microRNA are considered and they indicate how many
standard deviations away above or below each mean
microRNA expression are, respectively. That is, we set
this variable to 2 if the expression is >2 standard devi-
ations from the mean and set to 1 if the expression is
between 1 and 2 standard deviations.

RESULTS AND DISCUSSION

Prob_GBM meta-model

First, we present the results of applying our probabilistic
modeling to GBM data, which has 202 patients repre-
sented in TCGA. This is an ideal data set for our
purpose because GBM has been shown to be heteroge-
neous and the TCGA data set has been previously used
for disease classification and identification for subtype-
specific genetic abnormalities. The technical details of
data processing are described in the ‘Materials and
Methods’ section.

To construct the patient network, we use the unified
gene expression profile obtained by applying factor
analysis to genes present on three different microarray
platforms (31) (see ‘Materials and Methods’ section).
Using (1 - expression_correlation) as the distance
measure, we selected the top 5% of the closest pairs as
network edges. We considered also 3 and 10% cutoffs but
the first produced sparse network, which would miss many
patient similarities, while at the 10% cutoff, we observed
an increased number of edges between different subgroups
without a significant increase of connectivity within
sparsely connected blue and green clusters (Figure 2).
Finally, we confirmed that the top 5% cutoff provides
reasonable modularity of the patient network by
graphing the distribution of node clustering coefficients
and overall network clustering coefficient at various
cutoffs (Supplementary Figure S1). The resulting
network is presented in Figure 2A, where nodes are
colored based on their classification into four expres-
sion-based TCGA groups (31).

As the explanatory features associated with nodes
(patients), we consider copy number alternations, muta-
tions and microRNA expression. Specifically, the model
has one random variable per each gene and per each type
of a genetic variation observed in this gene. We treat amp-
lification and deletion as two different types of variations.
A random variable corresponding to the deletion is set to
1 for hemizygous deletion and to 2 for homozygous
deletion. An application variable is set to 1 for single-
copy and 2 for multiple-copy amplification (see
‘Materials and Methods’ section). There is one variable
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per gene to represent mutation. Note that it is possible to
set a separate variable for each specific mutation in each
gene, but to simplify the model we just use one variable to
represent the presence or the absence of a mutation.
Finally, we consider two sets of the over- or under-expres-
sion of microRNAs. The first is the set of the 121 highly
variable, survival-related or neurodevelopmental-related
microRNAs identified in (22) and the second has all re-
maining 470 microRNAs after removing only viral origin
microRNAs (22). We refer to the set of features that
include mutation, CNV and small microRNA set as
‘basic’ and mutation, CNV and large microRNA set as
‘extended’. We consider over- and under-expression as
two different types of alterations and thus they are repre-
sented by two groups of random variables. In either case,
each variable indicates if the expression is >1 or 2
standard deviations from the mean microRNA expression
are (see ‘Materials and Methods’ section).

Finally, we evaluated the stability of the learning algo-
rithm for the model with different K (K=3, 4, 5 and 6
were tested in this article, see ‘Materials and Methods’
section). This parameter setting allowed us to examine
the consistency of our model with the knowledge gained
by TCGA classification and to demonstrate its increased
explanatory power relative to this standard (see ‘Materials
and Methods’ section). We selected K=4 for the basic set
and K=5 for the extended set (Supplementary Figures S2
and S3). Importantly for all K, there was one subgroup
that contained a singleton outlier. This outlier was a
patient with unusual number of mutation and atypical
expression pattern. We ignore this outlier in the discus-
sions below.

Relation of probabilistic subtypes in Prob_GBM
meta-model and expression based TCGA subtypes

Recall that the Prob_GBM meta-model is defined by 1000
subtype models. In each such model, the subtypes might
be defined by a different distribution of features and the
assignment of the patients to subtypes is probabilistic. As
an illustration, we zoom in on one such subtype model in
Supplementary Figure S4. To obtain the Prob_GBM
meta-model, we integrated 1000 instances of subtype
models. Note that while the models might have a different
distribution of defining features, they are all optimized to
explain the same patient phenotype similarity network
drawing the explanations from the same explanatory
features. Thus, these models are not unrelated and the
distribution of their recurrent features provides a link
between explanatory features and phenotypic properties.
One way to summarize the final meta-model is to display,
for all pairs of patients, the frequency of being categorized
into the same subtype (see ‘Materials and Methods’
section). The heat map representing these frequencies is
shown in Figure 2B. The colored bar below the heat
map (Figure 2C) shows the assignment of the correspond-
ing patient to the TCGA group in (31). From this figure
we can see that there are three core groups of patients,
generally consistent with the TCGA annotation as
Mesenchymal, Classical and Proneural, which with prob-
ability close to one belong to the same subtype in each

