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Abstract: Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year
in various regions worldwide, seriously endangering human health. Studies have shown that host
non-coding RNA is an important regulator of host–virus interactions in the process of IAV infection.
In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with
regard to the regulation of IAV replication. According to the regulation mode of host non-coding
RNAs, the signal pathways involved, and the specific target genes, we found that a large number of
host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1
and other key genes regulate the replication of IAV and indirectly participate in the regulation of the
retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway,
Janus kinase signal transducer and activator of transcription signaling pathway, and other major
intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above
findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response
to the influenza virus. These findings will provide a more comprehensive understanding of the
function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues
to the mechanism of cell–virus interactions and the discovery of antiviral drug targets.

Keywords: IAV; miRNA; lncRNA; circRNA; interferon; antiviral innate immune response

1. Introduction

Influenza viruses belong to the Orthomyxoviridae RNA virus family and is divided
into genera A, B, C and D. Among them, genera A, B and C cause respiratory diseases
in humans [1]. Influenza A virus (IAV) can infect a wide range of hosts and is highly
infectious & transmissible, and easily mutable, which can result in an influenza pandemic
in a short time; therefore, it creates an enormous burden and pressure on the public
health system [2,3]. The innate immune response is the first line of defense against virus
infection and plays an important role in the process of resisting virus invasion [4]. In the
process of IAV infection, the body relies on different pattern recognition receptors (PRRs)
in cells to recognize virus-related molecular patterns, such as retinoic acid-induced gene I
(RIG-I), melanoma differentiation factor 5 (MDA5), and toll-like receptors (TLRs). Many
different molecular signals (such as: RIG-I, MDA5, TRAF3, IKK, TBK1) are also recruited to
inhibit the replication of the influenza virus through a series of complex signal pathways,
including PRR-dependent signal pathways, which can induce the production of interferon
(IFN) and inflammatory factors, as well as the expression of antiviral IFN-stimulated genes

Viruses 2022, 14, 51. https://doi.org/10.3390/v14010051 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14010051
https://doi.org/10.3390/v14010051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-8959-6984
https://doi.org/10.3390/v14010051
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14010051?type=check_update&version=1


Viruses 2022, 14, 51 2 of 23

(ISGs) [5–8]. These proteins not only inhibit the replication of viruses in infected cells but
also recruit dendritic cells (DCs) and macrophages from virus-infected tissues and further
stimulate the immune response mediated by T cells and B cells [9,10].

Non-coding RNAs (ncRNAs) are a large class of RNA transcripts that are transcribed
from the genome but lack the ability to encode proteins [11]. At the RNA level, they can
perform their respective biological functions and play an important role in cell growth,
differentiation, replication, and apoptosis. Regulatory non-coding RNAs mainly include
microRNA (miRNA), long non-coding RNA (lncRNA)and circular RNA (circRNA) [12,13].
MiRNA, lncRNA, and other non-coding RNA participate in gene expression regulation,
thereby affecting cell replication and differentiation, individual growth and development,
immune response, and other life activities [14–16]. Recent studies have shown that non-
coding RNAs play an important role in regulating the interactions between host cells and
viruses [17–19]. Influenza virus infection can induce significant changes in the expression
of many hosts’ non-coding RNAs, some of which are involved in regulating the antiviral
response of host cells, while others promote the efficient replication of the virus [20,21]. In
this paper, we systematically summarized the host non-coding RNAs that are involved
in the regulation of influenza virus replication, performed summary analysis according
to their inhibition or promotion of virus replication, and mapped the signal network
of host non-coding RNAs that regulate the influenza virus response (see Figure 1 for
relevant information).
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the activation of multiple antiviral signal pathways as well as the activation and expression of
antiviral factors. During this process, host noncoding RNAs are induced or inhibited by influenza
virus infection, which mediates the activation of target genes, affects the expression of antiviral natural
immune molecules, and indirectly regulates the replication and proliferation of influenza virus. The
target gene sites in the natural immune response signaling pathway involved in the regulation of
noncoding RNA are concentrated in the RLR signaling pathway, TLR-like receptor signaling pathway,
JAK-STAT signal pathway, and NF-κB signaling pathway. (Dotted arrow is indirect effect; solid line
is direct effect).

2. Host miRNA Regulates IAV Replication

MiRNAs are widely distributed in eukaryotes and some viral genomes. They are
highly conserved non-coding single-stranded RNA fragments encoded by nuclear genes
and play a role in the regulation of post-transcriptional gene expression [22,23]. In animal
cells, miRNA mediates the inhibition of target gene expression or mRNA degradation by
recognizing the 5′-UTR—3′-UTR of target gene mRNA to form a 2–8nt complementary struc-
ture and also regulates the expression of key genes in different signaling pathways [24,25].
Analyzing the miRNA reported to be involved in the regulation of IAV revealed that the
host miRNA regulation of viral gene expression can be divided into two parts. First, the
miRNA directly targets the mRNAs of the influenza virus, inhibits the expression of viral
proteins, or mediates the degradation of viral mRNAs, thereby inhibiting the replication of
the virus. Second, the miRNA indirectly regulates the replication of the influenza virus by
targeting key genes in the influenza virus response signaling pathway.

2.1. Host miRNA Directly Inhibits IAV Gene Expression

From the perspective of IAV infection, cell miRNA expression is crucial for virus–host
interactions such as virus entry, replication, translation, and transmission. When H9N2 or
H5N1 infected avian-derived DCs, gga-miR6675 and gga-miR6616 were found to target of
mRNA nuclear localization sequence (NLS) of viral PB1, triggering PB1 gene silencing and
inhibiting H9N2 replication. (See Table 1 for relevant information) The study may provide
new insights into the interactions between bird miRNA and bird DCs and the inhibition
of virus replication [26]. In A549 cells with high expression of miR-3145, miR-3145 can
silence the 3′-UTR of the PB1 gene for the H5N1, H1N1, and H3N2 subtypes of IAV, reduce
gene expression and inhibit virus replication [27]. In addition, miR-323, miR-491, and
miR-654 contain the same nucleotide sequence, which can down-regulate the expression of
the PB1 gene through the conserved region of the PB1 gene for the H1N1 virus, thereby
inhibiting the replication of the virus in Madin-Darby canine kidney cells [28]. In A549 cells,
miR-188-3p inhibited the gene expression of PB2 by binding to its mRNA and effectively
inhibited the replication of IAV (H1N1, H5N6, and H7N9) [29]. Host non-coding RNAs,
such as miR-584-5p [30] and miR-485 [31] have been reported to act on the PA, PB1, and
PB2 genes of IAV, inhibiting mRNA expression thereby reducing virus replication.

