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Introduction: Cryptocurrencies have been attracting the attention from media, investors, regulators and
academia during the last years. In spite of some scepticism in the financial area, cryptocurrencies are a
relevant subject of academic research.
Objectives: In this paper, several tools are adopted as an instrument that can help market agents and
investors to more clearly assess the cryptocurrencies price dynamics and, thus, guide investment deci-
sions more assertively while mitigating risks.
Methods: We consider three methods, namely the Auto-Regressive Integrated Moving Average (ARIMA),
Auto-Regressive Fractionally Integrated Moving Average (ARFIMA) and Detrended Fluctuation Analysis,
and three indices given by the Hurst and Lyapunov exponents or the Fractal Dimension. This information
allows assessing the behaviour of the time series, such as their persistence, randomness, predictability
and chaoticity.
Results: The results suggest that, except for the Bitcoin, the other cryptocurrencies exhibit the character-
istic of mean reverting, showing a lower predictability when compared to the Bitcoin. The results for the
Bitcoin also indicate a persistent behavior that is related to the long memory effect.
Conclusions: The ARFIMA reveals better predictive performance than the ARIMA for all cryptocurrencies.
Indeed, the obtained residual values for the ARFIMA are smaller for the auto and partial auto correlations
functions, as well as for confidence intervals.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Automation and cognitive innovation continue to apace, creat-
ing opportunities to radically simplify the processes adopted by
the human kind. As this transition picks up speed the capacity to
add value tend also to be unleashed. In this context, blockchain
may play a key role in the future, addressing concepts and tools,
such as artificial intelligence, 5G communications, internet of
things, and digital finance [1].

Important countries such as China [2,3] launched an ambitious
effort to improve blockchain technology, for issuing digital money
and to streamle government services [4]. This strategy evinces that
governments understand that to become a high-tech power it is
necessary to be positioned at the forefront of the new technologies
and that the blockchain is an integral part of this process. Indeed,
financial transactions are becoming touchless, as automation and
blockchain mature accelerating, therefore, this trend. In this sce-
nario, cryptocurrencies play a major role and becomemore popular
as their use spreads around the world. Indeed, cryptocurrencies
can change the procedures adopted for financial transactions [5–
7] and attention must be paid to this novel paradigm.

The first and most important digital currency at the present
date is the bitcoin (BTC). The BTC first records are dated in 2008
and was introduced with the initial objective of mitigating costs
related to electronic transactions (e-commerce) [8]. Nonetheless,
the BTC became more popular due to the anonymity that offers
in transactions, as well as its independence from traditional finan-
cial providers, such as banks or brokers, among others.

Baeck and Elbeck [9] point that the BTC is more a speculative
commodity rather than a currency. Nonetheless, investors have
employed BTC not only as a currency, but also as an investment
[10].

Over the year 2013 the BTC skyrocketed to an amazing 8000% of
growth of its value, becoming, consequently, the major bull market
of that period [8]. Nonetheless, problems appeared due to the
increasing amount of users and the popularization of digital trans-
actions, such as the so-called ‘‘double-spending”, which is related
to the possibility of a same digital currency being involved in
two transactions at the same time. Due to this practice, the cryp-
tocurrency became an easy target for hackers [11,12]. One idea
that emerged as a possible solution for the problem was to create
a public ledger, where all the information about negotiation would
be recorded, including reports about the buyer and the seller of
BTC. However, this idea did not completely solved the problem,
since it carried to the centralization of the cryptocurrency, and also
the lack of anonymity of the transactions [8,11].

A protection system denoted ‘‘blockchain” was created, consist-
ing of a structure where all the cryptocurrencies are negotiated,
serving as a public ledger and being transparent to all transactions.
Blockchain is an exceptional anti-fraud system, since every modifi-
cation in a given transaction (i.e., a block) results in a complete
modification of all the precedent blocks posing, therefore, a signif-
icant computational load [13,14].

