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Abstract: In the context of smart cities, there is a general benefit from monitoring close encounters
among pedestrians. For instance, for the access control to office buildings, subway, commercial malls,
etc., where a high amount of users may be present simultaneously, and keeping a strict record on
each individual may be challenging. GPS tracking may not be available in many indoor cases; video
surveillance may require expensive deployment (mainly due to the high-quality cameras and face
recognition algorithms) and can be restrictive in case of low budget applications; RFID systems can be
cumbersome and limited in the detection range. This information can later be used in many different
scenarios. For instance, in case of earthquakes, fires, and accidents in general, the administration of
the buildings can have a clear record of the people inside for victim searching activities. However, in
the pandemic derived from the COVID-19 outbreak, a tracking that allows detecting of pedestrians
in close range (a few meters) can be particularly useful to control the virus propagation. Hence, we
propose a mobile clustering scheme where only a selected number of pedestrians (Cluster Heads)
collect the information of the people around them (Cluster Members) in their trajectory inside the
area of interest. Hence, a small number of transmissions are made to a control post, effectively
limiting the collision probability and increasing the successful registration of people in close contact.
Our proposal shows an increased success packet transmission probability and a reduced collision
and idle slot probability, effectively improving the performance of the system compared to the case
of direct transmissions from each node.

Keywords: building access; mobile clustering scheme; tracking of pedestrians; RFID systems; control
of virus propagation

1. Introduction

Smart City is a general term used to represent an information system installed in
certain intelligent environments to disseminate information regarding the operation of the
city and the quality of life of the residents [1], such as information about the water supply,
traffic conditions, dangerous leaks, cultural and sports events, health-related information,
updates about pollution, and climate-related data among many others. In pandemic times,
smart city environments would allow having detailed monitoring of contagion hotspots
by following close encounters of potential sick individuals with other people in specific
periods and locations. With this information, governmental authorities can isolate specific
individuals who might be at risk of infection without affecting the rest of the population,
effectively avoiding the complete lockdown of the city and reducing the economic impact
of the epidemic.
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The outbreak of a new virus that emerged in the city of Wuhan, central China in
December 2019, has crossed all borders. The virus was named Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2 for short) by the International Committee on Tax-
onomy of Viruses. Consequently, COVID-19 (Coronavirus Disease 2019) is the illness that
it causes [2]. On 8 February 2021, the Worldometer COVID-19 Data reported 106,952,085
cases with COVID-19 and confirmed 2,334,563 deaths worldwide [3].

It is generally known that SARS-CoV-2 is primarily transmitted via airborne, through
aerosols emitted during speech, sneeze or cough, by infected individuals [4]. Aerosols
containing SARS-CoV-2 remain suspended in the air for hours [5], and may potentially
be inhaled by others. Therefore, for reducing the risk of transmission, physical distanc-
ing of 2 m is considered as an effective protection only if everyone wears face masks in
daily life activities [6]. However, small particles with viral content may travel in indoor
environments, covering distances up to 10 m starting from the emission sources [6]. More-
over, the temperature, lighting, and humidity of the environment are abiotic factors that
influence the inactivation of COVID-19.

It is reported that exposure of the SARS-CoV-2 virus for 30 min at 34◦ C, in the absence
of humidity, is sufficient to damage the structure of the spike protein [7], which binds to
ACE2 (Angiotensin-converting enzyme 2) the receptor for SARS-CoV-2 [8]. In contrast,
at 22◦ C, the spike protein structure remains unaffected. Regarding exposure of the virus
to sunlight, about 90% or more of SARS-CoV-2 virus is inactivated after being exposed for
11–34 min of midday sunlight in Mexico and in many other world cities during summer.
On the contrary, the virus is active for a day or more in winter [9].

UV light is divided into three classifications: UVA (320–400 nm), UVB (280–320 nm),
and UVC (200–280 nm). UVC is absorbed by RNA and DNA bases [10], which is effective
for inactivating SARS-CoV-2 [11]. The monitoring of the above-mentioned abiotic factors
can help us to determine the pedestrian occupancy in a building or space, and implement
precautionary measures to reduce risks of getting COVID-19.