model. We can also summarize the subtype assignment
over the 1000 models of the Prob_GBM meta-model.
Specifically, for all subtypes models, we can label the
three subtypes as Mesenchymal, Classical, Proneural and
‘neither’ based on the probability of co-assignment of a
given patient with a fixed representative of each ‘core’
group. In this way we summarized, over all 1000
subtype models, the probability of each patient being in
each of four probabilistic subtypes. These probabilities are
shown in Figure 2D. Note for each of these three
subtypes, there is a large group of patients where the
TCGA annotation of patients agrees perfectly with the
maximal probability assignment. Interestingly, the
patients for which the most likely subgroup is not the
same as the expression-based TCGA classification are typ-
ically best represented as mixtures of subtypes. In particu-
lar, TCGA expression-based classification also contains a
controversial Neural TCGA subtype (green). This subtype
is often considered to be not well defined (23,34). Our
mixture model elegantly explains this discrepancy.
Specifically, it reveals that the genotypic features of
many patients in this group are best described as a
mixture of Proneural and Mesenchymal subtypes. For
example, subgroup 22 in Figures 2A and B is such a
group of patients that frequently co-assigned with the
core Mesenchymal group.
We were interested to see if the Neural subtype would

emerge as an individual subtype when we increase the
number of subtypes to K=5 and, at the same time, use
the extended features, which include the large microRNA
set as explanatory features. However, the Neural subtype
also did not emerge as an individual subtype in this case.
The corresponding heat map is shown in Supplementary
File S2. A new subtype that emerged was relatively small.
It was underlined by a mutation in a protein kinase
A-anchoring protein AKAP2, Matrix Metal Protease
MMP15, Cadherin-1 protein and a number of
microRNAs among which upregulation of miR-584 were
most prominent. miR-584 has been suggested to decrease
invasion ability in human clear cell renal cell carcinoma
(35). These annotations strongly suggest a relation of this
potential subtype to the tumor invasion process. However,
a larger set of samples is needed to confirm that this group
can indeed be considered a separate subtype.
Finally, to keep the findings of this section in the correct

perspective, we reiterate that while we discussed the emer-
gence of subtypes, our approach is not a clustering pro-
cedure. In our model, emergence of probabilistic subtypes
is based on the explanatory ability of the selected features.
Thus the fact that Neural subtype has not emerged as a
separate subtype in our model does not contradict the
results of (20). Instead it signifies that the expression
similarities between the patients in this group are best ex-
plained by a combination of explanatory features
delineating the other two groups.

Genetic causes underlying Prob_GBM probabilistic
subtypes

Next, we analyzed mutations, copy number alterations
and microRNA levels underlying Prob_GBM meta-
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model. For each of the 1,000 subtype models, we can
estimate the probability that a feature underlines this
subtype (see ‘Materials and Methods’ section). For any
two features we can also estimate the frequency of
jointly underlying the same subtype. This frequency dis-
tribution can be summarized as feature–feature heat map
(Figure 3A). Similarly, we can estimate the frequency of
assigning same subtype to every patient–feature and use it
to construct patient–feature heat map (Figure 3B).
Interactive visualization of the heat maps are enabled in
Supplementary Files S1 and S2.
We started by validating the method and confirming

that the Prob_GBM meta-model is consistent with
known relationships. From the patient–feature heat
map (Figure 3B and Supplementary File S2), we see
that IDH1 mutation and PDGFRA amplification are
the most prominent features underlining the group cor-
responding to the Proneural subtype, while NF1
mutation and deletion underlines the probabilistic
subtype harboring mostly patients classified as
Mesenchymal. Amplification of EGFR and deletion
and mutation of PTEN are among the genetic variations
underlying the subgroup corresponding to the
Mesenchymal subtype but they also have a significant
impact for the Classical subtype. This is in an excellent
agreement with (31) and provides additional evidence
that our method correctly detects genomic signals
underlying gene expression similarity. In addition to the
genetic factors underlying the three basic subtypes
identified by Verhaak et al. (31), we confirmed the
expected clinical characteristics of the groups with
respect to age and necrosis (Supplementary Figure S5).
We next turned our attention to additional features that