In addition to regulating the expression of the PA, PB1, and PB2 genes of IAV, host
miRNA can also inhibit the replication of IAV by binding to different target gene sites
of the influenza virus, thus reducing the risk of influenza virus escape. NS1 protein of
influenza A virus has been shown to induce cell cycle stagnation in the G0/G1 phase,
providing a more favorable cell environment for virus replication [32]. It has been reported
that hsa-miR-1307-3p is a novel and effective inhibitor of NS1 expression and influenza
virus replication. Type I IFN induces the up-regulation of hsa-miR-1307-3p expression
during H1N1 infection of A549 cells, and hsa-miR-1307-3p directly targets the viral gene
NS1. Inhibition of NS1 gene expression, can reduce the impact of virus infection on the
cell cycle, and ultimately inhibit the replication of IAV [33]. Studies have shown that not
only does influenza virus infection induce some miRNAs in the host to exert antiviral
effects but non-host encoded miRNAs also have anti-influenza effects. miR-2911 is an
atypical miRNA encoded by Honeysuckle and can negatively regulate PB2 and NS1 protein
gene expression by a variety of avian influenza viruses. In mouse model tests, miR-2911
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inhibited the replication of H1N1, H5N1, and H7N9 viruses in mice, prevented weight
loss and death caused by an influenza virus infection and was found to be a potential
and effective broad-spectrum antiviral factor against viral infection [34]. The replication
and transcription of IAV depend on nucleoprotein (NP) genes [35]. The 5′ seed regions of
cfa-miR-125b and cfa-miR-151 are partially complementary to the mRNA of NP and NS1
of the avian influenza H3N2 virus [36]. MiR-769-3p targets the expression of influenza
virus NP protein [29], while let-7c significantly inhibits the replication of influenza virus
in A549 cells by binding to the 3′-UTR region of the M gene of IAV [37]. SSC-miR-221-3p
acts as a host barrier to regulate nuclear factor kappa B (NF-κB) P65 phosphorylation,
inhibit the expression of anti-apoptotic protein HMBOX1, and induce apoptosis during the
cross-species infection of IAV, or by targeting and silencing the hemagglutinin (HA) gene
of the H5 subtype, restricting the infection and replication of influenza viruses [38].

Table 1. miRNA directly targets key genes of viruses.

miRNA Target a Cell Type Virus Induced
Expression b

Binding Site of
Target c References

miR-323
miR-491
miR-654

PB1

MDCK H1N1
(A/WSN/33) UP CCACC [28]

miR-3145 A549

H5N1
(A/Thailand/NK165/2005)

H1N1
(A/Thailand/104/2009)

H3N2
(A/Thailand/

CU-H1817/2010)

UP
UAUGGAGCUGCCC
GCUUUGGAGUGUC
UUUGGAGUGUCU

[27]

miR-485 HEK293T H5N1
(A/duck/India/02CA10/2011) UP CAGCCUC [31]

miR-324-5p A549 H5N1
(A/duck/India/02CA10/2011) DOWN GAGGGGAT [39]

gga-miR6675 HEK293T H9N2
(A/NJO2/2009) UP — [26]

miR-4753 A549 H5N1
(A/Thailand/NK165/2005) UP AGAGAAAGAGAA [27]

miR-584-5p

PB2

A549

H1N1
(A/Beijing/501/2009)

H5N1
(A/goose/Jilin/hb/2003)

DOWN GCAAACCA
GGAGGGC

[30]

miR-1249

miR-188-3p A549

H1N1(A/FM/1/47)
H5N6

(A/chicken/Hubei/XY918/2016)
H7N9

(A/quail/Hebei/CH06–
07/2018)

UP
TGTGGGA

ATGTGGGA
ATGTGGGA

[29]

hsa-miR-1307-3p

NS1

A549 H1N1
(A/California/04/2009) UP CGCCGAG [33]

miR-3682 A549

H1N1
(A/Thailand/104/2009)

H3N2
(A/Thailand/

CU-H1817/2010)

UP GUAUCGUC
AUGAUAACACAG [27]

miR-4331 NPTR H1N1 DOWN TGGCCT
ACAGCCAC [40]
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Table 1. Cont.

miRNA Target a Cell Type Virus Induced
Expression b

Binding Site of
Target c References

miR-584-5P

M1

A549 H5N1
(A/goose/Jilin/hb/2003) UP GCAAACCA [30]

let-7c A549 H1N1
(Jing Fang/86-1) UP ACTACCT [37]

miR-204

HA

NPTR H1N1
(A/swine/Nanchang/F9/2010) DOWN AAAGGGA [40]

miR-192 A549 H5N1
(A/PR8) UP — d [41]

ssc-miR-221-3p PAM H5N1
(A/duck/An-hui/1/2006) DOWN AAUGUGGUA [38]

miR-1249

NA

A549

H5N1
(A/goose/Jilin/hb/2003)

H1N1
(A/Beijing/501/2009)

UP GGAGGGC [30]

miR-216b A549

H5N1
(A/Thailand/NK165/2005)

H3N2
(A/Thailand/

CU-H1817/2010)

UP UGCAGGGAU
UGUCUGCAGAGA [27]

miR-4513

PA

A549

H1N1
(A/Thailand/104/2009)

H3N2
(A/Thailand/

CU-H1817/2010)

UP UCGUCAGUC [27]

miR-5693 A549

H5N1
(A/Thailand/NK165

/2005)
H3N2

(A/Thailand
/CU-H1817/2010)

UP UAGAGCCACUG
AGAGAAAGAGAA [27]

ssc-miR-222 HEK293T H5N1
(A/duck/An-hui/1/2006) UP GAUGUGGUA [38]

a: miRNA directly target key genes of viruses; b: induced expression of miRNA after influenza virus infection;
c: sequences of miRNA binding site of target (5′-3′), d: ‘—’ means unknown.

2.2. Host miRNAs Indirectly Inhibit IAV Replication by Regulating Intracellular Signaling

In the process of IAV infection, the body relies on different PRRs in the cell to recognize
the molecular patterns associated with the virus, activate the expression of IFNs, activate
the downstream signaling pathway, release a large number of inflammatory factors such
as interleukins (ILs), and initiate the antiviral immune response. Studies have shown that
host miRNAs can be involved in regulating the activation of host PRR-mediated antiviral
signaling pathways, thereby indirectly inhibiting the replication of influenza viruses. (See
Table 2 for relevant information).

Host miRNA inhibits IAV replication by regulating TLR-mediated innate immune
response signaling pathways. In THP-1 cells infected with H7N9, let-7e enhanced the
immune response of host cells, reduced the expression of HA, and inhibited the replication
of the virus by participating in the inflammatory response mediated by the TLR4 of host
cells. It also regulated the inflammatory response and mediated the anti-inflammatory
process by targeting IL-1 and IL-6, preventing an excessive inflammatory response [42].
In addition, host miRNA such as miR-200a [43], miR-29c [44], miR-650 [45], miR-206 [46],
and hsa-miR-664a-3p [47] have been reported to induce IFN expression by mediating TLR
signaling pathways during the process of IAV infection, inhibiting the replication and
proliferation of IAV. According to studies, miRNA-155 participates in the regulation of a
variety of biological processes and also plays an important regulatory role in the infection
of influenza virus and other viruses, mainly affecting the JAKs-STATs and TLRs/NF-κB sig-
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naling pathway to regulate viral replication and the antiviral response of the body [48–50].
For example, human lung microvascular endothelial cells are infected with H1N1 influenza
virus, miR-155 is induced by H1N1 infection. Overexpression of miR-155 enhances the ex-
pression of inflammatory factors and activation of NF-κB factor. Sphingosine-1-phosphate
receptor 1 (S1PR1) is a target of miR-155. S1PR1 is widely expressed in endothelial cells,
immune cells, lymphocytes, macrophages, muscle, and other tissue cells. Mir-155 actively
regulates influenza A-induced inflammation by targeting S1PR1 [51]. Another new study
showed that miRNA-155-5P was effective in alleviating acute respiratory distress syndrome
(ARDS) caused by influenza virus infection [52]. In addition, evidence shows that miR-
155 also plays a role in the adaptive immune response induced by the influenza virus,
controlling CD8+T cell response by regulating interferon signaling. The miR-155-KO den-
dritic cells cannot effectively present antigen and miR-155 in CD8+ T cells can control the
differentiation of Th1, Th2, and Th17 subsets and affect the development of TREG cells [53].