In current times, the COVID-19 epidemic has shown the devastating effects of poor
infection monitoring and tight and generalized quarantine conditions in different cities
regarding the economy and general health of their population, due to prolonged isolation,
lack of social interaction, and sunlight, among others. Furthermore, experts warn that
this current epidemic is only one of many others to come in the near future. Hence, we
suggest being ready for future emergencies by having the computational tools to avoid
catastrophic scenarios as the one lived worldwide in 2020–2021. To this end, contact tracing
is a critical tool to stop the spreading of such diseases [12–14].

Our monitoring system employs devices with Radio Frequency (RF) communication
capabilities to periodically send a beacon signal to form mobile clusters (pedestrians are
usually moving in specific trajectories and the clusters move accordingly) with individuals
inside their radio of interest, i.e., within the distance of possible contagion. This radio
can be modified according to the abiotic factors monitored at certain times during the
day. Even if worldwide safety guidelines clearly state to keep social distancing of at least
two meters, in many cases, these recommendations have not been respected as has been
documented throughout the world [15,16]. This is the main reason for the increment in
confirmed cases at different periods of this pandemic. In some cases, the 2-m social dis-
tance has not been respected due to cultural, religious, social, and/or commercial reasons
where people continue to gather in special dates that they are used to celebrate, despite
police installing sanitary filters and trying to separate people by force, as reported in [15].
Furthermore, as mentioned in [17], urban agglomerations, where the social distancing
is not fully respected, are the centers at highest risk during a period of a pandemic. In-
deed, more than 90% of COVID-19 clusters are associated with densely populated urban
agglomerations and megacities in the world [17]. This is can be explained in part by the
fact that people have not respected the 2-m distancing on their daily activities since cities
are the economic and financial motor of many developing countries and many activities
cannot be completely stopped, workers have to travel, in many cases using the public
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transport system where close contacts cannot be avoided as noted in [18]. Building on this,
we believe that using a short-range (lower than 2 m) clustering scheme for communication
among pedestrian’s devices for contact tracing applications entail important benefits.

Although ad-hoc wireless sensor networks could be designed based on Bluetooth
technology (see, e.g., [19]), we find some issues that limit its application to the tracking of
pedestrians in a pandemic scope. In the first place, its high power consumption: establish-
ing a wireless Bluetooth link at a distance of 10 m (Power Class 2) or 1 m (Power Class 3)
requires 4 dBm or 0 dBm, respectively. In this work, we designed a wireless device that
employs only –17.5 dBm for establishing a reliable wireless link, which is far lower than the
previous transmitting powers. In the second place, the pairing of devices: for the correct
pairing, the Bluetooth devices should be close enough depending on their transmission
power and the level of security. It is observed that the higher the level of security, the larger
the average time needed to establish a link (see, e.g., [20]). This may require a few seconds,
which is far larger than the microseconds used to transmit data between our RF devices.
In the third place, security: though Bluetooth employs an authentication protocol to con-
nect two devices, as well as encryption for transmitting data, it is not difficult to attack
a Bluetooth device (see, e.g., [21]), which compromises the protection of information of
the pedestrians.

Then, our proposal focuses on nodes inside the mobile cluster to share their ID in
order to detect the people that was in close interaction with each individual throughout
the day. Hence, whenever an individual is confirmed to be infected (by a trusting health
authority), the city services can easily detect the people that could be in potential infection
danger by determining the identity of the people that were close to this infected person in
the previous days. Thus, these people in potential danger can be isolated as well as the
people that were in touch with them and so on and so forth.

The use of mobile clusters aims at making efficient utilization of resources, increasing
the success transmission probability of nodes. For mobile applications, Cluster Heads
(CHs) can transmit the close contact information from the nodes inside the cluster directly
to a base station or access point whenever a close contact of less than the contagion range
occurred, avoiding the need of storing this data in the device and periodically (once a day,
in some cases) accessing remote databases. For the case of using specific devices, with
much lower computational and storage resources than mobile phones, that cannot access
databases or maintain many contact IDs for many days, the mobile clustering scheme also
reduces replicated data—due to selecting a single Cluster Head in charge of receiving and
concentrating the information for the rest of the nodes in the cluster and concentrating
this data into a single transmission to the city/institution administrator, making efficient
use of the scarce RF and computational resources as well as reducing energy consumption
compared to the case where each node constantly transmits data to the disease control
agency. In a smart city environment, many contagion control points can be distributed in
strategic parts of the city, such as schools, hospitals, access to massive transport services,
and others to have close control of potential pedestrian contagion and swiftly take action
to reduce and limit infection spreading.

