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ABSTRACT
COVID-19 outbreak was first reported in 2019, Wuhan, China. The spillover of the disease 
caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to a wide 
range of pet, zoo, wild, and farm animals has emphasized potential zoonotic and reverse 
zoonotic viral transmission. Furthermore, it has evoked inquiries about susceptibility of 
different animal species to SARS-CoV-2 infection and role of these animals as viral 
reservoirs. Therefore, studying susceptible and non-susceptible hosts for SARS-CoV-2 
infection could give a better understanding for the virus and will help in preventing 
further outbreaks. Here, we review structural aspects of SARS-CoV-2 spike protein, the 
effect of the different mutations observed in the spike protein, and the impact of ACE2 
receptor variations in different animal hosts on inter-species transmission. Moreover, the 
SARS-CoV-2 spillover chain was reviewed. Combination of SARS-CoV-2 high mutation rate 
and homology of cellular ACE2 receptors enable the virus to transcend species barriers 
and facilitate its transmission between humans and animals.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) is the virus that sparked 
Coronavirus Disease 2019 (COVID-19) outbreak 
[1]. SARS-CoV-2 has the ability to infect a wide 
range of mammals [2]. Its detection in wild, zoo, 
farm and pet animals has evoked questions about 
its zoonotic, reverse zoonotic and panzootic trans-
missibility [2]. Zoonotic and reverse zoonotic 
transmission of SARS-CoV-2 could occur during 
common activities and interaction between humans 
and animals. A combination of the SARS-CoV-2 
high mutation rate and the homology of cellular 
ACE2 receptors seem to enable SARS-CoV-2 to 
transcend species barriers and facilitate the viral 
transmission between humans and animals [3]. 
Therefore, studying susceptible, non-susceptible 
hosts, reservoirs and intermediate animals could 
give a better understanding for such virus and 
could help in predicting further outbreaks. 
Besides, hygienic, and biosafety measures that are 
aimed to decrease viral spread be further improved 
by such knowledge.

1.1. General properties of SARS-CoV-2

1.1.1. Morphology and structure of SARS-CoV-2
SARS-CoV-2 is an enveloped pleomorphic spheri-
cal virus and its size ranges from 50 nm to 140  
nm. It has a crown appearance which shaped to 
from long club peplomers (20 nm) [4].

1.2. Genomic organization of SARS-CoV-2

Amongst all RNA viruses, coronaviruses have the lar-
gest RNA genome that is positive sense single strand 
RNA (+ssRNA) with SARS-CoV-2 having 29,903 
bases and it encodes for 9860 amino acid residues 
[5]. The genome has two untranslated regions 
(UTRs) with lengths of (265) and (358) nucleotides 
at the 5′ and 3′, respectively [5]. ORF1ab is the largest 
ORF in the viral genome and it joins two others 
shorter ORFs (ORF1a and ORF1b). ORF1ab overlaps 
with ORF1a, and the translation of the latter produces 
the shorter polypeptide (pp1a). Ribosomal frameshift 
occurs at the − 1 position, upstream of the ORF1a stop 
codon, allowing the translation of ORF1b to be con-
tinued, and hence yielding a longer polypeptide 
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(pp1ab). This chain is then cleaved into a number of 
non-structural proteins. The switch between the 
expression of the two polypeptides is regulated by a 
mechanism known as − 1 programmed ribosomal fra-
meshifting (−1 PRF) [6]. This mechanism is controlled 
by an RNA element (a pseudoknot) that directs the 
ribosome to shift the reading frame via one base 
essentially bypassing the stop codon at the end of 
ORF1a, and the full expression of pp1ab polypeptide. 
This mechanism is utilized by both SARS-CoV-2 and 
SARS-CoV, and the regulatory RNA element in both 
viruses have similar structure and mechanism. 
Mutations that alter the structure of the pseudoknot 
inhibit viral replication [7]. The cryo-EM structure of 
pseudoknot had been determined both in the free 
form [8] and along with the ribosome during transla-
tion [9]. The polypeptides that are eventually 
expressed encode for 16 non-structural proteins 
(NSPs) in SARS-CoV-2 genome. These NSPs include 
two proteases (NSP3 and NSP5), polymerases, heli-
cases, endoribonucleases, and ribonucleases [5].

NSP3 is a Papain-like protease (PLpro) that is 
located between positions (Ala 819-Gly 2763) with a 
length of 1,944 amino acids and NSP5 is a 
Chymotrypsin-like protease or 3C‐like proteinase 
(3Clpro) or main protease (Mpro) which is located 
between positions (Ser 3264-Gln 3569) with a length 
of 305 amino acids. Plpro cleaves the viral polyprotein 
at three regions that has a sequence consensus 
“LXGG↓XX”. PLpro is involved in viral maturation, 
replicase-transcriptase complex assembly, evasion 
host immune responses and it has interferon antago-
nist (IFN) effect [10]. 3Clpro is the main protease that 
cuts 11 sites in viral polyproteins 1a/1b with sequence 
consensus X‐(L/F/M)‐ Q↓(G/A/S)‐X[11,12]

Another NSP is the RNA-dependent RNA poly-
merase (NSP12) which is located between (Ser 4393- 
Gln 5324) with 931 amino acid length [13]. Its main 
role is viral replication and transcription [14–17]. The 
helicase enzyme (NSP13) is located between positions 
Ala 5325-Gln 5925 with a length of 600 amino acid 
and it has a RNA 5’ triphosphatase activity [15,18]. 
Endoribonuclease enzyme (NSP15) is positioned 
between (Ser 6453-Gln 6798) with a length of 345 
amino acids and it has endoribonuclease enzymatic 
activity which helps the virus to evade host immune 
response [19,20]. Additional NSPs that regulate geno-
mic transcription, viral replication and host immune 
response suppression/evasion are also present in 
SARS-CoV-2 genome [5].

Besides NSPs, the viral genome encodes for struc-
tural proteins (SPs) which include nucleocapsid (N), 
spike glycoprotein (S), envelope protein (E) and mem-
brane protein (M) [4]. The genomic organization of 
SARS-CoV-2 is tabulated in Table 1.

The table lists known and predicted ORFs in SARS- 
CoV-2. The major functions of the various viral 

proteins are also tabulated. Nucleotide positions refer 
to the Wuhan strain.

1.3. Physical, chemical and biological properties 
of SARS-CoV-2

SARS-CoV-2 can survive in aerosols without ventila-
tion for 3 hours [35] and it is more stable on smooth 
surfaces such as glass, steel and plastic (for many days) 
than on rough surfaces such as paper, wood, and fabric 
(only for several hours) [36]. SARS-CoV-2 is stable at 
4°C and low pH (up to 3), but sensitive to UV radia-
tion and it is heat labile (inactivated in 5 minutes at 
70°). Furthermore, lipid solvents such as soap, ethanol, 
chlorine-containing disinfectant, ether and chloro-
form can efficiently inactivate this virus. It is also 
sensitive to formalin, non-ionic detergents (tween), 
and oxidizing agents [36,37].

1.4. SARS-CoV-2 replication cycle:

The first step of SARS-CoV-2 replication cycle is the 
attachment between the virus spike protein and the 
host receptor. More specifically, the spike protein con-
tains the viral receptor binding domain (RBD) which 
directly binds with host angiotensin-converting 
enzyme 2 cell receptors (ACE2) [1,38]. ACE2 has 
been found in human cells present in various tissues 
and organs including nasal, oral and gastrointestinal 
tract mucosa, as well as, in lung, liver, kidneys and 
brain cells [39]. After RBD/ACE2 binding, the virus 
gains access to the cellular cytoplasm through the 
proteolytic activity of the host proteases eventually 
leading to the cleaves the viral spike glycoprotein 
into S1 and S2 [40], and entry into the cell by fusion.
Following the virus-receptor binding, two proteolytic 
activities are required for the SARS-CoV-2 spike pro-
tein activation and virus entry into cells [41]. The two 
cleavage events eventually lead to large conforma-
tional changes in the viral protein allowing the expo-
sure of the otherwise inaccessible fusion peptide, and 
hence allowing fusion to occur [42,43]. The first clea-
vage is by furin, while the second is carried out by 
Transmembrane serine protease 2 (TMPRSS2). Furin 
is a Type I transmembrane protein with its transmem-
brane domain that adopts an Nout-Cin orientation, 
and to date proven to be active for SARS-CoV-2 only. 
Furin cleaves the S1/S2 boundary site at a multibasic 
site (proline – arginine–arginine – alanine residues, 
known as PRRA), which results in the subsequent 
detachment of the S1 from the S2 subunit. Unlike 
SARS-CoV-2, SARS-CoV enters cells via endocytosis 
and requires cathepsin B and L in lysosomes for entry 
[44–46]. Similarly, MERS-CoV requires cathepsin L 
for viral entry [47].

TMPRSS2 on the other hand, is a host protease that 
is also involved in the processing and cleavage of the 
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spike protein. TMPRSS2 is a Type II transmembrane 
protein with its transmembrane domain adopts an 
Nin-Cout orientation [48,49], and mainly present on 
the surface of lung cells. That cleavage process is 
associated with the S protein membrane fusion and 
is essential for both SARS-CoV and SARS-CoV-2 [42]. 
Specifically, TMPRSS2 cleaves the S2 protein subunit 
of the Spike, after its detachment from the S1. The 
cleavage occurs near the N-terminal of the S2 [50], at a 
site known as the S2’ site. The latter cleavage leads to 
the exposure of the internal fusion peptide which plays 
a critical role in membrane fusion [51]. The two hep-
tad repeats domains (HR1 and HR2) of the S2 struc-
turally rearrange to form a six-helix bundle (6HB) 
fusion core that brings the virus particle membrane 
closer to the host cell membrane [52–55], and then 
fusion occurs. TMPRSS2 is also involved in the clea-
vage of the viral receptor (ACE2), inducing the shed-
ding of the ACE2 and hence aiding in the subsequent 
uptake of the virus [56].