In recent years, the emergence of the altcoins, that is, cryptocur-
rencies derivated from the BTC open code, contributed to liquidity
and competition in the digital currency market. Among the multi-
tude of present day altcoins, we highlight those explored in this
work: Litecoin (LTC), Ripple (XRP), Monero (XMR), Ethereum
(ETH), and Ethereum Classic (ETC) released during 2011, 2012,
2014, 2015 and 2016, respectively. How the altcoins will influence
the BTC price dynamics is a frequent and still open question.

Cryptocurrencies and especially the BTC, have shown to be an
innovative and alternative asset that has evolved in the context
of absolute returns, volatilities and correlations [15]. At the same
time, investors in innovative assets demand for more information
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to make sure that they are making an appropriate investment
while mitigating risks. It is well known that investments in tradi-
tional markets require access to data from companies, industries
and even the global economy in order to obtain the aforemen-
tioned information. Usually, financial advisors and investors rely
on analysts to process this data and to provide insight into those
assets, that is, to provide an extended and solid investment analy-
sis. Nonetheless, crypto-assets are not related to traditional com-
panies and the processes of evaluating and monitoring their price
dynamics is different from those adopted for company stock prices
[16].

The main contribution of this work is the use of fractional and
fractal mathematical tools, so that market agents and investors
have a more refined instrument to assess clearly the cryptocurren-
cies price dynamics. In this context, recent advances [15] suggest
that fractals and fractional calculus are interesting tools to deal
with complex behavior with memory effect [17–21]. Non-integer
orders of differentiation and integration describe phenomena such
as long-term memory, non-locality, persistence, predictability,
chaoticity, thus encouraging their application in oscillatory phe-
nomena [22], control algorithms [23,24], biosystems [25–30],
economy and finance [31–34], among others [35–37]. The predic-
tion of the cryptocurrencies prices is of key importance since a
small advantage obtained through accurate information can lead
to significant profits [38–40,10]. Lahmiri and Bekiros [38] imple-
mented a novel deep learning model to forecast the Bitcoin, Digital
Cash, and Ripple digital currencies prices series. These researchers
obseved that a chaotic dynamics, led by long memory effects, can
be better understand using fractional operators. Corbet et al. [39]
investigated the effect of futures contracts for the Bitcoin market
and concluded that the increasing volatility leads to a null effectiv-
ity of pricing protection tools, such as, the hedging technique. Thus,
speculative approaches are necessary in order to perform in the
Bitcoin futures trading. Balcilar et al. [40] examined the causal rela-
tion between Bitcoin returns, volatility, and trading volume. It was
observed a significant evidence of causality between the returns
and trading volume, but no evidence of any causal relation with
the volatility was found. This pattern can help models using the
return-volume relationship, except during bear and bull market
regimes. Despite that, Urquhart [10] found evidence of inefficiency
in the Bitcoin market indicating a less random market with mem-
ory effects in the prices. In fact, Bitcoin may be moving towards
market efficiency. Therefore, for investors to succeed in the digital
currency market, it is important to understand the price dynamics
of such cryptocurrencies, especially for the fractal dynamics and
long-memory effects.

Mensi et al. [41] observed that there is a double long-memory
process between the BTC and the ETH prices. Aharon and Qadan
[42], and Caporale and Plastum [43] investigated the relationships
between the day of the week and the BTC price and, furthermore,
the relationship between the prices of the BTC and other altcoins.
The so-called ‘‘Monday effect” was found for the returns of the
BTC. However, that behavior was not observed for the LTC, XRP
and Dash (DASH) cryptocurrencies. Balcilar et al. [40] identified
another BTC feature when exploring the relationship between the
trading volume, BTC returns, and volatility. The study suggested
that the trading volume does not helps in predicting the volatility
of the BTC returns. Briere et al. [44] showed that the BTC allows the
diversification of the investors benefits, and Cheung et al. [45]
unveiled the presence of bubbles in the BTC market. Corbet and
Katsiampa [46] noted the asymmetries in the BTC price return ser-
ies’ persistence and found evidences of an higher persistence of
positive than negative returns. Corbet et al. [47] explored the effec-
tiveness of technical trading rules in the cryptocurrency markets
and obtained results supporting that a variable-length moving
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average strategy in buy signals outperforms the sell signals in
terms of returns. Catania et al. [48,49] verified that, besides the
long-memory, the leverage effect also contributes to the volatility
of the price time series (TS), because of the different foreign
exchange currencies. Bouri et al. [50] analysed the long-memory
process in the structural breaks along with the records of the
BTC price. Caporale et al. [51] found the same result for other alt-
coins, such as the LTC, XRP, and DASH. Since the Efficient-Market
hypothesis (EMH) is related to a random-walk type of phe-
nomenon [51,52], studies also suggest that the BTC may be in
the process of moving towards an efficient market over the last
years [10,53–55].