By providing an individual monitoring system, like the one proposed in this work,
using either a smartphone or specific devices provided by different institutions like uni-
versities, hospitals, etc., it is possible to maintain open many buildings and commerces,
thus reducing the risk of contagion. For instance, universities can provide RF devices
to all their students, professors, administrative personnel, etc., in order to remain open
and isolate only both sick individuals and all the people that were in touch with them
in specific periods and locations. The benefits of such specific devices are the additional
security and privacy compared to using mobile phones. Indeed, in case of a cyber attack,
hackers could obtain much more information from smartphones while monitoring de-
vices can only provide IDs, which are only known by the appropriate authorities. It is
important to note that the use of applications in the mobile phone is much easier than a
device dedicated to contact tracing. However, as mentioned in [22], there are many privacy



Entropy 2021, 23, 326 4 of 29

concerns related to these applications, especially about systems based on tracking the
geographical location of app users. This is one of the main deterrents for installing such
tracking systems in personal mobile phones, especially in countries where governmental
entities are not trusted (whether this appreciation is justified or not) by the general public
or the official measures to combat the COVID-19 pandemic does not consider accurate
contact tracking as the main tool to reduce strict confinement conditions. Such is the case
of Latin America and Africa (note that there are no official applications listed in [22] for
countries like Mexico, Guatemala, Honduras, Angola, Egypt, and many more), where also
the COVID-19 epidemic has high contagion levels [23]. As such, applications in mobile
phones are not a practical or preferred solution for all countries and cities to keep contact
tracing information. For these cases, the use of a personal device provided by the university
or factory or hospital, or any other place where a high concentration of people is expected,
with no other information than a specific ID could be a much-accepted solution. It would
also reduce cyber-attacks aimed at obtaining personal information from mobile phones.
Hence, we argue that the use of specific devices may not be adopted as a general solution
for contact tracing at the country level, but it may provide an effective and accepted so-
lution for specific enterprises, commerce locations, and governmental and health entities
that would allow an anticipated reopening solution to mitigate the economic and social
negative impact of generalized lockdowns. For countries where mobile phone applications
are well accepted, the mobile clustering scheme and results can be relevant and provide
further insights on the performance of such solutions.

Some monitoring systems aim at keeping a close register regarding the specific in-
dividuals that enter a certain location. For instance, in Mexico City and China [24],
a governmental application using QR codes at the entrance of buildings and commerces,
requires clients to scan the QR code in order to register the time at which a person was
inside the facilities. Hence, if a certain person is diagnosed with COVID-19, such a system
determines the people that were at the same time and place as the infected individual,
which are at a high risk of contagion. However, this system is not accurate enough. In-
deed, the fact that other people were inside the same building at the same time than an
infected individual does not imply that they were at any time at contagion distance from
each other: they could have been at different locations inside the building, never crossing
paths, and the system could warn a higher number of people than needed to keep them in
quarantine. In addition, the efficacy of such a system is compromised considering that the
authorities implemented this service at the end of 2020 while confirmed COVID-19 cases
increased exponentially in early 2021.

Other applications that use mobile phones to detect people in close range produce
redundant information by requiring all of these nodes to transmit the list of people (mo-
bile phones) that were close to them. This redundant information entails high energy
consumption and implementation costs by using resources from the cellular system that
are expensive. Conversely, our proposal keeps an accurate register of people that were
in actual contagion distance from each other inside and outside buildings. Furthermore,
a single user in a group of people is selected to convey this information to the disease
control agency reducing the number of transmissions and redundancy.

The main contributions of this paper are:

• We propose a novel mobile clustering scheme to efficiently gather information of close
contact with other people in pedestrian scenarios.

• We design and propose a specific communication protocol to implement a mobile
clustering scheme.

• We mathematically model the proposed mobile clustering scheme to study the system
performance in different scenarios by providing a teletraffic analysis of the dynamics
of contact instants and encounters in pedestrian scenarios.