The second stage is viral entry via fusion at endo-
somal or cellular membranes, then, uncoating occurs 
and viral positive sense single stranded RNA 
(+ssRNA) genome is released into host cytoplasm 
[38]. Consequently, viral +ssRNA is immediately 
translated into 2 polyproteins (pp1a and pp1ab). 
These 2 polyproteins undergo autoproteolysis and 
co-translational cleavage to generate NSPs which 
form replication/transcription complex. A safe 
microenvironment (perinuclear double-membrane 
vesicles “DMVs”, convoluted membranes “CMs”, 
and small open double-membrane spherules 
“DMSs”) is formed to protect replication and tran-
scription of subgenomic mRNAs (both negative and 
positive sense). Double-membrane vesicles (DMVs) 
are modified endoplasmic reticulum membranes that 
have been associated with SARS-CoV-2 replication. 
Recent studies showed that abundant viral RNA 
synthesis is associated with DMVs in infected cells 
only [57]. This proposed that the virus takes DMVs 
as Replication organelles (RO), shielding its dsRNA 
intermediates in these DMVs, which may lead to 
evading IFN-1 activation [58].

In addition to acting as a template for the polypep-
tides, the +ssRNA also serves as a template for the 
synthesis of the negative-sense RNA intermediates. 
Subsequently, the latter serves as a template for repli-
cation via the synthesis of both the gRNA and for the 
subgenomic RNAs (sgRNAs). Whereas the gRNAs are 
assembled into the newly formed virions, the 5’ 
capped and polyadenylated [59,60] sgRNAs are 
directly translated. Both gRNA and sgRNA carry a 
common leader sequence of about 65 to 95 nucleotides 
in length. Studies have shown that the sgRNAs 
encodes for major structural proteins (S, M, N and 
E) and other accessory proteins (ORF3a, ORF6, 
ORF7a, ORF7b, ORF8 and ORF10) [15,61,62]. The 

former nine sgRNAs had been confirmed while 
ORF10 remains questionable and still needs further 
investigation. Moreover, non-canonical sgRNAs as 
well as RNA modifications at specific sites had been 
proposed [62].

Hence, the third step is the translation of the sub-
genomic mRNA into structural protein (Spike “S”, 
Membrane “M”, Envelop “E” and Nucleocapsid “N”). 
Finally, the nucleocapsid buds into the Endoplasmic 
Reticulum – Golgi Intermediate Compartment 
(ERGIC) studded and assembled with S, M and E 
proteins. Eventually, virions are formed and trans-
ported to the cellular surface via vesicles, then viral 
shedding from the host cell occurs via exocytosis 
releasing infectious virions [38].

1.5. The structure of spike glycoprotein

The spike glycoprotein consists of 1273 amino acids 
that is shaped into 2 subunits (S1 and S2), as illustrated 
in Figure 1 [5]. The S1 subunit consists of four pri-
mary regions; two of them are critical for viral binding 
with host antibodies (the N-terminal domain “NTD” 
which is composed of 292 amino acids and the recep-
tor binding domain “RBD” that carries receptor-bind-
ing motif “RBM”, which is 210 amino acids long) [63]. 
Besides, RBD mainly bind host ACE2 receptors [64]. 
The other two regions of the subunit S1 are the C- 
terminal domains 1 (CTD1) (64 amino acids) that 
involved in host immune evasion [64] and the C- 
terminal domains 2 (CTD2, 96 amino acids) affect 
stability of spike trimer [65].

The S2 subunit on the other hand, consists of six 
main regions including the fusion peptide (FP, 18 
amino acids), the fusion peptide proximal region 
(FPPR, 77 amino acids), heptad repeat 1 (HR1) motif 
(76 amino acids), the central helix (CH, 51 amino 
acids), a β-hairpin (34 amino acids), and heptad repeat 
2 (HR2) motif (49 amino acids) that is followed by the 
transmembrane (TM) region (24 amino acids) and the 
intracellular region (IC, 41 amino acids) [66,67].

The S1 subunit protects the viral fusion apparatus [68] 
and it switches between open-standing up (RBD-up) and 
closed-down (RBD-down) conformations to bind with 
cellular ACE2 receptors [69,70]. After the spike attach-
ment, separation of S1 occurs and S2 undergoes a rear-
rangement process to proceed to viral fusion [68–71].

The upper panels (panels A and B) show SARS- 
CoV-2 structure and its entry that includes (spike/ 
ACE2 binding, cleavage of S protein, Activation of 
S2 domain, and fusion). The spike protein cartoon 
was generated from PDB ID 6×r8[72]. The lower 
panel (panel C) illustrates a schematic representation 
of the spike protein gene. The domains and regions in 
the three panels are depicted by the same colouring 
scheme, using the Wuhan strain as a reference 
(Reference Sequence NC_045512.2, Gene ID: 
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43740568) [66,67]. The figure was generated by using 
Biorender website [73] and ChimeraX [74].

2. SARS-CoV-2 taxonomy and variants 
classification

SARS-CoV-2 belongs to genus Betacoronavirus “β-cor-
onavirus” in Coronavirinae subfamily that is a member of 
Coronaviridae family in Nidovirales order. In details, 
there are four genera in Coronaviridae family: α-corona-
virus, β-coronavirus, γ-coronavirus and δ- coronavirus. 
Particularly, β-coronavirus genus is sectioned to (a, b, c 
and d) lineages and SARS-CoV-2 belongs to b- lineage. 
SARS-CoV-2 shares 80% nucleotide similarity with 
SARS-CoV-1 [1].

2.1. Tracking SARS-CoV-2 variants

Like many RNA viruses, SARS-CoV-2 has mutated 
rapidly by time, with an approximate rate of 1.5–3.3 ×  
10− 3/per site/year [75]. Some of these acquired mutations 
have an impact on viral transmission, diagnosis, disease 
severity, vaccines, and therapeutics efficacy. Clearly, and 
despite its small size, the RBD domain shows a higher 
mutation frequency compared to the average mutation 
frequency in the other parts of the spike protein.

Since January 2020, the World Health Organization 
(WHO) has been monitoring the evolution of SARS- 
CoV-2. Specific SARS-CoV-2 variants were 

categorized as Variant of Concern (VOC), Variant of 
Interest (VOI), and Variant Under Monitoring 
(VUM). The classification is aimed to clarify the sig-
nificance of viral amino acid substitutions to take 
necessary actions that would reduce the viral spread 
[76]. The WHO has updated the previous categories to 
remove Variant Under Monitoring (VUM) and 
replaced it with Formerly monitored variants (FMV) 
[77]. Therefore, countries were encouraged to increase 
their capacity for sequencing and surveillance to detect 
any abnormal epidemiological events [76,77]. 
Definitions and examples for different categories of 
SARS-CoV-2 variants are tabulated in Supplementary 
Table 1.

2.2. Different nomenclature systems for SARS- 
CoV-2 variants

There are many proposed nomenclature systems for 
SARS-CoV-2 variants. The most used in the literature 
are the Pango lineage, Nextstarin, GISAID clades and 
WHO nomenclatures. Knowing how the different sys-
tems of naming SARS-CoV-2 work would make it easier 
to trace SARS-CoV-2 evolution and its subsequent 
spread.

2.2.1. Pango lineage nomenclature
This nomenclature has been generated from thou-
sands of analysed SARS-CoV-2 genome sequences. It 

Figure 1. SARS-CoV-2 structure, entry, and the structure of the spike protein gene.
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is a dynamic and rational nomenclature system which 
uses a phylogenetic framework to detect viral lineages. 
This system has helped in understanding and tracking 
SARS-CoV-2 patterns globally [78,79].

2.2.2. Nextstrain nomenclature
This system named SARS-CoV-2 variants by using 
both alphabets and years (19A, 19B, 20A, 20B, 20C, 
20D, 20E, 20F, 20 H, 20I, 20J, 21A, 21B, 21C, 21D, 
21F, 21 G, 21 H, 21K, 21 L, 21 M, 22A, 22B and 
22C) [80].

2.2.3. GISAID clades nomenclature
This system classifies SARS-CoV-2 variants into large 
clades in the context of marker variants related to 
Wuhan (WIV04) – SARS-CoV-2 reference virus and 
it is classified into 10 clades (S, L, V, G, GH, GV, GR, 
GRY, GK and GRA) [81] as illustrated in Table 2.

2.2.4. WHO nomenclature
The WHO suggests an easy-to-pronounce nomencla-
ture system for non-scientific audiences and it has 
recommended using Greek letters (Alpha, Beta, 
Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, 
Kappa, Lambda, Mu and Omicron) [77]. SARS-CoV- 
2 different nomenclature systems with spike muta-
tions and epidemiology are demonstrated in Table 3. 
Those mutations were mapped to a surface represen-
tation of the spike protein structure (Supplementary 
Figure S1). It is clear from Supplementary Figure S1 
that the virus had accumulated many surface muta-
tions during its course of evolution from the initial 
Alpha variant to the Omicron variants.

2.3. Different SARS-CoV-2 spike mutations and 
their effects

Major mutations and changes in the amino acids of 
the spike protein that lead to changes in the surface 
hydrophobicity and polarity could affect viral infectiv-
ity and pathogenicity, as well as facilitate viral trans-
mission between the different species [69]. It is 
possible that frequent amino acid mutations have a 
role in host adaptation [64]. Different SARS-CoV-2 
mutations referenced to Wuhan virus, their positions 
and their effects are tabulated in Table 4 and illu-
strated in Figure 2 which showed the overall distribu-
tions of spike mutations among different SARS-CoV-2 
variants. Furthermore, Figure 3 displays frequency of 
spike mutation in the different variants.