This paper explores the dynamics of the price TS for the BTC,
LTC, XRP, XMR, ETH and ETC cryptocurrencies. Several mathemat-
ical tools are adopted, namely the Auto-Regressive Integrated Mov-
ing Average (ARIMA), Auto-Regressive Fractionally Integrated
Moving Average (ARFIMA) and Detrended Fluctuation Analysis
(DFA) algorithms. Additionally, three metrics corresponding to
the Hurst (H) index, Lyapunov (k) exponent and Fractal Dimension
(dA) are also used. The information provided by the distinct
approaches captures different characteristics of the price TS, such
as, persistence, randomness, predictability and chaoticity.

The paper has the following organization. Section 2 introduces
the price TS and the proposed methods. Section 3 discusses the
results obtained by the mathematical and algorithmic tools.
Finally, Section 4 gives the main conclusions.
2. Data and methods

Cryptocurrencies have shown to be highly volatile, allowing sig-
nificant profit opportunities for experts in this market [56].
Nonetheless, this market, as well as the financial and economic
systems, requires accurate mathematical models to understand
their complex behavior [57,58].

The ARIMA and ARFIMA techniques are usually employed in
studies involving TS. David et al. [59,60] applied these tools in
the description of energy and agricultural commodities and con-
cluded that the ARFIMA shows a better performance than the
ARIMA. Several papers adopt the Hurst exponent H to estimate
the market efficiency [61,51,62–64]. The Lyapunov exponent k is
also an effective index to indicate the presence of chaos and pro-
vides relevant information about the TS predictability [65,66].
The concept of fractals andmultifractals have been also extensively
applied to evaluate the market efficiency of cryptocurrencies and
other financial TS [67–71,53,72]. Bearing these facts in mind and
to achieve an effective forecasting, we adopt the aforementioned
mathematical tools to explore the dynamics of cryptocurrencies
price TS.

The data was obtained in the website https://www.invest-
ing.com/crypto/currencies. The TS prices available for the ETC
starts in the year of 2016. For this reason, we use daily data (7 val-
ues per week and without holidays) of closure prices from 2016
onwards. Furthermore, we consider the same period for all cryp-
tocurrencies investigated in this work, as depicted in Fig. 1. The
time interval explored goes from July/2016 to March/2019 for
the prices TS composition, and from April/2019 to Jun/2019 for
the future prices prediction.
2.1. The ARIMA and ARFIMA models

The ARIMA(p,d,q) and ARFIMA(p,d,q) models are applied in this
work to predict the prices of the cryptocurrencies. The parameters
p and q 2 N and d 2 R stand for the order (number of time lags) of
the autoregressive models, the degree of differencing and the order
of the moving average, respectively. The ARIMA can be interpreted
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as a combination of the autoregressive and moving-average mod-
els. The ARFIMA [73] generalizes the ARIMA, so that the parameter
d can assume non-integer values.

The price TS, Pt , is integrated and leads to combined process of
auto-regressive (AR), integrated (I) and moving average (MA). The
ARIMA can be written by means of the discrepancy operator B that,
by definition, can be approximated using the Wold decomposition
[74],

W Bð Þ � H Bð Þ
/ Bð Þ ; ð1Þ

where W Bð Þ is an infinite lag polynomial, and
/ Bð Þ = 1�u1B� . . .�upB

p andH Bð Þ= 1þ h1Bþ . . .þ hqB
q represent

the autoregressive and moving-average operators, respectively.
Therefore, the ARIMA(p,d,q) can be written as:

/ Bð Þ 1� Bð ÞdPt ¼ H Bð Þet ; ð2Þ

where et denotes a white noise process, and 1� Bð Þd is the differ-
encing operator in the autoregressive model parameters. Similarly,
the ARFIMA(p,d,q) is defined by:

U Bð ÞPt ¼ H Bð Þ 1� Bð Þ�det; ð3Þ
where d can assume non-integer values �0:5 6 d 6 0:5 [75], and
U Bð Þ;H Bð Þ and et have the same meaning as before. The polynomi-
als U Bð Þ and H Bð Þ have no common roots, B is the backward shift

operator and 1� Bð Þ�d is the fractional differencing operator given
by [76]:

1� Bð Þ�d ¼
X1
j¼0

C jþ dð Þ
C jþ 1ð ÞC dð Þ B

j ¼
X1
j¼0

njB
j: ð4Þ

An asymptotic approximation of nj is given by:

nj ¼ C jþ dð Þ
C jþ dð ÞC dð Þ ; ð5Þ

where C is the gamma function.
The ARFIMA(p,d,q) can grasp the dynamics of a long-range

memory process [75,73,76].
The Autocorrelation Function (ACF) and the Partial Autocorrela-

tion Function (PACF) correlograms are plotted for obtaining the
orders of p and q of the prediction models (see A.7 and A.8). If nec-
essary, the TS are differenced to become stationary. To compare the
orders of the models, the Bayesian Information Criterion (BIC) cri-
terion [77] is adopted in the follow-up. Also, the Seasonal and
Trend decomposition using the Loess (STL) procedure is applied,
where Loess represents an estimating technique for nonlinear rela-
tionships [77]. Table 1 lists the BIC values obtained by means of the
ARIMA and ARFIMA for the six cryptocurrencies. The model with
the smallest BIC value is selected for each technique. The smaller
the BIC value, the better the fitting for the cryptocurrency TS [77].

2.2. The detrended fluctuation analysis method and Hurst exponent

It is known that financial TS may exhibit long-range depen-
dence [78,79,77,59]. The same characteristic can be observed in
cryptocurrencies price TS [77,41,48–51]. The long-range depen-
dence is related to the fractional Brownian motion (fBm) [80] that
generalizes the classical Brownian motion (Bm) describing a ran-
dom walk. The properties of the Bm and fBm can be quantified
by the Hurst exponent H [62]. Bearing in mind that H 2 0;1ð �, the
main characteristics of the Hurst exponent can be summarized
as: a) H ¼ 1=2 for a random walk (Bm) process, i.e., without
long-memory behavior, b) H > 1=2 for a persistent process (fBm)
and long-memory effect, and c) H < 1=2 for an anti-persistent pro-
cess related to the short-term memory.

https://www.investing.com/crypto/currencies
https://www.investing.com/crypto/currencies


Fig. 1. The six cryptocurrencies (BTC, LTC, XRP, XMR, ETH, ETC from a to f, respectively) price TS from July/2016 to March/2019.
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The fBm described by a persistent H is a centered Gaussian pro-

cess BH ¼ BH
t

� �
tP0

that has the covariance function [80] given by:

E BHtBHs
h i

¼ 1
2

s2H þ t2H � jt � sj2H
� �

: ð6Þ

The closer the value of H to 1, the higher is the probability for
the next step to be positive if the last one was also positive.

Several different techniques can be applied to estimate the H
exponent of a TS. One of the first methodologies is the rescaled
range analysis (R/S), [81,82]. An approach based on the Fourier
88
analysis, implemented by means of the FFT algorithm, was applied
in [83,84]. The DFA method has also been employed in several
works [85,86]. This technique avoids the false detection of correla-
tion of self-similarities and can be used in the evaluation of non-
stationary series, as well as on the detection of long-memory
processes.

The DFA involves successive steps for calculating the H expo-
nent. Let us consider a stochastic prices TS p jð Þ; j ¼ 1; . . . ;N, where
N 2 N represents the number of observations of the TS. The DFA
algorithm involves the three steps: i) Compute the TS mean,



Table 1
The BIC values for the ARIMA and ARFIMA models.