• We design and develop our own RF device with the specific objective of maintaining
a record of people in close contact under the mobile clustering scheme.
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Moreover, the derived mathematical model can be easily extended and adapted
to different scenarios and cities in order to provide other services related to smart city
applications in non-pandemic times, like intelligent access control to buildings or pub-
lic transportation.

The rest of the paper is organized as follows: first, we present relevant works in
the context of contact tracing systems. Then, the system model is described in detail.
Following this, Section 4 presents the main operation of the mobile clustering protocol.
Then, the pedestrian mobility pattern is characterized in Section 5. The mathematical model
is derived in Section 6 where all the variables and assumptions are explained. In Section 7,
we present the design and performance of the node developed for contact tracing purposes.
The paper ends by presenting the most relevant results and conclusions.

2. Related Work

Contact tracing is an essential tool to improve the health of people and to reduce the
economic impact of a pandemic such as the one derived by the SARS-CoV-2 virus [13].
To this end, there have been many efforts to develop digital tools to keep track of contact
among people to rapidly detect possible contagion hot spots.

For example, the study in [12] describes the strict contact tracing scheme used in South
Korea that uses data from the Global Positioning System (GPS), credit card transactions,
and video surveillance among other systems in order to reduce the contagion cases of
COVID-19, clearly showing the benefits of such policies.

Regarding the digital contact tracing tools, there are many different applications with
government support in certain regions as mentioned in [22], are centralized protocols
concentrating all personal data (geo-localization) in state institutions. For instance, Israel
approved the secret service to use surveillance measures to access information of users con-
nected at different networks, which can have many potential privacy issues. Decentralized
protocols like the one developed by Covid Watch, the CEN Protocol, based on Bluetooth
Low Energy (BLE) using proximity among cellular phones to detect potential contagion
cases. In this regard, the Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT)
project (a combination of centralized and decentralized approaches) developed a BLE app
aimed at detecting such close interactions and avoid state surveillance activities. Later on,
different institutions criticized the PEPP-PT for lack of transparency and privacy issues [22].
Nonetheless, these decentralized approaches aim at protecting private information using
anonymous keys that have no relation to the user’s identities. However, these applications
do not function properly if only a small population uses the app [25], which occurs even
if workers are legally required to use it [26]. However, in a closed environment such as
universities or hospitals where employee access to the buildings can be conditioned on
using a specific RF device just like ID is commonly required (or even IDs can be placed on
such devices), our proposed device could be a better option since it does not require admin-
istrative access to the mobile phone in order to implement contact tracing and the exposure
of smartphones is avoided, which can be potentially dangerous to people since mobile
phones are reservoirs for various pathogens [27]. In addition, apps that use Bluetooth and
GPS to estimate the distance may over-report interactions leading to a high number of
false positives [22]. By contrast, the development of a specific device has the advantage of
fine-tuning the contagion range according to the specific needs thorough the careful design
of antennas, amplifiers, and filters. Indeed, for COVID-19, the official recommendation is
to avoid close contact of less than 1.5 or 2 m, but variations of this virus or for other viruses
in the future, this social distancing can be different and the RF device can be designed
accordingly, while GPS and Bluetooth systems cannot easily do. In this work, we propose
the use of both approaches, based on apps on mobile phones and specific RF devices, in
order to offer a general solution for contact tracing efforts in the sense that the mobile
clustering scheme provides an efficient data reporting in pedestrian environments.

Many papers have studied the effectiveness and uses of contact tracking applications
and models [28]. For instance, in [29], the authors perform different simulations to evaluate
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the effectiveness of such tools. However, they do not consider the real possible interactions
between pedestrians. Instead, they rely on census data which have no information on
contact times in a given trajectory, like our work.

In [30], the authors consider a network-based model to calculate the infection spread
in a close population. Specifically, this work proposes a stochastic simulation and moment
closure approximation where nodes are placed at certain distances to calculate the proba-
bility that two connected nodes get infected. A similar approach is presented in [31], where
the authors study the dynamics of contagions using a stochastic epidemic model based on
the embedded non-stationary Galton–Watson process. However, they do not consider the
times that nodes are in contact with each other in a pedestrian movement pattern nor the
dynamics of the nodes in such an environment.