The figure shows the spike protein mutations in all 
strains with respect to its receptor. The protein is 
shown as an isosurface and the ribbon for a single 
monomer (including its RBD) is shown in dark grey. 
Residues that had undergone mutations in all strains 
are shown in red spheres, and receptor is in cyan.

The figure displays frequency of the spike protein 
mutations in SARS-CoV-2 variants including the most 
dominant mutation (D614G) followed by the muta-
tion at position 484 which has different residue sub-
stitutions (E484K, E484Q and E484A).

3. Spillover and zoonotic transmission of 
coronaviruses

Generally, coronaviruses affect multiple species 
including poultry, humans and other mammals 
[124]. Seven coronaviruses have the ability to infect 
humans, all of which have non-human precursors 
[125]. Four of these human coronaviruses (HcoV) 
(NL63, 229E, OC43, and HKU1) cause common cold 
with mild or asymptomatic respiratory signs [126– 
128]. These 4 viruses are thought to have bat or 
rodents origin [125,129], though further evidence are 
needed to verify such claim. The other three HcoV 
cause severe respiratory signs including Severe Acute 
Respiratory Syndrome Coronavirus (SARS-CoV) 
which first appeared in 2002, Middle East respiratory 
syndrome coronavirus (MERS-CoV) in 2012 and 
SARS-CoV-2 in 2019. All of the mentioned viruses 
are thought to have bat origin [2].

Particularly, SARS-CoV was detected in horseshoe 
bats with 99.8% similarity with human SARS-CoV 
isolates, thus, bats are proposed to be the natural 
precursors for SARS-CoV [130–133]. SARS-CoV anti-
bodies were detected in raccoon dogs and masked 
palm civets in wet markets [130,134,135] and they 
could act as intermediate hosts [125,136]. MERS- 
CoV had infected 2,562 individuals, resulting in 881 
deaths [137]. Indeed, most of the latter individuals had 
been in contact with dromedary camels and the 
MERS-CoV isolates from camels had high sequence 
identity with MERS-CoV human isolates [138,139]. 
MERS-CoV was also detected in 14 bat species [140] 
with 85% sequence identity with the isolates from 
humans or camels [141]. Therefore, these findings 
had proposed that bats could be also the natural host 
for MERS-CoV [142,143]. SARS-CoV-2 that caused 
the recent pandemic has also been reported as a zoo-
notic disease [144–146].

4. The proposed spillover chain of SARS-CoV-2

There had been several hypotheses about SARS-CoV- 
2 spillover chain, including the original hypothesis 
which proposed that bats and pangolins may be the 
natural precursors for SARS-CoV-2. Furthermore, 
other partners may be included in this chain such as 
minks. Moreover, there are concerns about the role of 
mice in the emergence of Omicron-SARS-CoV-2 var-
iant and SARS-CoV-2 transmission via food and food 
packaging. The prospective role of the previous con-
tributors to the SARS-CoV-2 spillover chain 
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Table 4. Different SARS-CoV-2 spike protein mutations referenced to Wuhan virus, their position, and their effect.
Mutations  

referenced to 
Wuhan virus Position Mutation effect Notes

1 S:L18
● S:L18F
● S:L18P

NTD ● It could decrease the viral binding affinity with NTD 
monoclonal antibody [63].

● S:L18F is found in Beta and Gamma var-
iants [83].

2 S:H69- NTD ● This amino acid deletion was detected many, thus, it was 
named as “a recurrent deletion region” [84].

● It is associated with immune evasion [85].
● In details, it was combined with S:Y453F mutation in an 

immunocompromised patient that was treated with 
rituximab monoclonal antibodies [86].

● It might have an impact on the viral transmissibility.
● S:H69- is associated with S:V70- deletion in many 

sequences which could cause false negative results for 
PCR assays that targeted spike gene such as (TaqPath 
assay) [83].

● S:H69- has appeared in Alpha, Eta, 21K 
Omicrons, 22A Omicrons and 22B 
Omicrons variants [83].

3 S:Y144- NTD ● It could enable the virus to evade from immune response 
[63,87].

● It is appeared in a chronically infected immunocompro-
mised patient combined with 3 amino acids deletion 
(141–144) [88].

● S:Y144- is present in Alpha, Eta, Mu and 
21K Omicron variants [83].

4 S:W152R
● S:W152L
● S:W152R
● S:W152C
● S:W152G

[89]

NTD ● It is a hotspot for substitution in which non-polar trypto-
phan is substituted with polar positive arginine.

● It could decrease the viral binding affinity with antibodies 
[64]. In details, this tryptophan is a key residue in the viral 
pi-stacking interaction with the neutralizing antibodies 
and it wraps in the complementarity-determining region 
(CDR) loops of the antibodies’ variable chains [64]. 
Therefore, tryptophan removal in this position could 
weaken the pi-stacking interaction and the created 
pocket of antibody’s CDR loop [64].

● It combined sometimes with N501Y muta-
tion [64].

● It was reported in SARS-CoV-2 that 
detected in cats in Egypt [3].

5 S:K417
● S:K417N
● S:K417T

RBD ● It is associated with immune evasion [90,91].
● It could decrease the viral binding affinity with ACE2 

receptor [92–94].

● S:K417N has been reported in Beta, 21K 
Omicron, and 21L Omicron variants [83].

● S:K417T has been reported in Gamma var-
iant [83].

6 S:L452R RBM ● This mutation has immune evasion effect and it could 
decline titer of antibody neutralization from 3 to 6 fold 
[64,95].

● It increase viral binding affinity to ACE2 receptor [96].
● It increase viral shedding [97]
● It increase viral virulence [98] and infectivity [99].

● This mutation is reported in Delta, Kappa 
and Epsilon variants [83].

● It was reported in SARS-CoV-2 that 
detected in cats in Egypt [3].

7 S:Y453F RDB ● It was a common mutation in mink in Denmark during the 
summer of 2020, thus, it may be an adaptive mutation in 
mink [100,101].

● It could enhance viral RBD/mink ACE2 complex binding 
[102].

● This mutation caused a resistance to (REGN10933) which 
is a mixture of antibodies [103,104].

● S:Y453F was detected with other muta-
tions (S:H69-, S:V70-, S:M1229I and S: 
I692V) in immunosuppressed patient who 
treated with (rituximab) monoclonal anti-
bodies [86].

8 S:S477N RDB ● It increases RBD/ACE2 binding slightly [96].
● It causes immune evasion and a resistance to convales-

cent antibodies [105,106].
● It has the potential to increase viral infectivity [106].
● A combination of S:S477N, S:E484K, and S:N501Y could 

increase viral RBD/ACE2 binding [107].
9 S:E484

● S:E484K
● S:E484Q
● S:E484A

RBD ● It causes a significant decrease in viral neutralization and 
cause a neutralization escape from convalescent antibo-
dies [99,108,109].

● S:E484K may be a cause of the viral reinfection [110].
● A combination of S:E484K, S:K417N and S:N501Y could 

enhance, stabilize and strengthen RBD/ACE2 complex 
binding and reduce viral neutralization with antibodies 
[91].

● A combination of S:E484K, S:S477N and S:N501Y could 
also enhance RBD/ACE2 complex binding [91].

● S:E484K mutation is observed in Beta, 
Gamma, Kappa and some Alpha 
sequences [83].

10 S:N501
● S:N501Y 

(The most 
frequent 
one)

● S:N501T
● S:N501S

RDB ● It may affect viral binding with ACE2 receptor and anti-
bodies recognition [83].

● S:N501Y was detected in mice [111], and S:N501T was 
found in mink [101] and in ferrets [112]. This suggests 
that it may be an adaptive mutation which contributes to 
the persistence of a long-term reservoir in wild rodents 
and mustelids [112].

● It increases viral RBD/ACE2 binding [113] as it increases 
the time of “open” configuration of the spike [114]. The 
latter ACE2 binding affinity of S:N501 mutations could be 
stronger in the presence of E484K and more stable with 
the presence of S:K417N [113].

● Additionally, S:N501Y, S:E484K , and S:S477N combined 
mutations also could enhance viral RBD/ACE2 binding 
[107] and they could reduce antibody neutralization sig-
nificantly [91].

● S:N501Y mutation is observed in Alpha, 
Beta and Gamma variants [83].

● S:N501 mutations have also been 
observed in Wales, the United States, 
and Australia [83].

(Continued)
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(illustrated in Figure 4) will be discussed further in 
sections (4.1–4.5) [147]. 

The figure illustrates the proposed spillover chain 
model in animals/human and possible mean by which 

Table 4. (Continued).
Mutations  

referenced to 
Wuhan virus Position Mutation effect Notes

11 S:A570V CTD1 ● It plays a role in spike structural rearrangement as it could 
alter equilibrium dynamics of RBD-up open state and 
RBD-down closed state of spike glycoprotein [115]. This 
mutation has dominated the RBD-up open receptor- 
accessible spike form which resulted in increasing the 
viral RBD/ACE2 receptor binding affinity [115].

● It has immune evasion effect [64].

● A570V mutation has been reported in 
both Asia and North America [67].

● It was reported in SARS-CoV-2 that 
detected in cats in Egypt [3].

12 S:D614G CTD2 ● It increase stability of spike trimer via loop misplacement, 
interaction between downstream RBDs and structural 
rearrangements that act as a fixation tool among the 
spike trimer, make spike more stable, prevent its pre- 
maturation, improve viral assembly, enhance RDB/ACE2 
binding, facilitate viral entry, increase viral infectivity and 
virulence [65].

● It is involved in improving viral replication in lung cells 
[116], increasing viral transmission, pathogenicity, eva-
sion from host immunity [117] and decrease vaccine’s 
effectiveness [116].

● It is the dominant mutation in all variants 
[65].

● This mutation was reported in SARS-CoV-2 
detected in cats in Egypt [3].