Host miRNA inhibits IAV replication by regulating RIG-I-like receptor (RLR)-mediated
innate immune response signaling pathways. RLRs play a critical role in host innate
immunity, and mice with either RIG-I or MDA5 deficiency have shown susceptibility to
RNA viruses [54]. When an IAV infects a host cell, viral RNA is recognized by RIG-I and
MDA5, respectively, activating the signaling pathways of the innate immune response.
Overexpressed RIG-I and MDA5 strongly activate the IFN-β promoter and up-regulate the
expression of antiviral molecules such as 2′-5′oligoadenylate synthetase (OAS), double-
stranded RNA-dependent protein kinase (PKR) and myxovirus resistance protein A (MxA)
and inflammatory factors (such as IL-2, IL-6, IFN-α, and IFN-γ) [55]. MiR-136 was identified
as a novel endogenous RIG-I activator that may contribute to the control of influenza virus
disease. The expression of miR136 was upregulated five-fold following H5N1 influenza
virus infection in A549 cells. In vitro experiments showed that miR136 exhibited strong
antiviral activity against both the H5N1 influenza virus and Indiana Vesicular Stomatitis
Virus (VSV). Further UTR reporter gene analysis revealed that the 3′-UTR of IL-6 is the
target of miR-136, which also acts as an immune agonist for RIG-I, causing the accumulation
of IL-6 and IFN-β in A549 cells. These results indicate that miR136 has dual functions of
mediating post-transcriptional regulation and immune activation, enhancing the antiviral
effect by promoting the expression of antiviral and inflammatory factors [56].

Host miRNA induces interferon expression by regulating the Janus kinase signal
transducer and activator of transcription (JAK-STAT) signaling pathway and inhibits the
replication and proliferation of IAV. The antiviral effect of IFN mainly occurs through the
activation of the JAK/STAT signal, which induces the production of ISGs. IFN regulatory
factor 5 (IRF-5) is a key transcription factor for maintaining the inflammatory phenotype
of macrophages. IRF-5 can promote the replication of IAV, while miR-302a regulates the
cytokine storm induced by IAV by binding to the 3′-UTR of IRF-5 and interferes with the
replication of influenza virus [57,58]. IAVs inhibit the host type I IFN-mediated antiviral
immune response by reducing the expression of miR-30, which targets and reduces the
expression of suppressor of cytokine signaling 1 (SOCS1) and suppressor of cytokine
signaling 3 (SOCS3), thereby reducing their inhibitory effects on the IFN/JAK/STAT
signaling pathway. In addition, miR-30 inhibits the expression of the interferon-induced
transmembrane proteins 3 (IFITM3) negative regulator neuronal precursor cell-expressed
developmentally downregulated 4 (NEDD4) [59]. A recent study found that overexpression
of miR-206 in A549 cells significantly inhibited mRNA expression of NP, NS1, and PB1 by
the H1N1 and H3N2 influenza viruses, decreased the protein expression of NP and NS1,
and significantly reduced influenza virus titers. The 3′-UTR reporter gene assay showed
that miR-206 binding to the 3′-UTR of tankyrases2 (TNKS2) activated JNK/c-Jun signaling,
induced type I IFN expression, enhanced STAT signaling, reduced the viral load in the
lungs, and improved the survival rate of mice [46].

Host miRNA inhibits IAV replication through other antiviral pathways. The antigen
presentation ability of DCs plays an irreplaceable role in the recognition and removal
of viruses. Host miRNA can inhibit the replication of IAV by regulating the antigen
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presentation of host DCs. Both active and inactive H9N2 avian influenza viruses can
enhance the ability of DCs to present antigens and activate T lymphocytes. GGA-miR1644
enhances the ability of DCs to inhibit viral replication by muscle blind-like protein 2. This
study provides new clues for the role of miRNAs in inducing DC antigen presentation and
inhibiting virus replication [26].

Host miRNA can inhibit the replication of IAV by regulating cell apoptosis. In the
process of cross-species infection by the influenza virus, ssc-miR-221-3p and ssc-miR-222
can induce the apoptosis of positive allosteric modulators (PAM) cells by directly targeting
the mRNA of HA and PA genes and the expression of the anti-apoptotic protein HMBOX1.
Moreover, these two miRNAs inhibited the infection and replication of IAV in newborn pig
trachea (NPTR) cells. Compared to Simian immunodeficiency virus (SIV) infection, P65
can be phosphorylated more efficiently after IAV infection, which is why the expression
of ssc-miR-221-3p and ssc-miR-222 is significantly upregulated after viral infection [38].
According to a previous study, the stromal interaction molecule 1 (STIM1)/miR-223/nod-
like receptor pyrins-3 (NLRP3) axis can regulate the inflammatory damage of lung epithelial
cells induced by IAV. By inhibiting the activation of the TLR4/NF-κB signaling pathway
and NLRP3 inflammasome, miR-223 alleviated the oxidative stress and apoptosis of lung
epithelial cells induced by IAV and alleviated cell damage. In the serum of patients infected
with IAV, STIM1 was significantly upregulated, while miR-223 was down-regulated. STIM1
regulates the expression of NLRP3 by binding to the AACUGAC sequence in miR-223.
In vitro silencing of STIM1 can promote the expression of miR-223 and inactivate NLRP3
and inflammasome, inhibit the oxidative stress and inflammatory response induced by IAV,
reverse cell viability, inhibit cell apoptosis, and thereby reduce the inflammatory damage
of lung epithelial cells induced by IAV [60]. MiR-29a binds to the 3′-UTR binding site of the
Wnt/Ca signal receptor frizzled5 gene, reduces the expression level of endogenous frizzled5
protein, reduces the mRNA and protein levels of IAV, and also reduces the production
of the progeny virus. Moreover, the inhibitory effect of miR-29a on IAV infection was
observed in A/PR/8/34, A/WSN/1933, A/OK/3052/09, and A/OK/309/06 H3N2 and
other influenza virus strains [61].

2.3. Host miRNAs Promote the Replication of IAV

During the interactions between the influenza virus and host, host miRNAs inhibit
virus replication directly and indirectly. However, some studies have shown that the
miRNAs can negatively regulate the antiviral response pathway, reduce the expression of
antiviral factors, and promote the replication of the influenza virus.