In [32], the authors discuss privacy and trade-offs of such contact tracing applications.
To this end, we propose the use of specific nodes that do not contain personal information,
except for an ID (assigned by the government, institute, enterprise, or health authority)
and geo-localization data that present minimum risk in case of a cyber attack.

As mentioned in [33], many applications use Bluetooth signal strength to calculate the
distance among people and duration of such contact, while others rely on geo-localization
data using GPS information to determine the proximity of individuals [34–37]. However,
we propose to use direct transmissions to nodes in the proximity to clearly identify the
people in close contact to others, which we believe would render more accurate proximity
results since it implicitly considers the contact time that nodes were in contact with each
other instead of instant contacts provided by Bluetooth and GPS signals. Additionally,
by using the node developed and designed in our work, the contagion radius can be
easily selected according to the specific disease phenomena, making our system general
for current and future pandemics. In addition, the proposed mobile clustering scheme
can inform of potential infection cases in hours, when the CHs report their data to the
sink point when they are placed in strategic locations, or minutes if the cellular system
is used. As mentioned in [38], for a contact tracing tool to be effective, it has to report
potential infection cases in less than one day, contrary to GPS-based solutions that have to
be retrieved from GPS records that can take many days to analyze.

3. System Model

In this section, the basic assumptions and system variables of the mobile clustering
scheme are presented in detail. Our work is focused on pedestrian movement in outdoor
conditions, where people are walking towards a building, institution, or commercial loca-
tion. Specifically, we consider the case of students entering the facilities of the National
Polytechnic Institute in Mexico City. In Figure 1, we present the general operation of the
proposed system. The system operates by clustering neighbor nodes (associated with
pedestrians) moving with a certain trajectory. Given the dynamics of the users, nodes select
their role as either Cluster Head or Cluster Member according to the protocol described in
Section 4. The nodes begin the packet transmission after an initialization packet is received
that is periodically transmitted by a beacon localized at strategic points. In our case, the bea-
con emitter is placed at the street leading to the entrance of the National Polytechnique
Institute (left part of Figure 2). (For other applications, beacon and sink nodes can be
placed at the entrance of the supermarket or the subway or hospital, among others.) While
pedestrians are walking along the street, they form clusters (depicted by red hexagons)
and act according to their role (which can also change according to the possible scenarios
described below), i.e., CMs transmitting their packet to their associated (nearest) CH.
The approximated distance is calculated by the strength of the signal emitted by each CH.
When the CHs detect the sink node, they transmit the gathered information while the CMs
remain silent after successful transmission to their respective CH. The sink node stores
this information (time and place that the nodes that were part of a cluster and hence were
in close interaction among each other and are potentially in danger of contagion in the
case that one of them receives a positive COVID-19 test result in the following days) that
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can be accessed by the trusted authority, e.g., government or health care institution, such
that, in case of a positive test of the virus, the people in potential contagion danger can be
prevented and put in quarantine. In the case of mobile phone users, the sink and beacon
emitter function can be performed by the attending base station.
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Mobile Phone
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RF Device
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Mobile Phone
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RF Device
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Mobile Phone

Cluster Member
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Pedestrian
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Figure 1. Block diagram of the mobile clustering system.

In this case, students typically arrive in high concentrations at certain times in the
morning, just before day-time courses begin and in the afternoon when evening courses
start. In order to determine the characteristics of the student’s movement, we took many
hours of video in the street leading to the entrance of the institute at peak traffic periods,
i.e, when a high concentration of people is attempting to enter the campus. The rationale
behind this is that the proposed mobile clustering scheme aims at reducing packet trans-
missions and making efficient resource utilization by reducing data redundancy. To this
end, a single node gathers the information from neighboring nodes. As such, this scheme is
effective when there are many nodes walking in close proximity. When single nodes (pedes-
trians) are walking, the mobile clustering scheme has no meaningful impact compared to
direct node transmissions to the sink.

Pedestrian Trajectories

As previously mentioned, we obtained real pedestrian trajectories as the ones pre-
sented in Figure 2 (pedestrians enter from the left side of the figure). Specifically, we
recorded the pedestrians accessing the National Polytechnic Institute, in Mexico City,
on different days and times. In total, we used 15 different trajectories for this work. Even if
we obtained many more hours of recordings, we found out that many of them could not be
used due to obstacles, such as cars and buses passing through, which impede the tracking
of each individual.
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Figure 2. Pedestrian trajectories to access an indoor location.