13 S:H655Y CTD2 ● It was detected in Gamma variant [83].
14 S:Q677

● S:Q677H
● S:Q677P

S1/S2 ● It was recently detected in cat samples [3].
● It is located in the vital polybasic furin-binding region and 

it could enhance S1/S2 cleavage, thus, it could affect viral 
infectivity and pathogenicity [118].

● S:Q677H was found in 20C in the United 
States of America [119], Eta variants [118].

● S:Q677H was reported in SARS-CoV-2 
detected in cats in Egypt [3].

15 S:P681H Near S1/ 
S2

● It could affect the immune recognition [120].
● It may affect immune response as it decrease the anti-

bodies recognition [87].

● S:P681H has been reported in Alpha, 
Kappa and Delta [83].

16 S:A899S FPPR ● It decrease sensitivity to monoclonal antibodies and 
increase the viral transmission [64,121].

● Recently, this mutation has been found in 
Italy [121], Saudi Arabia [122], Jordan 
[123] and in cats in Egypt [3].

17 S:S1051Y S2 β- 
hairpin

● It could destabilize the β-hairpin structure and all the β- 
sheet due to breakage of hydrogen bonds between two 
histidine (H1048 and H1064) [3].

● It could play a critical role in viral entry, replication and 
could enhance viral infectivity which need further inves-
tigation [3].

● This mutation was recently observed in 
some cat samples in Egypt [3].

Figure 2. Spike protein mutations.
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such spillover may occur. The figure was generated by 
using Biorender website [73].

4.1. The role of bats in SARS-CoV-2 emergence 
and spillover chain

Even though SARS-CoV-2 outbreak was proposed to 
originate from bats, such proposal is yet to be verified. 
Moreover, the exact viral reservoir remains unknown 
[148]. Bats have been considered as a huge viral 

genomic pool as they are reservoirs for many viruses 
specially coronaviruses including SARS-CoV-1 and 
MERS-CoV [149]. Horseshoe bats (Rhinolophid 
bats) are proposed to be natural hosts for SARS- 
CoV-2 [150]. SARS-CoV-2 that was detected in 
human, shares a genetic similarity of (87.6%) with 
bat coronavirus (ZXC21/ZC45) that was detected in 
2015 in China in horseshoe bats (Rhinolophus pusillus) 
[151], and a closer relationship with bat coronavirus 
(RaTG13) that was detected in horseshoe bats 

Figure 3. Frequency of the spike protein mutations in SARS-CoV-2 variants.

Figure 4. The proposed spillover chain of SARS-CoV-2.
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(Rhinolophus affinis) in 2013 also in China with 
(96.2%) genetic similarity [1].

Furthermore, Egyptian fruit bats (Rousettus aegyp-
tiacus) were tested for SARS-CoV-2 susceptibility and 
transmission within the same species [152]. 
Specifically, a 105 TCID50 SARS-CoV-2 was intrana-
sally inoculated into nine Egyptian fruit bats that were 
housed with three contact bats [152]. Consequently, 
78% of inoculated bats (7/9 bats) and one of the con-
tacts have developed rhinitis as a respiratory sign. 
Moreover, viral replication and shedding were 
detected in nasal swabs. Additionally, pathological 
changes and specific immune response against 
SARS-CoV-2 have been identified [152].

On the contrary, though the previous experiments 
could reveal the susceptibility of Egyptian fruit bats for 
SARS-CoV-2 infection, a recent study has been per-
formed in Egypt to investigate SARS-CoV-2 natural 
infection in Egyptian fruit bats and their role as reser-
voirs, but surprisingly, all 800 tested bats were negative 
for SARS-CoV-2 by rRT-PCR [153]. The authors con-
cluded that to date, there is no evidence for the con-
tribution of Egyptian fruit bats in SARS-CoV-2 
outbreak [153]. Therefore, although it was hypothe-
sized that bats were the source of the SARS-CoV-2 
outbreak, this hypothesis is yet to be confirmed.

4.2. The role of pangolins in SARS-CoV-2 
emergence and spillover chain

Many inquiries have been raised about the role of 
pangolin as intermediate host for SARS-CoV-2 [154]. 
A recent study has assembled three complete genomes 
of pangolin coronavirus (MP789) from three Malayan 
pangolins, and bioinformatics analysis has displayed the 
genetic relationship between pangolin-CoV-2020 and 
SARS-CoV-2. The study have found that SARS-CoV-2 
similarity is only (85.5%) with pangolin coronavirus 
(MP789) [1] and this relationship is not close enough 
to support direct emergence of SARS-CoV-2 from pan-
golin coronavirus (MP789) [154]. Thus, another inter-
mediate host could be involved [154–157].

On the contrary, another study has been performed 
for better understanding about the role of pangolin in 
SARS-CoV-2 outbreak. Particularly, researchers have 
isolated 17 pangolin coronavirus (MP789) from 25 
Malayan pangolins that displayed respiratory signs 
and pathological lesions [158]. Moreover, pangolin cor-
onavirus (MP789) antibodies were detected, which had 
reacted with SARS-CoV-2 spike protein. In addition, 
comparative genetic study was performed, and the 
results showed that the envelope (E) of pangolin cor-
onavirus (MP789) is the same as the envelope of SARS- 
CoV-2 (100%) and that the two viruses were almost 
identical in the membrane (M) and nucleocapsid (N) 
proteins with 98.6% and 97.8%, respectively. Similarity 
between the spike proteins of pangolin coronavirus 

(MP789) and SARS-CoV-2 was 90.7% and the RBD in 
both viruses are almost the same with only one different 
residue substitution in a noncritical region [158]. 
Therefore, this critical study has concluded two main 
crucial points. The first one is the possibility of pango-
lins to be intermediate hosts for SARS-CoV-2 because 
the isolated pangolin coronavirus (MP789) is geneti-
cally related to SARS-CoV-2. The second point is the 
possibility that SARS-CoV-2 could have resulted from a 
recombination event between pangolin coronavirus 
(MP789) and bat coronavirus RaTG13 [158].

Another supporting metagenomic study was dis-
played in China [159]. The latter study has identified 
pangolin coronavirus (MP789) in Malayan pangolins 
with high similarity to SARS-CoV-2 RBD [159]. This 
finding supported the role of pangolins as intermedi-
ate hosts for SARS-CoV-2 [159]. Additionally, another 
metagenomic study was carried out to detect the cir-
culated viruses in Malayan pangolins to protect pan-
golins from extinction. The dominant detected viruses 
were pangolin coronaviruses (MP789) which cause 
pneumonia in pangolins and it is genetically related 
to SARS-CoV-2 [160]. Therefore, pangolins are likely 
one of the viral intermediate hosts, though the exis-
tence of other intermediate hosts is a possibility that 
yet to be verified.

4.3. The role of minks in SARS-CoV-2 emergence, 
spillover chain, reverse zoonotic and zoonotic 
transmission

Nevertheless many animal species are susceptible for 
SARS-CoV-2 infection, both reverse zoonotic and zoo-
notic transmission have been reported only in minks’ 
farms [147,161]. SARS-CoV-2’s clinical signs in minks 
varied from mild to severe respiratory signs [162].

Reverse zoonotic transmission from positive farmers 
to minks has been firstly reported in the Netherlands in 
April 2020. After that, continuous outbreaks were 
reported in many European and American regions 
[161]. Particularly, in Denmark (290 farms), the 
Netherlands (69 farms), Greece (23 farms), the USA 
(17 farms), Sweden (13 farms), Lithuania (4 farms), 
Canada (2 farms), as well as one farm in each of Italy, 
Spain, France, Poland and Latvia [162,164–166]. 
Furthermore, WOAH/OIE has reported 360 cases of 
SARS-CoV-2 infection in minks till September 2021. 
Specifically, 20 cases have been detected in Americas 
and 340 cases in Europe [166].

Indeed, SARS-CoV-2 can be transmitted among the 
same species in mink farms (Animal to animal trans-
mission) [147]. On the other hand, minks also can 
transmit SARS-CoV-2 back to human (zoonotic trans-
mission) [2,161] as reported in Denmark where minks 
could infect a farmer [147,167]. Surveillance studies 
suggested that the introduced SARS-CoV-2 in minks 
has evolved, adapted in minks and acquired new 
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mutations that enable its zoonotic transmission [2]. 
Moreover, fast spread of SARS-CoV-2 infection 
among mink farms has raised concerns about the 
effect of these mutations in minks and their impact 
on inter-species transmission, pathogenicity and viral 
re-infections [161]. These mutations include (N501T) 
[168,169], (Y453F), (L452M), (F486L), (G261D), and 
(A262S) [168]. These mutations will be discussed in 
detail in section 5 of this review.

4.4. The role of mouse’s cellular environment in 
SARS-CoV-2 adaptation, and emergence omicron 
variant

Emergence of Omicron- SARS-CoV-2 variant was in 
late November 2021 in South Africa and within 2 days 
it was reported as a variant of concern (VOC) by 
World Health Organization (WHO) based on its 
high infection rate [170]. Omicron variant has char-
acterized by rapid accumulation and high number of 
spike mutations that raise inquiries about its precursor 
(i.e. Animal or human origin?) [170]. The rationale 
behind the latter debate was the unique mutations that 
appeared in the Omicron variant that did not exist in 
previous variants; thus, researchers have proposed 
several theories for the evolutionary origin of 
Omicron variant [170]. Those theories included the 
long term SARS-CoV-2 adaptation in chronic 
COVID-19 patients (Omicron variant has human ori-
gin) [171,172] and the viral adaptation in animal host 
then the virus jumped back to human (Omicron var-
iant has animal origin) [173]. Animal origin theory 
was based on de novo residue substitution of the 
SARS-CoV-2 genome that depends on host specific 
cellular environment that led to specific mutations 
[173]. For instance, Ebola virus, poliovirus, SARS- 
CoV-2 had displayed the same host adaptational 
mutations when they evolved in same hosts, whilst 
these viruses displayed different mutations when 
they evolved in different hosts [173]. Such phenom-
enon could have occurred, for example, due to the 
mutational effect of free radical species (reactive oxy-
gen species “ROS” subset) that could oxidize nucleo-
tides of viral genome and causing transversion (purine 
nucleotide “G or A” is replaced by pyrimidine nucleo-
tide “C or T/U”) [174,175] or transitions changes 
among purine nucleotides “G ↔ A” or among pyri-
midine nucleotides “C ↔ T/U”) [176,177]. Thus, the 
involved host with this viral adaptation could be iden-
tified via molecular analysis of the emerged mutations 
combined with the host specific cellular environment 
information [173].