Host miRNAs negatively regulate TLR and RLR-mediated innate immune response
pathways to promote IAV replication. The expression of miR-21-3p was significantly
reduced in A549 cells infected with H5N1, and miR-21-3p down-regulated the expression
of basic fibroblast growth factors 2 (FGF2) recombinant proteins, accelerated the replication
of H5N1, and inhibited the IFN response. The overexpression of miR-21-3p significantly
increased the expression levels of viral genes M1 and NP and viral titers in influenza
virus-infected cells and significantly decreased the expression of antiviral factors such as
IFN, PKR, MxA, and OAS [62]. In addition, miR-21-3p can promote the replication of
IAV by inhibiting the expression of the histone deacetylase-8 (HDAC8)-inhibiting gene
by targeting the 3′-UTR gene of HDAC8 [63]. Type I IFN plays an important role in host
resistance to influenza virus infection. In type II alveolar epithelial cells infected with IAV,
host miR-93 was inhibited in the RIG-I/JNK pathway, and the target protein gene JAK1
of miR-93 was up-regulated. This promoted IFN signal transduction and thus improved
antiviral ability. In vivo injection of miR-93 antagonist significantly inhibited IAV infection
and protected mice from IAV-related death [64].

Host miRNA negatively regulates NF-κB and IRF-mediated innate immune response
signaling pathways to promote IAV replication. As a pro-inflammatory cytokine, zinc
finger protein A20 participates in the negative feedback regulation of IL-I/tumor necrosis
factor and other types of signal transduction and plays a role in inhibiting the antiviral
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immune response in the NF-κB and IRF signaling pathways. Influenza virus infection
induces the up-regulation of miR-29c expression and stabilizes the expression of A20, thus
improving the capacity for viral replication [44]. In IAV-infected monocyte-derived DCs,
the regulation level of miR650 was negatively correlated with the mature state of DCs. In
IAV-infected monocyte-derived dendritic cells, influenza viruses utilize the host miR-650
to target the 3′-UTR of antiviral factor MxA to reduce the expression of antiviral protein
and to improve viral replication [45]. IAV is one of the most common pathogens that
cause ARDS. Infected epithelial cells release a large number of inflammatory mediators,
mediating endothelial leakage, and neutrophils are recruited into the lung, resulting in
decreased epithelial-endothelial barrier function, aggravating alveolar edema, and leading
to respiratory failure [65].

These results indicate that some host miRNAs can directly regulate viral gene expres-
sion during host-influenza virus interaction. In addition, some host miR-RNAs indirectly
regulate the replication of the influenza virus by regulating the antiviral immune response
signal in host cells. These findings provide new ideas for a comprehensive understanding
of the interaction mechanism between host cells and influenza virus and the discovery of
effective targets for antiviral drugs.

Table 2. Host miRNAs indirectly regulate influenza A virus replication.

Signaling
Pathways a Target Gene b miRNA Cell Type Regulation

Direction c Virus Induced
Expression d References

RLRS

RIG-1 miR-485 HEK293T Promote H5N1
(A/duck/India/02CA10/2011) UP [31]

RIG-1, IL-6 miR-136 A549 Inhibition

H5N1
(A/duck
/Hubei

/hangmei01/2006)

UP [56]

RIG-1 miR-93 A549 Promote
H1N1

(A/
Puerto Ri-co/8/1934)

DOWN [64]

TLRS

ARCN1 miR-33a A549, Hela Inhibition

H1N1
(A/WSN/33)

H9N2
(A/Chicken/Liaoning/1/100)

UP [66]

FGF2 miR-194 A549 Inhibition
H1N1
(IAV/

Beijing/501/2009)
UP [67]

IRF5 miR-302a A549 Inhibition H1N1
(A/FM/1/47) DOWN [59]

IRAK1,
MAPK3

miR-7,
miR-132,
miR-187,
miR-1275,
miR-200c

A549 Inhibition H1N1
(A/WSN/33) UP [68]

HDAC1 miR-449b A549 Inhibition H1N1
(A/WSN/33) UP [69]

TOLL 4 Let-7e THP-1 Inhibition H7N9
(A/Anhui/1/2013) UP [42]

NF-κB

IRAK-1,
TRAF6 miR-146a Hela Inhibition

H1N1
(A/Jing fang/01/1986)

H3N2
(A/Lu fang/09/

1993)

UP [70]

TRAF6 miR-144 HBE Inhibition
H1N1

(A/
Puerto Ri-co/8/34)

UP [71]
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Table 2. Cont.

Signaling
Pathways a Target Gene b miRNA Cell Type Regulation

Direction c Virus Induced
Expression d References

NFKBIB miR-4776 MDCK Inhibition H1N1
(A/WSN/33) UP [72]

BCL2L2 miR-29c A549 Inhibition H1N1
(A/Jing fang/01/1986) UP [44]

NIK miR-302c A549 Promote H3N2
(A/Hong Kong/498/97) DOWN [57]

TRAF6 miR-146a A549 Promote

H1N1
(A/Jing fang/01/

1986)
H3N2

(A/Lu fang/09/1993)

UP [70]

A20 miR-29c A549 Promote H1N1
(A/Jingfang/01/1986) UP [44]

HDACB

miR-21-3P A549

Promote

H5N1
(A/goose/Ji-Lin/

hb/2003)
H1N1

(A/Beijing/501/2009)

DOWN [63]

FGF2 Promote H5N1
(A/Hong Kong/156/97) DOWN [62]

IRF3, IRF7

miR-24,
gga-miR-

30b,
miR-142-3

A549 Inhibition H9N2
(environment/HN/1-18/2007) UP

[73]
miR-375,
gga-miR-

181b
Chicken Inhibition H9N2

(environment/HN/1-18/2007) UP

USP3 miR-26a MDCK Inhibition H1N1
(A/WSN/33) UP [74]

Jak-STAT

STIM1 miR-223a A549 Inhibition H1N1
(A/Puerto Rico/8/34) UP [60]

IFNAR1,
STAT2 miR-200a A549 Promote H1N1

(r1918 and A/Texas/36/91) DOWN [43]

CUEDC2 miR-324-
5p A549 Inhibition H5N1

(A/duck/India/02CA10/2011) DOWN [39]

IRF3, IFIT2,
MxA miR-650 NK Promote H1N1

(A/Puerto Rico/8/34) DOWN [45]

JNK/c-Jun miR-206 A549 Inhibition

H1N1
(A/

Puerto Rico/8/34)
H3N2

(A/Oklahoma/309/2006)

DOWN [46]

STAT3 put-miR-
34 HBE Inhibition H9N1

(1WF10) DOWN [75]

Apoptosis

C0X6C miR-4276 A549 Inhibition

H1N1
(A/WS/33)

H3N2
(A/Aichi/2/68)

UP [76]

HMBOX1

ssc-miR-
221-3p

ssc-miR-
222

PAM Inhibition H5N1
(A/duck/Anhui/1/2006) UP [38]

MCPIP1 miR-9 A549 Promote

H1N1
(A/PR/8/34)

H3N2
(A/Lufang/9/93)

UP [77]
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Table 2. Cont.