Cryptocurrency Model BIC

BTC STL + ARIMA (1,1,1) 14214.42
STL + ARFIMA (0,0.5,5) 3047.85

LTC STL + ARIMA (3,1,2) 6664.00
STL + ARFIMA (0,0.5,5) 3109.76

XRP STL + ARIMA (3,1,2) �2692.24
STL + ARFIMA (1,0.25,1) 3115.67

XMR STL + ARIMA (1,1,0) 7500.60
STL + ARFIMA (0,0.5,5) 3191.99

ETH STL + ARIMA (0,1,0) 9084.16
STL + ARFIMA (0,0.5,5) 3201.11

ETC STL + ARIMA (4,1,3) 3272.17
STL + ARFIMA (1,0,0) 3106.87
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p̂ ¼ 1
N

PN
j¼1p jð Þ, and write the integrated TS by the estimation of

P jð Þ ¼PN
j¼1 p jð Þ � p̂ð Þ, ii) Calculate the fluctuation sequence (or

quantity), F nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
j¼1 P jð Þ � Pn jð Þ½ �2

q
, where Pn jð Þ is the ordinary

least squares method for removing trend and is subtracted from
P jð Þ, and iii) Repeat the process so that the slope of the straight line
relating log F nð Þð Þ versus log nð Þ provides the scaling H exponent.

Assuming that the kth order auto-covariance given by:

c kð Þ ¼ Cov Pt ; Ptþk½ �; ð7Þ

is the kth order autocorrelation, the autocorrelation function q can
be determined as:

q ¼ c kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ptð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Ptþkð Þp ¼ c kð Þ
c 0ð Þ : ð8Þ

As stated by Peters [87], there is a relation between H and q
described by:

q ¼ 22H�1 � 1: ð9Þ
Section 3 shows the H exponents determined for the six

cryptocurrencies.

2.3. The Lyapunov exponent

The Hurst and Lyapunov exponents are important indices for
characterizing non-linear and chaotic systems. The H index mea-
sures the irregularity of the TS, that is, captures the rate of chaos.
On the other hand, the exponent k indicates how the presence of
chaos conditions influences the prediction of the future.

The value of the k reflects the sensitive dependence on the ini-
tial conditions by measuring the exponential divergence of adja-
cent orbits. Therefore, the evaluation of how distinct trajectories,
with nearby initial conditions, diverge, is related to the expansion
or contraction of directions in the phase space [88].

Since the values of H and dA of a given TS obey the formula
dA ¼ 2� H, a relation between the Hurst and Lyapunov exponents
can be estimated from the global dimension dG. This relationship is
used to find the neighboring points in the TS and must be at least
equal to or greater than 2dA, and one can write [89,90]:

dG P 4� 2H: ð10Þ
For the calculation of k, its local dimension D must be deter-

mined. The value of D is related to the dimension of Jacobian matri-
ces as stated by Bryant et al. [89]. The values of D must be not
much greater than dA and, therefore, an option is to choose the next
integer value. Also, if we have D equal to dG then both conditions
can be satisfied.
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The system dynamics maps a D-sphere of states into a D-
ellipsoid. Consequently, when chaotic motion emerges, some kind
of complex dynamics is present. The instabilities and stabilities are
associated with the directions where stretching and contraction
occur [91].

If we consider ei tð Þ ¼ e0b
kt , where ei tð Þ represents the deformed

hyper-volume at time t and b is a given basis, then the Lyapunov
exponents can be obtined as [88,91],

ki ¼ lim
t!1

1
t
logb

ei tð Þ
e0

� �� �
; i ¼ 1;2; . . . ;D: ð11Þ

Expression (11) gives a common algorithm for obtaining the
Lyapunov spectrum of a system with known equations of motion.
For the case of a TS, the Lyapunov exponent can be estimated
through the algorithm proposed by Wolf et al. [65]

ki tð Þ ¼ 1
tM � t0

XM
k¼1

log2
ei tkð Þ
e0 tk�1ð Þ
� �

; ð12Þ

where M and tk � tk�1 ¼ D represent the total number of replace-
ment steps and the time step, respectively.