Interestingly, a recent study has expected the muta-
tional spectrum of Omicron variant before its incidence. 
Particularly, researchers have analysed Omicron muta-
tions combined with human cellular environment to test 
if these mutations were evolved in human or not. 

Surprisingly, there were huge dissimilarities between 
human cellular environment and Omicron mutations 
which may suggest that the theory of Omicron-human 
origin can be excluded [170]. Therefore, the authors 
examined Omicron mutations with some non-human 
hosts to find the involved host where SARS-CoV-2 
adapted to emerge Omicron variant by using molecular 
docking analysis [170]. The latter researchers found that 
Omicron mutations are significantly related to mice cel-
lular environment and backbone of Omicron mutations 
acquired from mice. These host adaptive mutations 
could increase the binding affinity of viral RBD/host 
ACE2 receptors which enhance the viral entry [170].

Furthermore, Omicron could be an evolutionary 
product that resulted from recombination process 
between previous human and mice variants which 
have strengthened host-jumping possibility. 
Collectively, they have suggested that Omicron pre-
cursor have jumped from human to mice, then adap-
tive host mutations have been accumulated for around 
a year in mice, then it have jumped back to humans at 
the end of 2021 that revealed inter-species and zoono-
tic transmission of Omicron variant. Therefore, 
although emergence of Omicron-SARS-CoV-2 variant 
has raised many inquiries about its precursor origin in 
mice, such claim is very speculative and has not been 
proven [170].

4.5. The role of animal products and food 
packaging in SARS-CoV-2 emergence and spillover 
chain

Concerns have also been raised about the possibility of 
SARS-CoV-2 transmission through food and food 
packaging. Particularly, in March and June 2020, several 
meat factories in Europe and the USA reported SARS- 
CoV-2 outbreaks [178]. In February 2021, 95 cases were 
confirmed in Canada which were associated to meat 
plant [179]. Furthermore, other confirmed cases were 
documented in the USA in a meat processing factory 
that were claimed for many cases in the USA population 
[180]. Another sharp incidence in SARS-CoV-2 cases 
among meat plant workers was reported that indicated 
a common infection source [181].

Moreover, there is another concern about SARS- 
CoV-2 small outbreaks that had raised in some 
Chinese cities. The molecular analysis of these detected 
viruses revealed SARS-CoV-2 variant which were dif-
ferent from the circulated variant in China in that time 
frame. The previous finding evoked investigations and 
more research which found that the source of these 
small outbreaks was contaminated imported pork and 
raw seafood from other countries. This contamination 
could have occurred via the supply chains and/or 
packaging [182], for example, talking and breathing 
droplets of SARS-CoV-2 spread the infection among 
workers [183] and this may be the source for outbreaks. 
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This claim resulted from SARS-CoV-2 survival on 
packages without losing their infectivity up to 21 days 
[182]. Consequently, hygienic measures should be 
strictly applied for workers in food plants during pro-
cessing and during food distribution [184]. Therefore, 
and despite the previous concerns that have been 
expressed regarding the possibility of SARS-CoV-2 
transmission via food and food packaging, there is no 
evidence that SARS-CoV-2 poses a hazard to food 
safety and it is not considered a foodborne virus [185].

5. SARS-CoV-2 mutations could facilitate viral 
interspecies transmission

High mutation level among coronaviruses may indi-
cate viral adaptation in new hosts [186]. The impact of 
residue substitution in the spike protein relies on 
changes in its hydrophobicity and polarity character-
istics [168]. Consequently, significant spike mutations 
could enhance the viral transmission among the dif-
ferent species, affect viral infectivity and change the 
virulence of the virus [69]. Frequent amino acid muta-
tions could have host adaptive roles [64]. Amino acids 
residue substitutions at RBD have the ability to alter 
both RBD-ACE2 binding affinity and viral immune 
evasion, whilst substitutions at NTD are predomi-
nantly related to the viral immune evasion [64].

The receptor binding, host susceptibility and trans-
mission are often generally used to describe the degree 
and pattern of viral spread and host interaction. 
Indeed, virus receptor binding (or binding affinity) is 
not necessarily a direct indicator of the virus transmis-
sion, nor it necessarily describes the host susceptibil-
ity. However, in some cases, a correlation between the 
binding and transmission or host susceptibility can be 
found, and the changes in transmission or host sus-
ceptibility can sometimes be explained by the receptor 
binding.

Interestingly, an in silico study has claimed that less 
or unsusceptible species could become susceptible for 
SARS-CoV-2 infection due to RBD mutations [100]. 
Some researchers proposed that mouse, that was resis-
tant to SARS-CoV-2 infection, may become suscepti-
ble for it due to RBD mutations as these mutations 
could enhance the binding affinity of RBD to ACE2 
receptors [100]. Even though this in silico study may 
be useful, no claim about susceptibility of mice can be 
made and more experiments are needed to confirm 
such predictions. Another recent research suggested 
rapid adaptation of SARS-CoV-2 in mice after six 
serial passages that resulted in acquiring a single resi-
due substitution in the RBD, after which, these mice 
have become susceptible to SARS-CoV-2 infec-
tion [111].

The adaptive mutations in mouse included the 
RBD (N501Y) (polar Asparagine → Tyrosine) sub-
stitution [82,161], which Molecular Dynamic 

simulations predicted that it would increase the 
RBD-ACE2 binding affinity [162]. The same muta-
tion was found in B.1.1.7 strain. Using microscale 
thermophoresis, the purified recombinant B.1.1.7 
strain RBD was found to bind 1.9 times more to the 
ACE2 compared to RBD originally isolated in the 
Wuhan strain. This was thought to make this variant 
highly transmissible [163]. Though indeed, transmis-
sibility is a complex phenomenon that is an aggregate 
effect of many factors. Therefore, other factors such 
as the spike protein density, cleavage, host immunity 
response, and so on, may also affect transmissibility. 
Other reported mutations in mice were RBM 
(Q498H) (polar Glutamine → positively charged 
Histidine) and heptad repeat 1 (N969S) (polar 
Asparagine → polar Serine) [164].

Furthermore, RBD (N501T) (polar Asparagine → 
polar Threonine) mutation was detected in minks 
[168,169] and ferrets [112]. This mutation also has 
been involved in strengthening the binding affinity 
between RBD and ACE2 [92,101] and it could be a 
sign of viral adaptation in new hosts [187]. Another 
mutation has been detected in mink RBD, that is 
associated with increasing the hydrophobicity at the 
mutation site, is (Y453F) (Tyrosine → Phenylalanine) 
[188] that may contribute to the viral evolution [169] 
and it has increased the binding affinity between the 
RBD and the ACE2 4-fold more than the reference 
Wuhan strain, which could possibly enhance the viral 
transmissibility [2]. Additionally, SARS-CoV-2 
detected in mink showed other mutations such as 
RBD (L452M) (hydrophobic leucine → hydrophobic 
methionine), RBD (F486L) (hydrophobic phenylala-
nine → hydrophobic leucine), NTD (G261D) (Glycine 
→ negatively charged aspartic acid) and NTD (A262S) 
(alanine → polar serine) mutations which need 
further investigations to identify their impact [168].

A recent study has reported several mutations of 
SARS-CoV-2 that were detected in cats [3]. The latter 
viruses were identical to SARS-CoV-2 detected in 
humans during the same months and were linked to 
human variants that had the same amino acid substi-
tutions. This study has strengthened the theory of 
SARS-CoV-2 spillover between humans and their 
companion animals [3]. The detected viruses in cats 
had seven residue substitutions in spike glycoprotein 
and structural modelling revealed that these residues 
substitutions changed the hydrophobicity and polarity 
of amino acids. Such substitutions may affect S1/S2 
cleavage (Q677H), increase viral infectivity (D614G 
and S1051Y), alter binding affinity between the RBD 
and the ACE2 and impair critical contact areas with 
neutralizing antibodies (W152R, L452R, A570V and 
A899S) [3].

One particular example of the effect of mutation 
on neutralizing antibodies is the mutation in the 
NTD (W152R), where tryptophan was replaced 

68 M. E. HAMDY ET AL.



with arginine, which had weakened critical interac-
tion points with neutralizing antibodies [64]. 
Therefore, Tryptophan removal in this position 
could weaken the pi-stacking interaction resulting 
in the decrease of the viral binding affinity with 
antibodies [64]. One the other hand, in the RBM 
(L452R) mutation, in which the hydrophobic 
Leucine is substituted with a positively charged 
Arginine. This mutation could decline the titre of 
antibody neutralization from 3 to 6 fold [95]. 
Furthermore, it is thought to increase viral binding 
affinity to the ACE2 receptor [96], viral shedding 
[97], viral virulence [98] and infectivity [99]. A 
mutation in the CTD1 (A570V) was also detected 
in which the non-polar Alanine is substituted with 
another non-polar residue Valine. This amino acid 
substitution is thought to result in conformational 
changes that affect equilibrium between up and 
down states of spike’s RBD [115]. This mutation 
has led to the domination of the open RBD-up 
receptor-accessible spike form which resulted in 
increasing the viral RBD/ACE2 receptor binding 
affinity [115]. Therefore, the detected hydrophobic 
mutation (A570V) in our recent study could cause 
the same alteration in the conformational equili-
brium [3]. A mutation in the FPPR (A899S) has 
also been observed in which Alanine is substituted 
with serine which is a polar residue. This mutation is 
linked to the decrease of sensitivity to monoclonal 
antibodies and to the increase in viral transmis-
sion [121].