Signaling
Pathways a Target Gene b miRNA Cell Type Regulation

Direction c Virus Induced
Expression d References

IL-6 miR-let-7b-
MRE HBE Inhibition H1N1

(A/Nanjing/NJU-108/2009) UP [78]

MAPK/ERK Vimentin miR-1290 A549 Promote H1N1
(A/Taiwan/126/2009) UP [79]

Muscleblind Mbnl3 miR-674 Dendritic Inhibition

H9N2
(A/duck/
Nanjing

/01/1999)

UP [80]

Wnt/β-
catenin frizzled 5 gene miR-29a HEK293T

A549 Inhibition H3N2
(A/Oklahoma//309/2006) UP [61]

DC/TCell DR1 miR-203 A549 Inhibition H5N1
(A/Vietnam/1194/2004 UP [81]

mTOR mTOR miR-101 A549 Inhibition H5N1
(A/Hatay/2004) UP [82]

a: Signaling pathways involved in regulation by miRNAs; b: target genes bound by miRNAs in the signaling
pathway; c: miRNA mediated regulation of influenza virus replication; d: induced expression of miRNA after
influenza virus infection.

3. Host LncRNAs Regulates IAV Replication

According to reports, lncRNA, as a new type of regulatory factor, can be induced by
the influenza virus and expressed in the cytoplasm or nucleus [83,84]. These lncRNAs
can interact with a variety of biological macromolecules, directly or indirectly playing an
important role in the host antiviral pathway or influenza virus replication. (See Table 3 for
relevant information).

3.1. Host LncRNAs Directly Act on Viral Genes to Regulates Influenza Virus Replication

It was found that the host lncRNA could directly target the virus gene and affect virus
replication during the process of infection. IAV infection significantly induces two host
lncRNAs (PAAN and IPAN) not involved in IFN regulation. LncRNA PAAN enhances
the activity of viral RNA polymerase by promoting the assembly of the RNA polymerase
complex of the influenza virus, and as a forward regulator of influenza virus replication,
ensures the efficient synthesis of virus RNA. LncRNA PAAN synthesis is synchronized with
IAV replication [85]. It has been demonstrated that the lncRNA IPAN gene can be hijacked
by the IAV in the process of viral infection to assist IAV replication. By stably binding with
the viral PB1 protein, the IPAN/PB1 complex forms, preventing the degradation of PB1
and facilitating effective IAV transcription and replication [86]. Lnc45 is a broad-spectrum
antiviral factor. Infection with multiple subtypes of influenza viruses such as H5N1, H7N9,
and H1N1 can significantly induce up-regulation of Lnc45 expression, and overexpression
of Lnc45 can significantly inhibit replication of H1N1, H5N1, and H7N9 viruses. Lnc45
translocates to the cytoplasm from the nucleus during H5N1 virus infection and Lnc45
inhibits polymerase activity and nuclear accumulation NP and PA through its stem ring
arms thereby impairs IAV replication [87].

3.2. Host LncRNAs Indirectly Inhibit IAV Replication by Regulating Intracellular Signals

Host lncRNAs inhibit IAV replication by regulating innate immune signaling pathways
mediated by TLRs. The innate immune response mediated by TLRs includes several
key factors, such as the expression and activation of PRRs, ISG expression, and IFN
production [88]. LncRNA-155 promotes the innate immune response to viral infection by
negatively regulating the expression of protein tyrosine phosphatase 1B and mediating the
high expression of IFN-β and some key ISGs [89]. Silencing of IFN-stimulated lncRNA-ISR
in A549 cells resulted in a significant increase in IAV replication, while the overexpression
of ISRs decreased viral replication. IFN-β treatment can induce the expression of ISRs. In
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hosts without type I IFN receptors, the expression of ISRs induced by viral infection is not
significant, and ISRs are regulated by IFN-β during the process of IAV infection. IFN-β
also has the ability to inhibit virus replication [90].

Host lncRNA inhibit the replication of IAV by regulating the innate immune response
mediated by RLRs. The RLR-mediated innate immune response is an important pathway
for lncRNAs to participate in the regulation and inhibition of IAV replication. When the
virus invades, the intracellular “whistle” RIG-I recognizes the double-strand RNAs (dsR-
NAs), transmits antiviral signals through downstream mitochondrial antiviral-signaling
(MAVS) proteins, and finally induces the expression of IFNs and proinflammatory cy-
tokines. At the early stage of viral infection, lncRNA z3h7a in the cytoplasm binds to
tripartite motif-containing protein 25 (TRIM25) and activates RIG-I. As a molecular scaffold,
lncRNA z3h7a stabilizes the TRIM25/RIG-I interaction and enhances TRIM25-mediated
K63 ubiquitylation of RIG-I. Thus, the downstream signaling of RIG-I and the antiviral
innate immune response are promoted [91]. LncRNA-AVAN enhances k63 ubiquitination
of RIG-I by binding with TRIM25. At the same time, lncRNA-AVAN is located 419 bp
upstream of forkhead box O3 (FOXO3a); it can improve the expression of FOXO3a through
chromatin remodeling, promote neutrophil chemotaxis and recruitment, upregulate the
expression of IL-8, and then activate antiviral immunity [92]. The novel lncRNA IVRPIE
is a key modulator of the host antiviral response. IVRPIE participates in antiviral innate
immunosuppressive IAV replication by promoting IFNs and ISGs. In addition, hnPNP-U
interacts with IVRPIE to regulate IFN β1 and ISG transcription by affecting the histone
modifications of IRF1, IFN-induced protein with interferon-induced protein with tetratri-
copetide repeats 1 (IFIT1), IFIT3, Mx1, ISG15, and IFN-induced protein 44-like (IFI44L) [93].
RDUR is a multi-function lncRNA, on the one hand, it enhances host antiviral immunity by
positively activating the IRF3 and upregulating ILF2/ILF3, thereby positively regulating
the expression of IFNs and key ISGs. On the other hand, experiments demonstrate that
deletion of RDUR promotes viral infection through downregulating some crucial antiviral
genes but activating the NF-κB-dependent inflammatory response, suggesting that virus-
induced expression of RDUR may prevent the host from serious inflammation reaction
possibly through a mechanism involving a negative feedback control of NF-κB activation
and inflammation [94]. LncRNA EGOT, a long non-coding RNA induced by viral infec-
tion, can reduce viral replication by promoting the expression of IFNs through pathways
such as PI3K/AKT, MAPKs, and NF-κB. LncRNA EGOT also can affect cell autophagy
by regulating expression of ATG7, ATG16L1, LC3II, and LC3 [95,96]. In the process of
influenza virus infection, lnc-Cxcl2 could selectively inhibit the expression of Cxcl2 in
mouse lung epithelial cells, but not in macrophages, which can attenuate inflammatory
damage through feedback inhibition of lung epithelial cells chemokine expression and
neutrophil recruitment [97].