The albebraic signs of ki provide information about the system’s
dynamics and recognize chaotic motion since a positive value indi-
cates that the system is chaotic. Furthermore, the Lyapunov expo-
nent can indicate how far future forecasting can be tried in a TS
[92]. Bearing this fact in mind, we applied such technique to calcu-
late the k for the cryptocurrencies price TS.

2.4. Rolling sample approach for the H and dA indices

A rolling sample calculation is applied to obtain the values of H
and dA, by considering a movable window with fixed length of
n ¼ 100 samples, that is, by starting at the first one-hundred obser-
vations and rolling until the last group of hundred samples. Indeed,
the same methodology is described in SubSection 2.2 to obtain H.
With this approach, H is calculated along time and it is possible
to analyze the cryptocurrencies behavior from July/2016 to
March/2019.

Similarly to H, the properties of dA [93,94] are also related to the
memory processes and can be summarized as:

(a) 1 < dA 6 2,
(b) dA ¼ 3=2, for a random walk (Bm) indicates that the TS does

not have a long-memory process and local anti-correlations,
(c) dA < 3=2, indicates a persistence process (long-memory or

correlated), corresponding to fBm,
(d) dA > 3=2, indicates an anti-persistent process (short-term

memory, anti-correlated).

The index dA is calculated through the Hall-Wood (HW) and
Robust Genton (RG) estimators [95] described in the follow-up.

2.4.1. The Hall-Wood estimator
The HW estimator [96] is a box-counting algorithm. Let us have

a scale �l ¼ l=n, where l ¼ 1;2;3; . . . ;n. The area of the boxes covers
the curve is

bA l=nð Þ ¼ l=nð Þ
Xn=l½ �

i¼1

xil=n � x i�1ð Þl=n
� �

; ð13Þ

where the operator n=l½ � calculates the integer part of the argument.
The HW estimator is given by

dAHW ¼ 2�
XL
i¼1

si � sð Þ log bA l=nð Þ
� � ! XL

i¼1

si � sð Þ2
 !�1

; ð14Þ



Fig. 2. The ARIMA (left) and ARFIMA (right) predictions for the BTC, LTC and XRP cryptocurrencies.
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Fig. 3. The ARIMA (left) and ARFIMA (right) predictions for the XMR, ETH and ETC cryptocurrencies.

S.A. David, C.M.C. Inacio Jr., R. Nunes et al. Journal of Advanced Research 32 (2021) 85–98

91



Table 2
The Hurst, Fractal Dimension and Lyapunov exponents values for the six cryptocurrencies.

Cryptocurrency Hurst (H) Fractal Dimension (dA) Lyapunov (k) 1=k (days)

BTC 0.533 1.467 0.331 3.020
LTC 0.482 1.518 0.565 1.769
XRP 0.472 1.528 0.507 1.972
XMR 0.493 1.507 0.461 2.169
ETH 0.496 1.504 0.389 2.570
ETC 0.451 1.549 0.545 1.835

Fig. 4. DFA-Hurst values for the six cryptocurrencies.

Fig. 5. Average Lyapunov local exponents (k1) for the six cryptocurrencies.
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where L P 2; sl ¼ log l=nð Þ and s ¼ 1=Lð ÞPL
i¼1si. If we adopt L ¼ 2, as

pointed by Hall-Wood to avoid bias, then we obtain

dAHW ¼ 2�
log bA 2=nð Þ
� �

� log bA l=nð Þ
� �

log 2ð Þ : ð15Þ
2.4.2. The robust Genton estimator
The RG [97] is based on the moments estimator of scale. How-

ever, the scheme is not robust and, therefore, the algorithm devel-
oped by Genton is adopted. The calculation yields
Fig. 6. Rolling window approach for the six cryptocurrencies (BTC,