Moreover, the most dominant mutation among all 
SARS-CoV-2 variants CTD2 (D614G) was also 
observed in the same study, in which the negatively 
charged Aspartic acid is substituted with Glycine [3]. 
The previous mutation was reported to enhance the 
viral spread by increasing the stability of the spike 
trimer, and at the same time slow down and reduce 
the spike transition to the S2 form. The flexible/dis-
ordered 630-loop in the wild strain (D614) seem to 
become more ordered in the G614 mutants. The more 
ordered loop in those mutants was found to enhance 
the interaction between protomers. This additional 
interaction seen in the structure of the mutants was 
proposed to be the reason for the enhanced stability of 
the spike trimer. Such enhanced stability was thought 
to increase infectivity, but at the same time, reduce the 
fraction of the spike that would transition from the 
closed form to the one RBD-up form, and subse-
quently reduce the S1 shedding. The reduced progres-
sion in the mutants is because an order-disorder 
transition in the 630-loop, in at least one of the pro-
tomers, is needed for the closed form to the one RBD- 
up transition to occur in the mutant, while this loop is 
readily unstructured (and hence can take place more 
rapidly) in the wild sequence. Thus, the progression of 
spike to the fused form is expected to be slower in the 

mutant, and with a higher energy barrier, compared to 
the wild. This explained the increased fraction of S2 
observed with the wild type compared to the mutant 
[65]. This mutation is also involved in improving viral 
replication in lung cells [116], increasing viral trans-
mission, pathogenicity, evasion from host immunity 
[189] and decrease in vaccine effectiveness [116].

Finally, the mutation in the S1/S2 (Q677H) was also 
detected in the same cat samples. That mutations 
involved the substitution of the polar Glutamine resi-
due with the more positively charged Histidine [3]. 
This mutation is located in the vital polybasic furin- 
binding region and it could enhance S1/S2 cleavage, 
thus, is thought to affect the viral infectivity and 
pathogenicity [118]. Another mutation found in cat 
samples is in the subunit 2-β-hairpin (S1051Y) in 
which the polar residue (Serine) is substituted with a 
more hydrophobic one (Tyrosine) [3]. As a result of 
hydrogen bonds breakage between two histidines 
(H1048 and H1064), the (S1051Y) mutation could 
destabilize the β-hairpin [3]. Further research is 
required to determine whether if the later mutation 
affects viral entrance, replication, and infectivity [3].

6. The relationship between ACE2 receptor 
structure and SARS-CoV-2 host susceptibility

Recent computational modelling studies for viral 
RBD/ACE2 complex of different animal hosts have 
revealed that many mammals are susceptible for 
SARS-CoV-2 infection because of the partially con-
served structure of the ACE2 receptor in these hosts 
[100,190–198]. Despite that SARS-CoV-2 could infect 
a wide range of mammalian species, it has low to zero 
incidence in birds, fish and reptiles [199]. In details, 
human, cat, dog, rhesus monkey and horseshoe bat 
that carry conserved residues (K31, Y41 and K353) in 
their ACE2 receptors are most likely to be SARS-CoV- 
2 susceptible, whilst others, which lack those amino 
acids, are found to be less susceptible for SARS-CoV-2 
infection [193].

SARS-CoV-2 host susceptibility could be predicted 
by studying ACE2 receptor structure as previously 
mentioned [3]. In the recent study, alignment of 
ACE2 receptors of humans, along with other suscep-
tible hosts (such as cats and dogs) and unsusceptible 
animals (such as poultry) was performed with a focus 
on 10 key amino acids that have polar and hydropho-
bic interactions with viral RBD [3]. This study 
revealed that chickens have 7 substitutions, dogs 
have 3 substitutions and cats have 2 substitutions in 
the latter 10 residues [3]. Changes in polarity and 
hydrophobicity were observed in ACE2 receptors for 
different animal species [3]. These substitutions prob-
ably affect the affinity of the cat/dog receptor to the 
human adapted virus, and hence contribute to their 
reduced susceptibility, though the receptor binding 
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affinity may not be the only factor that affects reduced 
susceptibility. Other factors such as host specific fac-
tors may also play a critical role.

Specifically, Q24L and M82T lead to the increase 
and decrease of the hydrophobicity of the correspond-
ing regions on the binding regions, respectively. On 
the other hand, chickens exhibit a significant altera-
tion in the charge distribution of the binding surface, 
compared to humans. Most notably, several neutral or 
positively charged residues (e.g. Q24E, Q42E and 
K31E), are substituted with negatively charged ones. 
Additionally, the hydrophobic residue methionine is 
substituted with the positively charged arginine 
(M82R). Such dramatic changes in the binding surface 
are likely to contribute to the reduced susceptibility of 
chickens to the COVID-19 virus circulating in 
humans [3]. These residue substitutions may be a 
contributor for SARS-CoV-2 host susceptibility as 
illustrated by amino acid alignment in (Figure 5). 
Moreover, phylogenetic analysis of the ACE2 contact 
surface with RBD along nearby residues were per-
formed for different animal hosts. That analysis illu-
strated this critical site on the ACE2 receptors is 
identical in gorillas, chimpanzees and humans, whilst 
the percent identity between human, cats and dogs 

were (83.8%) and (79.5%), respectively, as displayed 
in Figure 6 [3].

Such observation showed the ability of SARS-CoV- 
2 to infect many species that could enhance the viral 
virulence and increase its inter-species transmission 
[127,200]. Additionally, it revealed that RBD recogni-
tion and binding with ACE2 cat’s receptor is likely to 
be more favourable than that of dogs [3], which is 
consistent with a previous research [201]. Besides, 
the latter could explain the high rate of COVID disease 
incidence in cats than in dogs [202]. The similarity 
between human receptors and mink is (78.1%) which 
is inconsistent with the high SARS-CoV-2 infection 
rate (according to WOAH/OIE reports) [166]. This 
indicates the presence of other factors which could 
enhance the viral infection in minks rather than 
ACE2 similarity [3]. Those factors need further inves-
tigation, and they may include host factors (Age, gen-
der, diabetes, malignancy, and chronic diseases), viral 
factors (viral evolution, high viral load, and high trans-
missibility), and environmental factors (crowding and 
poor ventilation). Furthermore, greater horseshoe bats 
and Chinese pangolins showed a similarity of 74.6% 
and 78.8% in the ACE2 [3], respectively, which is 
inconsistent with the similarity of bat CoV RaTG13 

Figure 5. Sequence conservation of residues near the binding interface in host receptors (ACE2).
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(96.3%), pangolin (MP789) (89%) with human SARS- 
CoV-2 isolates, suggesting that bat may be the pre-
cursor of SARS-CoV-2 [203,204], and that pangolins 
could be an intermediate host [205]. Therefore, these 
findings need further investigations to be combined 
together to discover other factors beside the receptor 
homology and ACE/RBD affinity.

To aid in visualizing alterations these mutations 
may have on the RBD/ACE2 interactions and under-
stand their effect on the binding surfaces for human 

and various animal species, homology models along 
with electrostatic maps were generated for the corre-
sponding ACE/RBD complexes [3]. Such models has 
revealed high similarity between human and cats 
receptors followed by dogs, and that there is a sig-
nificant difference between human and chicken 
receptors with respect to polarity and hydrophobicity 
of the contact surface [3]. Figure 7 illustrates a com-
parison of the binding interfaces of predicted RBD- 
ACE2 complexes in six different species. The models 

Figure 6. Phylogenetic tree of the receptor sequence from different animal species of regions at or near the binding interface with 
the virus RBD.

INTERNATIONAL JOURNAL OF VETERINARY SCIENCE AND MEDICINE 71



support the hypothesis that polar contacts can be 
used as one of the predictive indicators for species 
susceptibility for the virus. For instance, the pre-
dicted chicken RBD-ACE2 complex lacks most of 
the bonds and interactions that are seen in human, 
cat and dog RBD-ACE2 complexes. Interestingly, the 
ferret and mink do have significant interactions, but 
are distributed differently than humans. The multiple 
possible patterns observed in these models suggest 
that a quantitative measure based on the RBD-recep-
tor binding energetics may provide an improved pre-
dictive ability than simple qualitative sequence 
comparisons.

Nevertheless structural modelling could indeed 
facilitate prediction of host susceptibility for SARS- 
CoV-2 infection, the outcome of such predictions 
can vary greatly and does depend on the computa-
tional method used for modelling and phylogeny. In 
some cases, results may differ from the reality [193]. 
For instance, even though ferrets and mink were 
computationally predicted in some studies to be 
unsusceptible for SARS-CoV-2 infection due to the 
assumed weak binding of RBD/ACE2 complex, the 
reality was completely the opposite as both mink and 
ferret were proven to be highly susceptible for SARS- 
CoV-2 infection [169,204]. Furthermore, even 
though sheep is closely contact with human in 
farms, there is no change in the binding energy of 

the viral spike/ACE2 host receptor complex [193]. 
This means that sheep might be unsusceptible for 
SARS-CoV-2 infection. Therefore, although ACE2 
structural analysis could provide hints on the bind-
ing affinity to viral RBD in different hosts, which in 
turn paves the way for making predictions about 
host susceptibility to SARS-CoV-2 infections [3], 
caution should be exercised in the methods used, 
and results should be validated against epidemiolo-
gical data as well as experimental SARS-CoV-2 
infections.