contributed to the definition of the corresponding subtypes.
Because our model explains gene expression similarities,
not all genetic features explaining these relations are neces-
sarily causative for cancer. Therefore, for the purpose of the

discussion below, we focused on known cancer causes and
examined how these alterations contribute to the model
definition. For the purpose of visualization, we extracted
from the full spectrum of the relationships (Figure 3 and its
interactive version in Supplementary File S2) a summary of
the importance of known cancer-related genetic aberrations
for defining particular subtypes. Specifically, in Figure 4,
relative frequencies of oncogenic features in groups defined
by the Prob_GMB meta-model are shown. For group 1
(corresponding to the Proneural subtype), in the addition
to mutation in IDH1 gene and PDGFRA amplification, a
significant role is played by amplifications of ERBB2 and
ERBB3. There are also several additional explanatory
features that underlie group 2 (corresponding to the
Mesenchymal subtype). The most interesting features
include deletions of cancer suppressers BRCA1, BRCA2
and deletions of FOXO1 and FOXO3. The most prominent
explanatory feature for the probabilistic Classical subtype
was amplification of AKT2. Interesting is also the emer-
gence of two members of necrosis factor receptor superfam-
ily members TNFRSF6B and TNFRSF1B. However,
overall, mutations, CNVs and microRNAs used as
possible features cannot completely disambiguate this
subgroup as they are either not general enough (present
in a small number of cases) or shared with other
subtypes. This can also be appreciated in Figure 2D by
observing that the members of this group belong to other
two subgroups in a significant fractions of the models. As
an example of the explanatory role of microRNAs, the
Messemchymal group is distinguished by under-expression
of miR-128, miR-137 and miR-124. It is known that miR-
124 and miR-137 inhibit proliferation of GBM cells and
induce differentiation of brain tumor stem cells (36),
while recently miR-128 has been identified as a candidate
glioma tumor suppressor for proneuronal GBM (37). In
contrast, these microRNAs have relatively high expression
in the Proneural probabilistic subtype.

Figure 4. Mutations and CNV of selected cancer genes and microRNAs emerge as important for subtypes definitions. Here, color bars represent
relative frequencies for groups defined by the Prob_GMB meta-model. We calculate them by considering the discretized values of each feature in the
data set as a frequency. Total frequencies of the selected features over all patient samples are presented in the parenthesis.
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CONCLUSIONS

While it is currently well understood that most cancers are
heterogeneous, the tools to model such heterogeneities
were lagging behind this understanding. In this article,
we developed Prob_GBM, the first probabilistic explana-
tory model for cancer. Our model was constructed in an
unsupervised way as a meta-model built from a large set of
models that explains phenotypic similarities with the help
of genetic aberration and microRNA expression.
Importantly, the technique used in the construction of
Prob_GBM is general and can be used to connect a dif-
ferently defined phenotype similarity with a different set of
putative causes.

In this article, we focused on the introduction and the
validation of our approach and demonstrating its power.
In the current study, we did not use methylation data as a
possible explanation because it is not defined for a large
subset of patients.

Because we used gene expression similarity to define
phenotypic similarity between patients, if these similarities
were indeed underlined by genetic and microRNA
aberrations, we expected to find the corresponding
drivers and, through the probabilistic model, refine the
subtype definitions. Like others, we did not find support
for treating the Neural TCGA as a separate subtype.
Instead, our model suggests that the Neural subtype
can be seen as is a mixture of the Proneural and
Mesenchymal subtypes. We succeeded in identifying the
features explaining the remaining subtypes. We stress that
because the role of features identified by our model goes
beyond simple association, if no features that explain
phenotypic variability can be found, the model cannot
be built.

Prob_GBM provides reach information about the
relation between genetic causes and phenotypic variations
allowing for identifying new relationships and postulating
new hypotheses. It not only confirmed known drivers of
phenotypic differences but also identified novel ones and
the relationships between them. Thus, we conclude that
Prob_GBM fills a significant gap between the general
current understanding of cancer and existing approaches
for modeling cancer diversity.

In this work, we focused on model inference and valid-
ation as well as demonstrating how the information rep-
resented in the model can be leveraged to understand
disease heterogeneity in the context of relatively well-
studied GBM. However, many interesting variations of
the model are possible. For example, phenotype similarity
might include survival time and responses to treatment.
Features can be extended to include transcription
factor biding, methylation, age, sex or environment.
Alternatively, features can be narrowed down to
microRNA only, to study the impact of these molecules
alone. Our study opens the door to these and many other
applications.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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