93
V̂2 l=nð Þ ¼ 1
2 l� nð Þ

Xn
i¼l

Xi=n � X i�lð Þ=n
� �2

; ð16Þ

and we obtain the RG estimator as

dARG ¼ 2� 1
2

XL
i¼1

si � sð Þ log V̂2 l=nð Þ
� � ! XL

i¼1

si � sð Þ2
 !�1

; ð17Þ

with L P 2; sl ¼ log l=nð Þ and s ¼ 1=Lð ÞPL
i¼1si. Using L ¼ 2 to mitigate

bias, one obtains
LTC, XRP, XMR, ETH and ETC from a to f, respectively) price TS.
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dARG ¼ 2�
log V̂2 2=nð Þ
� �

� log V̂2 l=nð Þ
� �

2 log 2ð Þ : ð18Þ
3. Results and discussion

The ARIMA and ARFIMA prediction results are depicted in Figs. 2
and 3. From Table 1 it is possible to note that an identical order
(d ¼ 0:5) is calculated by the ARFIMA for the BTC, ETH, LTC and
XMR cryptocurrencies. The range of values higher than d ¼ 0 indi-
cate that these cryptocurrencies have a dynamic fBm. The XRP
cryptocurrency also presents a long-memory effect. On the other
hand, the ETC price series reveals a short-term memory process.
However, other fractional tools, such as the Hurst (H), Fractal
Dimension (dA) and Lyapunov (k) exponents are necessary to deter-
mine the dominant process for each price series. Also, Figs. A.7 and
A.8 suggest that the ARFIMA has a better fitting for all the cryp-
tocurrencies, since the presence of the residual reveals smaller cor-
relations for the ACF and PACF. Additionally, Figs. 2 and 3 points
out smaller confidence intervals values for the ARFIMA that can
lead a more precise prediction measurement.

The Hurst, Fractal Dimension and Lyapunov exponents, as well
as the prediction horizon (1=k) for the cryptocurrencies, are listed
in Table 2.

The Hurst exponent and fractal dimension shown in Table 2 and
Fig. 4 suggest persistence (long-memory) solely for the BTC, since
for the other virtual coins an anti-persistence phenomenon is
observed, and are related to a short-memory process.

The local and global dimensions, D and dG, with values equal to
3, were identified for all cryptocurrencies, as a way of satisfying the
Hurst, Fractal Dimension and Lyapunov conditions.

One can note from Table 2 and Fig. 5, that k is positive for the six
cryptocurrencies pointing to a chaotic dynamics. The numerical
value 1

k can be viewed as information about the predictability of
the future TS price based on its past. The smallest value of k occurs
for the BTC and, consequently, the predictability for the BTC is lim-
ited to 1

k ¼ 3:020 day. Nonetheless, this value corresponds to the
higher horizon prediction among the six cryptocurrencies. The
lowest predictability occurs for the LTC with a value of 1

k ¼ 1:769
day.

The dynamics in time of the H, dAHW and dARG for the six crip-
tocurrencies are depicted in Fig. 6.

Fig. 6a shows that, for the most part of the period, the BTC
behaves as persistent (long-memory effect) when the indices H,
dAHW and dARG are observed.

One can also note from Fig. 6 that the other five cryptocurren-
cies alternate between persistent and anti-persitent behavior.
Nonetheless, a predominant anti-persistent (short-memory effect)
phenomenon can be observed (Fig. 6b, d and e) for the ETH, XRP
and LTC, respectively. The ETC and XMR (Figs. 6c and f) also fluctu-
ate between persistent and anti-persistent behavior, but it seems
clear that they remain preferably with anti-persistence.

The results achieved for the BTC are consistent with the one
mentioned in the literature [41,46,48–50]. We highlighted that
despite the classical fixed window technique showing evidence
for an specific effect for a TS (for example, a long-memory effect),
the dynamic behavior of an TS can significantly bias its analysis.
For this reason, it is possible that the volatility of an certain asset
can eventually impair the efficiency of the prediction, when only
the aforesaid technique is used.

In our study, besides the adoption of a fixed window, we also
consider the rolling window approach, that is, we take into account
its important dynamic behavior during the analysis, mitigating
94
possible bias phenomena. Fig. 6 shows the time evolution of the
three indices H, dAHW and dARG .

Differently of our findings, previous studies [48,41,50,49] point
to a persistent behavior for the cryptocurrencies. Nonetheless, such
papers do not employ rolling windows and important information
may have been overlooked.