The figure illustrates logo representations of resi-
dues (with respect to the human sequence) 19–90 
(shown in orange coloured cartoon and surface repre-
sentations) and 324–393 (shown in red coloured car-
toon and surface representations). The figure shows 
that these regions are highly conserved in general 
among many species. Residue letter codes are coloured 
according to polarity/charge (negatively charged resi-
dues are depicted in red, whereas positively charged 
and polar residues are depicted in blue and yellow, 
respectively). Within this region (dominated by 
helices) of the receptor (ACE2), residues 30–41, resi-
dues 82–84 and residues 353–357 are involved in the 
direct interaction. The green arrows depict residues 
that make critical interactions with the viral RBD. The 
logo illustrates that some of these residues have con-
siderable variations between species. The degree of 

Figure 7. Comparison between binding interfaces of the viral RBD-receptor (ACE2) complexes predicted structures in different 
species.
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variation was previously correlated with species sus-
ceptibility. The alignments used to construct these 
logos have been previously published in [3]. The iso-
surface and cartoon representations were made from 
DB ID 6lzg using ChimeraX [74].

Panel A shows the structure of viral RBD in com-
plex with the PD domain of the ACE2 receptor (PDB 
ID 6lzg) with residues (19–90 and 324–393) depicted 
in orange and the remainder of the residues depicted 
in light grey. Panel B shows a phylogenic tree of the 
latter regions combined. The animal species that clus-
ter near the human branch had been found to be more 
susceptible to COVID-19 infection. The figure was 
reproduced from [3].

The figure illustrates hydrogen bonds and polar 
interactions at the RBD-ACE2 contact (binding) 
interface for the different species predicted in homol-
ogy models previously reported by Hamdy et al. 
[206], which were modelled based on the human 
crystal structure (PDB ID 6lzg). Predicted hydrogen 
bonds are depicted by blue dashed lines, and the viral 
RBD (which has similar sequences in all models) is 
depicted in grey. The figure was prepared by 
ChimeraX [74].

7. Reverse zoonosis transmissibility of SARS- 
CoV-2

Reverse zoonosis or anthropogenic transmission of 
SARS-CoV-2 has been reported as SARS-CoV-2 has 
the ability to jump species barriers causing cross-spe-
cies transmission (Figure 4) [207]. There were out-
breaks reported in many countries such as the USA, 
France, Spain, Denmark, Germany, Netherlands, 
Belgium and Hong Kong [207]. Generally, corona-
viruses have virulence factors that could enhance this 
jumping including large RNA genomic material [127] 
that has mutated rapidly [159], recombination events 
[128], interaction with wide range of ACE2 receptors 
in numerous mammalian hosts [127], and viral muta-
tions which could change its tropism, facilitate jump-
ing species barrier [1,40] and adaptation of these 
viruses in new hosts [200].

Researchers investigated SARS-CoV-2 susceptibil-
ity in different animal hosts experimentally in minks, 
ferrets, dogs, cats, tiger, pigs, and mice [208]. Natural 
SARS-CoV-2 infection in animals has been emerged 
in thirty countries in twelve species with 584 reported 
cases according to the office International des 
Épizooties (OIE) fifth report in September 2021 
[166,209]. More specifically, minks, cats, dogs 
recorded the highest infection incidences 360, 102 
and 92 cases, respectively, followed by tigers, lions, 
and pumas with 12, 5 and 3 cases, respectively. 
Furthermore, two cases were reported in each of 
otters, ferrets, snow leopards, gorillas and single 

reported cases in white-tailed deer and Amur leopard 
up until September 2021 [166].

Recently, and until the end of November 2022, 
Coronavirus-map updates and SARS-CoV-2 records 
included almost 641 million human cases with 
around 6.6 million deaths worldwide [210]. The 
Office International des Épizooties (OIE) has 
reported (according to August 2022 report) an emer-
gence of 692 cases of SARS-CoV-2 infection in 24 
animal species in 36 countries [211]. The highest 
animal record was reported in the Americas followed 
by Europe, Asia, and Africa. In details, minks, cats, 
dogs recorded the highest infection scores followed 
by tigers, lions, and pumas. Followed by 2 cases in 
each of (otters, ferrets, snow leopards, gorillas, white- 
tailed deer, and Amur leopard). Additionally, in 
Europe there were recent emerged cases in Hippo 
and Eurasian lynx and in Asia there is a recent 
reported case in hamster. In the Americas, there are 
new species that were infected with SARS-CoV-2 
including (Spotted hyena, Mule deer, Fishing cat, 
Binturong, Canada lynx and Coatimundi) specially 
in Brazil, in West Indian manatee, giant anteater and 
black-tailed marmoset were reported in September 
2022 [212]. Events of SARS-CoV-2 reverse zoonosis 
in companion, zoo, and farm animals will be dis-
cussed further in sections (7.1–7.3).

7.1. SARS-CoV-2 spillover and reverse zoonosis 
in companion animals (Cats, dogs and pet 
ferrets)

SARS-CoV-2 has been detected in cats in some coun-
tries including Bosnia and Herzegovina [213], Italy 
[214], Spain [215,216], France [217], Belgium, Greece 
and Switzerland [218], Hong Kong (14% of examined 
cats were SARS-CoV-2 positive) [219] and Japan 
[218], the USA [202] and Brazil [218], Canada [218], 
the Netherlands [162] and the UK [220]. By 
September 2021, the WOAH/OIE had reported 102 
cases of SARS-CoV-2 in cats [166].

Recently, spillover of SARS-CoV-2 from humans to 
their cats were reported in Egypt with a rate of 30.3% 
of the tested cats (10/33) by using rRT-PCR. 
Additionally cats have suffered from lymphocytope-
nia, thrombocytopenia with elevation of ferritin, C- 
reactive protein and D-dimers levels [221]. The latter 
infected cats have showed a wide range of clinical signs 
asymptomatic, mild and severe respiratory signs with 
some deaths that illustrated multiple systematic patho-
logical lesions in lung, heart, liver intestine and kidney 
[221]. Another conducted study in Egypt revealed that 
the combination of the SARS-CoV-2 high mutation 
rate and cellular ACE2 homology could facilitate the 
viral transmission between humans and their cats [3]. 
Particularly, 7 amino acids were reported in SARS- 

INTERNATIONAL JOURNAL OF VETERINARY SCIENCE AND MEDICINE 73



CoV-2 spike glycoprotein that were detected in cats 
and structural modelling has revealed that some of 
these mutations could affect the interaction with the 
neutralizing antibodies and others could influence S1/ 
S2 cleavage, facilitate viral binding to the ACE2 host 
receptor and enhance viral infectivity [3].

Furthermore, anthropogenic transmission (Human 
origin infection) of SARS-CoV-2 was detected in four 
cats in Buenos Aires, Argentina in April 2021. These 
four cats included two females (5 years and 4 years) 
and two males (2 years and 13 years). These cats were 
closely contacted to mid-age man and wife who were 
COVID-19 positive. The phylogenetic analysis of 
SARS-CoV-2 detected in the owners and their cats 
revealed that the virus belonged to Alpha variant and 
the viruses were similar with the same mutations in 
owners and cats. Such finding confirm the reverse 
zoonotic transmission of SARS-CoV-2 from owners 
to cats based on case history and chronology of disease 
onset [222].

Besides, specific antibodies against SARS-CoV-2 
which proved past viral exposure were detected in 
cats [204,223,224]. Some studies revealed that sensi-
tivity of SARS-CoV-2 serology tests less than that of 
molecular diagnosis [69] as only 6% of tested cats were 
seropositive for SARS-CoV-2 in Italy [225] which 
provide an additional evidence for the susceptibility 
of cats for SARS-CoV-2 infection [202,226–228]. In 
contrast, another study revealed that the sensitivity of 
serology test was almost double that of the molecular 
detection. Those differences among studies could be 
attributed to different sampling time and experimental 
designs of each study [202]. Based on seropositivity 
rates, some studies found that cats’ ability to produce 
antibodies against SARS-CoV-2 was lower than that of 
dogs [203,204,216,217,223–226,229–232]. Therefore, 
further research is needed to determine the ideal 
time of sampling for both viral RNA and antibodies 
to increase the reliability of the results [202].

Dogs also are susceptible for SARS-CoV-2 infec-
tion. Several cases were reported in Japan [233], Hong 
Kong [229] and the USA [202]. By September 2021, 
the WOAH/OIE had reported 92 cases of SARS-CoV- 
2 infections in dogs [166]. A recent study had detected 
spillover of SARS-CoV-2 from humans and their com-
panion dogs in Egypt, as 24.2% of tested dogs (8/33) 
were positive by rRT-PCR [221]. Although some stu-
dies have reported that dogs could be infected with 
SARS-CoV-2 without manifesting respiratory signs 
[234,235], other studies have indicated that SARS- 
CoV-2 positive dogs varied from mild to severe 
respiratory symptoms [229,234,236–238]. Another 
recent study has documented that SARS-CoV-2 posi-
tive dogs manifest mild respiratory signs or could be 
asymptomatic, and interestingly, some of the infected 
dogs were co-infected with Parvo [221]. Clinically, 

some of the latter dogs have demonstrated lymphocy-
topenia, thrombocytopenia with elevation of ferritin, 
C-reactive protein and D-dimers levels [221]. 
Additionally, other studies have indicated that SARS- 
CoV-2 positive dogs varied from mild to severe 
respiratory symptoms [234,236–238].

Furthermore, sporadic SARS-CoV-2 cases in pet 
ferrets were reported in Spain and Slovenia 
[164,239,240]. The WOAH/OIE has reported two 
cases of SARS-CoV-2 infections in pet ferrets up 
until September 2021 [166]. Experiments have 
revealed that ferrets are susceptible to SARS-CoV-2 
infection and are able to transmit the virus to other 
ferrets [161].