3.3. Host LncRNAs Indirectly Promote IAV Replication by Regulating Intracellular Signaling

Influenza virus negatively regulates the antiviral immune response mediated by TLRs
by inducing the expression of intracellular lncRNA [98]. A/WSN/1933, A/Oklahoma/3052/
09, and type I IFNs can induce the significant expression of lncRNA PSMB8-AS1, inhibit
the expression of lncRNA PSMB8-AS1, and effectively reduce the expression of IAV genes
and the release of progeny IAV virions [99]. As an IFN-inducible gene, lncRNA-MxA
is significantly induced and up-regulated during IAV infection. It negatively regulates
the transcription of IFN-β by forming a triplet with the IFN-β promoter and plays an
important role in the negative feedback loop involved in maintaining immune homeostasis
as a negative regulator of the antiviral immune response [100].

RLRs signaling pathway plays a key role in the escape process of the influenza virus.
After the influenza virus invades the body, viral proteins will degrade or inactivate RIG-I,
MDA5, MAVS, and other monitoring proteins, thus avoiding the immune mechanism of
the body [101]. The lncRNA NRAV and lncRNA VIN have been shown to increase viral
replication. The expression level of NRAV was significantly decreased in cells infected with
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IAV. Overexpression of NRAV significantly promoted the replication and virulence of IAV,
and knockout of NRAV decreased the replication and virulence of IAV. By changing the
histone modification levels of IFITM3 and MxA promoters in key ISGs, NRAV activated
H3K4me3 and inhibited H3K27me3, thus negatively regulating the gene transcription of
IFITM3 and MxA. Through RNA pull-down and RNA immunoprecipitation (RIP) tests,
it was also found that NRAV specifically interacted with the transcription factor zonula
occludens-1 nucleic acid-binding protein (ZONAB) to affect the transcriptional regulation
of MxA [102]. VIN is a virus-induced lncRNA. Low expression of VIN can inhibit viral
replication and significantly reduce viral gene expression. Nuclear localization suggests
that VIN and PSMB8-AS1 play a role in the transcription and replication of IAV RNA
genomes [103]. lncRNA-lsm3b is an IFN-induced lncRNA. In the late stage of mouse
macrophage infection, lnc-lsm3b acts as bait for RIG-I to compete with viral RNA for RIG-I
monomer binding, restricting the conformational change in RIG-I protein and preventing
further activation of RIG-I. Lnc-lsm3b also reduces IFN-I production to maintain immune
homeostasis, and its overexpression in L929 cells interferes with TRIM25-mediated K63
junction ubiquitination of RIG-I during viral infection [104].

A new study found that the lncRNA ACOD1 promotes IAV replication by regulating
cell metabolism [105]. LncRNA ACOD1 can be induced by a variety of viruses including
IAV. It can directly combine with the metabolic enzyme glutamate-oxaloacetate transami-
nase (GOT2) in the cytoplasm, improve the catalytic activity of the enzyme, enhance the
production of key metabolites required for viral replication, and promote the replication of
the influenza virus in A549 cells [106].

The above studies showed that in addition to host lncRNAs participating in the innate
immune response pathway to regulate the replication of IAV, influenza viruses can also use
host-encoded lncRNAs to negatively regulate the innate immune response of the host.

4. Other Host Non-Coding RNAs Regulate the Replication of Influenza A Virus

Vault RNA (vtRNA) is a class of non-coding RNAs in the Vault ribosome complex,
which plays a key role in the process of influenza virus infection and replication [107]. PKR
is an important part of host innate immunity against viral infection, and the H1N1 influenza
virus can induce high expression of vtRNAs in host cells. Silencing of vtRNAs in A549
cells significantly inhibited IAV replication, while overexpression of vtRNAs significantly
promoted viral replication. Further studies showed that vtRNAs promote viral replication
by inhibiting PKR activation and the subsequent antiviral IFN response. Viral NS1 protein
was shown to be an inducer that triggered the upregulation of vtRNAs. In addition, the
effective inhibition of PKR by NS1 during IAV infection requires increased expression
of vtRNAs [108] (See Table 3 for relevant information). These studies demonstrated that
vtRNAs, as host factors utilized by viruses, play an important role in influenza virus
antagonism against host innate immunity. However, the molecular mechanism by which
NS1 regulates the expression of vtRNAs remains to be studied.

Virus–host interactions are complicated processes, and multiple cellular proteins pro-
mote or inhibit viral replication through different mechanisms. CircRNAs are a newly
discovered class of endogenous regulatory RNAs that are widely expressed and character-
ized by a covalent closed-loop structure without a 5′ cap or 3′ tail. In recent years, a growing
number of circRNAs have been reported to play important roles in a variety of human
diseases, including in dynamic interactions between the virus and host [109–113]. H1N1
infection induced the overexpression of circ-GATAD2A. With circ-GATAD2A knockout
in the A549 cell line, autophagy was enhanced while H1N1 replication was suppressed.
In contrast, overexpression of circ-GATAD2A in the A549 cell line suppressed autophagy
and promoted H1N1 replication. Further research showed that circ-GATAD2A interacted
with vacuolar protein sorting 34 (VPS34) and the inhibition of autophagy promoted the
replication of H1N1 [114]. The researchers found and identified a novel intron circRNA
named AIVR that was upregulated in A549 cells infected by the influenza virus. Silencing
AIVR significantly promoted the replication of the influenza virus in A549 cells, as a miRNA
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sponge, AIVR is mainly located in the cytoplasm. It plays an antiviral role by absorbing
miRNA and promoting the expression of CREBBP so as to promote the expression of
IFN-β [113].

Table 3. Regulation of influenza A virus replication by host lncRNAs.

LncRNA Target Gene a Cell Type
Regulation
Direction b Virus Induced

Expression c References

LncRNA IPAN PB1 A549 Promote H1N1
(A/WSN/33) UP [86]

LncRNA PAAN PA A549 Promote H1N1
(A/PR/8/34) UP [85]

Signaling
pathways d LncRNA Target gene e Cell type

Regulation
direction b Virus Induced

expression c References

RLRs

LncRNA NRAV ZONAB A549 Promote H1N1
(A/WSN/33) DOWN [115]

LncRNA Lsm3b RIG-I L929 Promote

H1N1
(A/

Puerto
Rico

/8/1934)

UP [104]

LncRNA VIN Nuclear A549 Promote H1N1
(A/WSN/33) UP [103]

LncRNA-155 PTP1B A549 Inhibition H1N1
(A/Puerto Ri-co/8/1934) UP [89]

LncRNA
IVPRIE RIG-I A549 Inhibition H1N1

(A/Puerto Ri-co/8/1934) UP [93]

LncRNA
NEAT1 SFPQ Hela Inhibition H1N1

(A/WSN/33) UP [116]

LncRNA ISG20 miR-326 A549
HEK293T Inhibition H1N1

(A/Puerto Ri-co/8/34) UP [117]

LncRNA ISR IFN-β A549 Inhibition H1N1
(A/California/04/2009) UP [90]