Despite the price volatility revealed by the oscillation between
persistence and anti-persistence along the whole period, it is pos-
sible to observe that the measures for H and dA point to similar
behaviors as listed in Table 2, evincing the consistency of the
results.
4. Conclusions

This study employed a variety of mathematical tools for the
analysis of six significant cryptocurrencies. Its main contribution
is related to the use of fractional and fractal mathematical tools
as an instrument that can help market agents and investors to
more clearly assess the cryptocurrencies price dynamics and, thus,
guide investment decisions more assertively while mitigating
risks. Classical and fractional integration were explored by means
of the ARIMA and ARFIMA processes. ARFIMA performed better
than the ARIMA for all cryptocurrencies, since the residual values
revealed smaller correlations for the ACF and PACF. Moreover,
the smaller confidence interval values for the ARFIMA indicated a
more precise prediction measurement. The DFA method and the
Wolf algorithm were used for obtaining the Hurst index and the
Lyapunov exponent, respectively. The fractal dimension was com-
puted by means of HW and RG estimators. The Hurst exponent and
fractal dimension versus time were calculated using sliding win-
dows of constant width, that is, the so-called ‘‘rolling sample
approach”. The BTC was the only cryptocurrency that presented
more consistent long-memory behavior and the smallest value of
the Lyapunov exponent. The LTC exhibited the lowest predictable
horizon compared to the other cryptocurrencies, pointing to a
chaotic behavior and presenting the highest Lyapunov exponent.
The ETH and the XMR presented values of H near to the random
walk phenomenon. Nevertheless, they behaved mainly as an
anti-persistent process showing a short memory effect.

With exception of the BTC, the other five cryptocurrencies TS
are mean reverting, showing a lower predictability than the BTC,
revealing a behavior that was verified to be persistent.

Following the results, a future research topic is the multivariate
analysis about the influence or the price transmission between the
altcoins and the BTC.
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Appendix A

To measure the accurary of the prediction models, several crite-
ria are adopted for comparison. We consider the Entropy-Theil’s
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(E) measure, Mean Absolute Error (MAE), Auto Correlation Func-
tion at lag 1 (ACF1) and Mean Absolute Scaled Error (MASE),

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Avg Pt � P̂t

� �2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Avg P2

t

� �r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Avg P̂2

t

� �r ; ðA:1Þ

MAE ¼ Avg jet jð Þ; ðA:2Þ
Table A.3
Results of the criteria for comparing the ARIMA(p; d; q) and ARFIMA(p; d; q).

Cryptocurrency Model E

BTC ARIMA(1,1,1) 7.478
ARFIMA(0,0.5,5) 8.252

LTC ARIMA(3,1,2) 5.041
ARFIMA(0,0.5,5) 5.415

XRP ARIMA(3,1,2) 5.736
ARFIMA(1,0.25,1) 8.806

XMR ARIMA(1,1,0) 8.028
ARFIMA(0,0.5,5) 11.627

ETH ARIMA(0,1,0) 10.193
ARFIMA(0,0.5,5) 20.340

ETC ARIMA(4,1,3) 9.619
ARFIMA(1,0,0) 19.372

Fig. A.7. The ACF and PACF residuals for th

95
MASE ¼ Avg jetj
1

n�1

Pn
i¼2jPi � Pi�1j

 !
; ðA:3Þ
where P̂t represents the forecast value and et ¼ Pt � P̂t , which is the
error value of t.

The results for the six cryptocurrencies are summarized in
Table A.3. The ACF and PACF residuals are ploted in Figs. A.7 and
A.8.
MAE ACF1 MASE

1925.365 0.942 12.002
2027.310 0.956 12.638

24.774 0.867 7.993
25.326 0.911 8.171

0.074 0.665 3.702
0.122 0.917 6.055

30.028 0.872 4.917
40.399 0.941 6.691

54.456 0.788 4.515
139.231 0.877 11.544

3.658 0.622 4.791
6.320 0.813 10.454

e ARIMA for the six cryptocurrencies.



Fig. A.8. The ACF and PACF residuals for the ARFIMA for the six cryptocurrencies.
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