7.2. SARS-CoV-2 spillover and reverse zoonosis in 
zoo animals

Overall, by September 2021, the WOAH/OIE had 
reported 12, 5 and 3 cases of SARS-CoV-2 infection 
in tigers, lions, and pumas, respectively. Furthermore, 
2 cases were reported in each of (otters, snow leopards, 
gorillas) and a single reported case in each of (white- 
tailed deer and Amur leopard) up until September 
2021 [166]. After that, the WOAH/OIE reported 
SARS-CoV-2 infections in zoo animals including 
tigers, lions and pumas, otters, ferrets, snow leopards, 
gorillas, white-tailed deer, Amur leopard, Hippo and 
Eurasian lynx. By the end of April 2022, there had 
been reports of infections in hamster, Spotted hyena, 
Mule deer, Fishing cat, Binturong, Canada lynx and 
Coatimundi, Indian manatee, giant anteater and 
black-tailed marmoset, in 35 countries in Asia [212]. 
Furthermore, antibodies for SARS-CoV-2 were 
detected in 152 white-tailed deer (Odocoileus virginia-
nus) in New York, Michigan, Illinois, and 
Pennsylvania in July 2021, suggesting the possibility 
of SARS-CoV-2 infection in white-tailed deer in the 
Midwest and Northeast USA [241].

In details, in April 2020, SARS-CoV-2 was discov-
ered in three lions, two Amur tigers, two Malayan 
tigers in Bronx Zoo (New York, USA) [242]. In 
October 2020, another outbreak was reported in 
three Malayan tigers in Knoxville Zoo (Tennessee, 
USA). In November 2020, additional outbreaks were 
reported in a puma Gauteng Zoo (South Africa) and in 
Santiago del Estero Zoo (Argentina). In December 
2020, four lions in Barcelona Zoo (Spain), three 
snow leopards in Louisville Zoo (Kentucky, USA). In 
January 2021, one lion in Tallinn Zoo (Estonia), one 
Bengal tiger in Wildcat Zoo (Minnesota, USA) [243], 
one Amur tiger and two lions in Boras Zoo (Sweden) 
[244,245]. In February 2021, two Sumatran tigers in 
Children’s Zoo (Indiana, USA), two lions, one tiger 
and one cougar in Wild exhibit (Texas, USA) [246]. In 
April 2021, two lions at the Pittsburgh Zoo 
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(Pennsylvania, USA), three Malayan tigers at the 
Virginia Zoo (Virginia, USA) and eight Asiatic lions 
at Nehru Park (India) [234,247]. Interestingly, other 
important reverse zoonotic cases were reported in 
additional zoos in the USA including San Diego and 
Georgia zoos as SARS-CoV-2 was transmitted from 
the positive zoo staff to animals (three gorillas and 
four otters) [242,248].

Moreover, a research study was conducted on wild 
white-tailed deer (O. virginianus), and it indicated that 
this animal species is highly susceptible to SARS-CoV-2 
infection. Multiple human SARS-CoV-2 variants, 
including (B.1.2, B.1.582 and B.1.596), were isolated 
from wild white-tailed deer. Around 35.8% of tested 
nasal swabs from white-tailed deer were positive for 
SARS-CoV-2 (129/360 samples) in Ohio, USA during 
the period from January to March 2021. Several residue 
substitutions were observed in the ORF1ab, and the 
spike. Those residue substitutions were uncommon in 
humans. The ORF1ab mutations included: ∆82–86 
deletion in nsp1, T434I and P597L in nsp2, A382V in 
nsp12 and M474I in nsp13. The spike mutations 
included ∆141–144 deletion, H245Y in the NTD and 
E484D in RBM substitutions. Interestingly, deer-to- 
deer transmission was also detected [249]. Another 
recent study was performed on 300 white-tailed deer 
in Ontario, Canada during the period from November 
and December 2021 that involved sequencing, muta-
tion analysis, phylogenetic, selection, and recombina-
tion analyses. The latter study detected a highly 
divergent variant of SARS-CoV-2 (B.1.641) in white- 
tailed deer. The detected variant has 76 residue substi-
tutions (including 37 mutations related to non-human 
hosts). This study concluded potential evidence for 
SARS-CoV-2 evolution in white-tailed deer [250].

7.3. SARS-CoV-2 spillover and reverse zoonoses in 
farm animals

The wide use of pig-derived products in health and 
cosmetic sectors proposes the role of pigs in the spread 
and maintenance SARS-CoV-2. This certainly need 
further investigations [2]. Experimentally, SARS-CoV- 
2 could replicate poorly in cattle and pig, but cannot 
replicate in poultry [204,251]. Although some studies 
mentioned that pig is unsusceptible for SARS-CoV-2 
infection [252], viral shedding and seroconversion in 
experimentally infected pigs indicated that 31.3% of 
them produced antibodies against SARS-CoV-2 and 
showed low level of viral shedding [253,254].

8. Animal-to-animal transmission of SARS- 
CoV-2

Potential animal-to-animal transmission of SARS- 
CoV-2 was reported when specific SARS-CoV-2 

antibodies were detected in seven cats that were in 
the mink farms [255]. Furthermore, transmission of 
SARS-CoV-2 among hamsters and cats was detected 
[204,224]. Moreover, transmission of SARS-CoV-2 
among the same species has been notified in mink 
farms (Animal to animal transmission).

9. Experimental infections of SARS-CoV-2

SARS-CoV-2 experimental infection of (Baboons, 
green monkey, rhesus monkey, crab-eating mon-
key) has indicated their high susceptibility for 
SARS-CoV-2 infection and they have showed typi-
cal signs of COVID-19 as in humans, but these 
signs were more severe in rhesus monkey than 
others [256–263].

Further experiments revealed the susceptibility of 
cats, hamsters, ferrets, white-tailed deer and mice for 
SARS-CoV-2 infection and that they could transmit 
the virus to other animals that were co-housed with 
them [112,152,203,223,224,264–268]. Additional 
experiments were performed in many animal species 
to detect the animal susceptibility of SARS-CoV-2 
infections including Egyptian fruit bats, raccoon 
dogs, cats, white-tailed deer, rats, rabbits, mice, ham-
sters (Dwarf, Chinese and Syrian), cattle, Baboons, 
green monkey, rhesus monkey, and crab-eating mon-
key [207,267,269–281]. Such species displayed viral 
replication and shedding in respiratory tract with his-
topathological inflammation and specific immune 
responses against SARS-CoV-2 [207,271,275,282]. 
Moreover, experimentally infected white-tailed deer 
has shown evidence of vertical transmission [283].

10. SARS-CoV-2 mechanical transmission via 
contaminated surfaces

SARS-CoV-2 can survive in aerosols without venti-
lation for 3 hours [35] and it is more stable on 
smooth surfaces such as glass, steel, and plastic 
(for many days) than on rough surfaces such as 
paper, wood, and fabric (only for several hours) 
[36]. It is stable at 4°C and low pH (up to 3), but 
sensitive to UV radiation and it is heat labile (inac-
tivated in 5 minutes at 70°) [36,37]. Furthermore, 
virus is stable up to 3 weeks in sputum, mucus, 
tear, saliva, blood, semen and urine of SARS- 
CoV-2 infected persons [284]. Additionally, the 
virus can be detected up to 5 weeks in some 
patient’s stool [285] and asymptomatic carriers 
[286]. Thus, SARS-CoV-2 can be transmitted indir-
ectly via contact with contaminated surfaces or 
other mechanical vectors, after that, the viral infec-
tion could be initiated via mucous membranes of 
nose, mouth, and conjunctiva [287,288].
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11. SARS-CoV-2 mechanical transmission via 
insects and rodents

Insects and rodents could transmit many viruses 
between humans and animals through mechanical or 
biological transmission [2]. Insects have ACE2 recep-
tors, but their structure are completely different from 
those in humans [289] and thus, they are unsuscepti-
ble for SARS-CoV-2 infection [2]. Furthermore, mos-
quitoes cannot transmit SARS-CoV-2 biologically 
[290–292], but house flies can transmit the virus 
mechanically up to 24 hours [293] via their mouth or 
their body from contaminated surfaces [294]. 
Moreover, experimentally, house flies could transmit 
RNA of SARS-CoV-2 to the environment up to 24  
hours [293]. Furthermore, experiments revealed that 
some rodents such as deer mice and bushy-tailed 
woodrats are susceptible to SARS-CoV-2 infec-
tion [270].

In conclusion, all previous reported SARS-CoV-2 
cases in animals reveal their susceptibility to SARS- 
CoV-2 infection and they could be a source of 
human’s reinfection [2]. Even though, wild, zoo and 
domestic animals could be viral reservoirs, further 
studied are needed to investigate their susceptibility 
[295]. Therefore, the WOAH/OIE highly recommends 
the reporting of any incidence of SARS-CoV-2 infec-
tions in animal [166]. Furthermore, hygienic measures 
should be applied to people who have direct contact 
with animals in their occupations such as zookeepers, 
farmers, workers at slaughterhouses, and veterinarians 
to decrease the viral spread [147].

12. Conclusion

In conclusion, the present review highlights the 
importance of developing a universal approach to 
mitigate zoonotic and reverse zoonotic diseases such 
as COVID-19. It also sheds the light on the possible 
occurrence of SARS-CoV-2 spillover and reverse zoo-
noses from humans to their companion animals. 
Therefore, biosecurity measures should be applied to 
decrease the spread of SARS-CoV-2 among humans 
and animals. Furthermore, the review highlights criti-
cal residue substitutions in the spike glycoprotein of 
SARS-CoV-2 reported in animals As well as bioinfor-
matics and structural modelling studies focused on 
potential viral evasion from immune response, 
increase viral infectivity and transmission. Hence, 
SARS-CoV-2 full genome sequencing is highly recom-
mended to identify novel variants, monitor viral muta-
tions and investigate impact of these mutations on 
viral adaptation, infectivity, pathogenicity, transmis-
sion, and the effect of these changes on therapeutics 
and vaccine design. Therefore, this review paves the 
way for in-depth studies of host susceptibility to 
SARS-CoV-2 infections in different animal species.
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