LncRNA AVAN TRIM25 A549 Inhibition H7N9
(A/Hebei/01/2013) UP [92]

lncRNA
IFITM4P miR-24-3p A549 Inhibition

H1N1
(A/Shanghai-

Jiading/SWL1970/2015)
UP [118]

TLRs

LncRNA
TSPOAP1 NF-κB A549 Promote

H1N1
(A/PR/8/34)

H3N2
(A/Lufang/9/93)

UP [119]

LncRNA-MxA IFN-β A549 Promote H1N1
(A/WSN/33) UP [100]

PSMB8-AS1 IFN A549 Promote H1N1
(A/Puerto Ri-co/8/34) UP [99]

Cell
metabolism

LncRNA-
ACOD1 GOT2 A549 Promote H1N1

(A/WSN/33) UP [106]

NF-κB

LncRNA TUG1 miR-145-5p DHBE Inhibition H3N2 UP [120]

LncRNA RDUR RIG-I/MAVS
/NF-κB A549 Inhibition

H1N1
(A/Shanghai-Jiad-

ing/SWL1970/2015)
UP [94]

Other ncRNAs in the host regulate influenza A virus replication

Signaling
pathways d NcRNA Target gene e Cell type

Regulation
direction b Virus Induced

expression c References

Post
transcriptional

regulation
Circ_0050463 microRNA-33b-

5p A549 Promote H1N1
(A/Lufang/9/93) UP [121]

Autophagy
regulation Circ-GATAD2A VPS34 A549 Promote

H1N1
(A/

Puerto Ri-co
/8/34)

UP [114]

PKR vtRNAs NS1 A549 Promote H1N1
(A/WSN/33) UP [108]

a: LncRNAs directly target key genes of viruses; b: ncRNA mediated regulation of influenza virus replication; c:
induced expression of ncRNA after influenza virus infection; d: signaling pathways involved in regulation by
ncRNA; e: target genes bound by ncRNAs.
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5. Host Non-Coding RNAs Regulate the Replication of Other Influenza Virus

Influenza B viruses have a limited host range compared to influenza A viruses, the
mutation rate was low, and is not easy to cause a pandemic. In the past few decades,
there have been many studies on the interaction between host and influenza B virus Host
noncoding RNA plays an important role in directly or indirectly regulating the replication
of influenza B virus. (See Table 4 for relevant information).

According to reports, the hsa-miR-30e-3p is one of the miRNAs regulating influenza
B virus infection, it is able to directly inhibit the expression of NA, NP genes of the in-
fluenza B virus (influenza B virus B/Thailand/CU-B5522/2011 representing the Victoria
lineage) [122]. Replication and transport of Zika virus (ZIKV) and porcine reproductive and
respiratory syndrome virus (PRRSV) in host cells require karyopherin alpha 6 (kpna6). In
MDCK cells infected with influenza B virus (Victoria lineage (B/Thailand/CU-B5522/2011)
or Yamagata lineage (B/Massachusetts/2/2012)), five miRNAs, including cfa-miR-197,
cfa-miR-215, cfa-miR-361, cfa-miR-1841 and cfa-miR-1842, were significantly upregulated.
The cfa-miR-197 mediates KPNA6 silencing by specifically binding to the 3′-UTR (GUG-
GUGA/UGGUGAA) of KPNA6. Therefore, this miRNA can inhibit the replication of
the influenza B virus [123]. In chicken embryos infected with the influenza B virus, the
expression level of miRNA induced by viral infection in the spleen was higher than in
lungs, including miR-34c, -34b, -1b, -1a, -206, and -499. These miRNAs are also induced by
infection of avian influenza virus, and most of them are involved in regulating immune
responses (miR-34c, -34b, -1b, -1a and -206). Studies have shown that gga-miR-30d inhib-
ited the replication of IBV by targeting ubiquitin-specific peptidase 47 (USP47) in HD11
cells. However, also, in HD11 cells miR-146a-5p promoted IBV replication by targeting
interleukin 1 receptor-associated kinase 2 (IRAK2) and TNF receptor superfamily mem-
ber 18 (TNFRSF18) [123,124]. On this basis, the researchers further analyzed the changes
of lncRNAs in IBV-infected HD11 cells and mapped the competitive endogenous RNA
(ceRNA) regulation network of lncRNA-microRNA-mRNA, and the researchers also found
that lncRNA MSTRG.21445.2 may regulate IBV infection by competing for gga-miR-30d
and miR-146a-5p for mRNA with USP47, IRAK2, and TNFRSF18. These results provide
new insights into the relationship between host non-coding RNA and replication of IBV,
but most of the results are just based on bioinformatics analysis. Therefore, these findings
should be further confirmed by laboratory studies [125].

Influenza C virus is a common pathogen of acute respiratory diseases, and Children
are susceptible to the influenza C virus. Influenza D is a newly discovered virus in cattle
and pigs, which can cause mild to moderate respiratory diseases and target the upper and
lower respiratory tract. IDV and ICV have about 50% homology. The current studies on
these two influenza viruses focus on the interaction between virus and host proteins. For
example, the NS1 of ICV and IDV, similar to the NS1 of IBV and IAV, can be overexpressed
in the infected host cells and inhibit the IFN function of the host cells; ANP32A-mediated
influenza virus replicase assembly [126]; TMPRSS2 protein cleaves the HE of ICV and
activates ICV [127]. However, there are few reports on the regulation of type C and type
D influenza viruses by host non-coding RNA. It is believed that there will be more new
research progress in this direction with in-depth research and understanding of the infection
mechanism of type C and type D influenza viruses in the future.
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Table 4. Regulation of miRNA on replication of influenza viruses other than influenza A virus.

miRNA Target Gene a Cell Type Regulation
Direction b Virus Induced Expression

c
Binding Site
of Target d References

hsa-miR-
30e-3p NA, NP A549 Inhibition

IBV
(Influ-enza B virus
B/Thailand/CU-

B5522/2011
representing the
Vic-toria lineage)

UP GAUGUCU
GAACUGAAA [122]

Signaling
pathways e miRNA Target gene f Cell type

Regulation
direction b Virus Induced

expression c References

TLRs

cfa-miR-197 KPNA6 MDCK Inhibition

IBV
Victoria lineage

(B/Thailand/CU-
B5522/2011), or

Yamagata lineage
(B/Massa

Chu-setts/2/2012)

UP [128]

gga-miR-30d USP47 HD11 Inhibition IBV
(Beaudette strain) DOWM [124]

gga-miR-146a-
5p

IRAK2,
TNFRSF18 chickens promote IBV

(Beaudette strain) UP [123]

a: ncRNAs target key genes; b: ncRNA mediated regulation of influenza virus replication; c: induced expression of
ncRNA after influenza virus infection; d: sequences of miRNA binding site of target (5′-3′); e: signaling pathways
involved in regulation by ncRNA; f: target genes bound by ncRNAs.

6. Discussion

In recent years, non-coding RNAs have attracted extensive attention from researchers.
In this paper, through a comprehensive analysis of relevant studies on the regulation of
host non-coding RNAs involved in the replication of IAV, we found that host noncoding
RNAs mainly regulate influenza virus replication directly and indirectly. Some of them
play a role in inhibiting the replication and proliferation of the virus, while others assist
the virus to escape the monitoring system of the host immune response and invade the
host cells faster by interacting with the virus genes. This provides a new strategy for the
development of anti-influenza drugs targeting key genes of the virus.

In addition to directly regulating the expression of influenza virus genes, host non-
coding RNA can also participate in the coordination of intracellular signaling and the
expression of antiviral factors, and indirectly regulate the replication of the influenza virus.
With further research on non-coding RNAs, how these host non-coding RNAs regulate
the expression of antiviral factors in the process of innate immune response and play an
indirect role in the regulation of the replication and proliferation of influenza viruses will
become clearer, and these non-coding RNAs will hopefully become new candidate drugs
for anti-influenza virus research.

CeRNAs provide a new regulation mode for gene expression. Studies have shown
that compared to simple miRNA-mRNA regulation, the ceRNA regulation network is more
complex and generally consists of an integrated regulation network involving circRNA-
miRNA-mRNA and lncRNA-miRNA-mRNA. Currently, studies on ceRNAs are mainly
focused on their role in the regulation of tumor genesis, and there are few reports on
how ceRNAs regulate influenza virus replication. LncRNAs and circRNAs have abundant
miRNA binding sites, so they can bind the MERS of miRNAs, like a sponge, to form ceRNAs,
prevent miRNAs from binding with target gene mRNAs, and regulate the expression of
the target genes (see Figure 2 for relevant information) [129]. A new study found that as
a ceRNA, the lncRNA IFITM4P can be induced and expressed by multiple H1N1 strains
and other pathogenic viruses. In vitro and in vivo experiments demonstrated that IFITM4P
can participate in the natural immune antiviral response through the lncRNA IFITM4P-
miR-24-3p-IFITM1/2/3 regulatory network and is a potential antiviral host factor [118].
By analyzing the expression profile of lncRNAs before and after influenza virus infection,
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researchers found that the expression of lnc-ISG20 in infected cells was significantly up-
regulated. IAV infection triggers the transcription of type I interferons, such as IFN-β.
IFN-β stimulates the transcription of downstream genes (ISG20 and lnc-ISG20). miR-326
inhibited the translation of ISG20 by targeting the 3′UTR of ISG20 mRNA, thus promoting
the replication of the virus. Lnc-ISG20 acts as a ceRNA by reducing miR-326 binding to
target ISG20 mRNA and enhances the translation of ISG20, which in turn inhibits IAV
replication. [117]. The NF-κB pathway is positively regulated by the lncRNA TUG1 and
negatively regulated by miR-145-5p. Influenza virus can induce airway hypersensitivity
in chronic obstructive pulmonary disease (COPD). TUG1 positively regulates airway
inflammation mediated by the NF-κB pathway by binding miR-145-5p. Inhibition of TUG1
can inhibit the expression of the NF-κB pathway and its downstream pro-inflammatory
cytokines IL-1β and TNF-α, and significantly reduce airway inflammation [120]. LncRNA-
AABR07020987.1 positively affected the expression of IL-17A by acting as a ceRNA to
compete with IL-17A mRNA for binding sites of mo-miR-369-3p [130]. Similarly, in A549
cells infected with IAV, Circ-0050463 an endogenous miRNA-33b-5p sponge, can isolate
and inhibit the activity of miRNA-33b-5p, activate the expression of eukaryotic translation
elongation factor 1 alpha 1 (EEF1A1), and promote IAV replication through the mir-33b-
5p/EEF1A1 axis [121]. These results indicate that compared with the miRNA regulatory
network, the ceRNA regulatory network is more delicate and complex, and involves more
RNA molecules, including mRNA, lncRNA, miRNA, and circRNA, which provides a new
perspective for researchers to conduct transcriptome studies. This knowledge is also helpful
to explain some biological phenomena more comprehensively and deeply.
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In conclusion, host non-coding RNAs affect the process of viral infection by regulat-
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Figure 2. Competitive endogenous RNAs involved in regulating influenza virus replication. The
ceRNA interaction network has more complex regulatory mechanisms compared to the simple host
non-coding RNA regulating influenza virus replication. The regulatory process involves mutual
regulation between non-coding RNA, and also non-coding RNA interaction with host proteins,
ultimately enabling regulation of influenza virus replication through a series of complex regulatory
mechanisms. (The Pink/blue boxes indicate lncRNA/circRNA that can bind to microRNA; green
box indicates the microRNA that binds to the key antiviral protein of the host; The yellow/orange
box indicates the host protein that can inhibit/promote the expression of influenza virus during
antiviral process).

In the face of cunning and changeable influenza virus, effectively activating the
immune response to the conserved domains of the virus is an effective method to realize a
broad-spectrum influenza vaccine [131]. Specific antibodies demonstrated in mouse, ferret
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models targeting viral protein conserved domains, such as matrix protein M2 or HA stem
domains, can be effective to treat or prevent infection of different influenza strains [132].
Studies have shown that it is promising to enhance the immune protective effect of vaccines
by using host non-coding RNA. For example, murine models have demonstrated that
docetaxel can upregulate the Th1, Th2 immune responses, and has an influenza A H1N1
cleavage vaccine adjuvant effect. While the enhanced immune response may be related
to the upregulation of miR-155 expression as detected in docetaxel-stimulated RAW264.7
cells [133]. Under direct regulation, miRNA can inhibit virus replication by binding virus
mRNA. For example, inserting miR-let-7b into the PB1 gene of the H1N1 influenza virus
can reduce the replication and proliferation ability of the virus in cells and animals [78]. In
A549 cells, hsa-miR-1-3p decreases the expression of NP genes and suppresses replication
of PR8 and H3N2 [134]. While miRNA-192-5p was inserted into the nuclear protein (NP)
genomic fragment of the influenza virus to prepare live attenuated vaccines, cells and mice
vaccinated with miRNA showed higher survival compared with general vaccine [135]. This
research evidence suggests that the modification of key viral segments with host noncoding
RNA as a strategy can be used to study and develop live-attenuated influenza vaccines.

In conclusion, host non-coding RNAs affect the process of viral infection by regulating
the expression of host or virus-related genes and play an important role in the complex
relationship between the host and virus regulation, facilitating a state of balance between
the virus and host. The relationship between non-coding RNAs and viral infection still
has broad research prospects. However, the mechanism of non-coding RNAs in influenza
virus infection remains to be further studied. On the one hand, the current research mainly
focuses on the function of non-coding RNAs in influenza virus infection, and it is not clear
whether non-coding RNAs play a role in the escape process of influenza virus. On the other
hand, influenza virus infection can induce the differential expression of a large number of
non-coding RNAs in host cells. Only a few studies have confirmed their function in the
interaction between virus and host. The role of many non-coding RNAs in the process of
influenza virus infection is still poorly understood. Further clarification of the interaction
mechanism will help researchers better understand the precise regulatory mechanism of
these host non-coding RNAs during the process of IAV infection. It will also help provide
promising targets for the development of antiviral strategies by reducing key regulatory
factors associated with viral infection and enhancing innate immune responses.
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