At this location, pedestrians follow a specific behavior in the sense that they are all
walking towards the entrance of the institute (upper right of Figure 2). In addition, there
are some well-defined schedules where pedestrian traffic is intense, while, at other times,
there is almost no one walking through. This is a relevant characteristic of people accessing
an education building, such as universities or colleges, due to strict times for the beginning
and end of the courses. However, this is also true for much other indoor access, such as
commercial malls, governmental buildings, and also access to public transport like the
subway. Hence, we believe that the analysis presented for this specific case can be easily
extended to many other scenarios.

On this basis, we consider that each person in the recorded environment has a mobile
device that can communicate with its neighbors, either using a smart phone or a specific
RF device (like the one developed in this work) that implements the mobile clustering
scheme described in detail in the next section. Then, a node in each cluster acts as Cluster
Head (CH), receiving data (ID, timestamp, location, etc.) from the rest of the nodes in
the cluster who acts as Cluster Members (CMs). For smartphones, this information is
available for most cases, while, for specific communication devices, this information can
be provided by specific beacons placed in strategic locations informing the location and
time that the user crossed a certain area. In the specific case of the National Polytechnic
Institute, these beacons can be placed at the exit of bus stops and subway stations closest to
the different campuses or at the streets leading to the entrance of the facilities, like the left
part of Figure 2. Unlike a conventional clustering scheme [39], CMs and CHs can enter and
leave their current cluster, in which case the system must adapt to the ongoing changes.
Then, each CH sends its data to a sink node while the rest of the CMs remain silent after
their packet has been successfully received by their CH. In this work, the sink is placed at
the entrance of the Institute, but it can also be placed at strategic points in the street or can
even be sent to a cellular base station, depending on the particular scenario.

4. Mobile Clustering Scheme

In this section, we describe the operation and main considerations of the mobile
clustering scheme developed in this work.

4.1. Initialization Phase

When nodes are turned on or smartphones are activated in the tracking application,
they become CH with probability P and CM with probability 1− P. This can be done when
people leave their house or work and interaction with other people begins. Hence, devices
do not have to be turned on at all times and smartphones also do not have to be active.

Conversely, for close communities, such as universities, the sink node can perform
the beacon transmission, in order to save energy consumption at nodes. Hence, when
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nodes are turned on, they enter reception mode waiting for the beacon signal, as shown
in Figure 3. As such, nodes would not transmit information outside the campus since the
sink is placed at the entrance of the facilities; this also provides a certain level of privacy.

At this point, CHs begin transmitting a beacon signal periodically each Tb seconds,
with the transmission power necessary to reach neighbor nodes. (This transmission range
has to be carefully calibrated according to the specific virus characteristics, i.e., the social
distance where people can be infected.) On the other hand, CMs enter into reception mode
continuously listening to the channel to receive a beacon.

If CMs do not receive a beacon after Tw seconds (Tw > Tb), they assume that no CH
is present and they become CH with probability p. The impact of the selection of both
parameters p and Tb in the system performance is studied later in this work.

Figure 3. System initialization in a closed community: A beacon signal is transmitted in order for
nodes to wake up and select their role as either Cluster Head or Cluster Member as well as forming
the mobile clusters.

4.2. Data Transmission Phase

Once that the CHs have be selected, and the beacon signal is transmitted with a
timestamp, geographical information, and ID of the CH, all receiving CMs transmit their
packet (with their ID, geographical information, and timestamp) with probability τ as
shown in Figure 4. The reason for this is to avoid packet collisions among CMs in the current
cluster. CMs only perform a single successful transmission (a single CM transmission that
suffers no packet collision) to their current CH. At this point, the CH effectively registers
that such CM is inside the contagion range at that specific time and place and will report
it (with the information of the rest of the CMs) to the sink node. However, these nodes
may report again if a different CH is found, which means that a new set of nodes may be
present and the conditions of new contagion cases may exist.

Building on this, the mobile clustering protocol may encounter different possible
scenarios that are important to study, as described below.
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Figure 4. System normal operation: Once nodes have selected their role, Cluster Members transmit
their packet to their associated CH which periodically transmit a beacon signal to maintain the clusters.

4.3. Possible Operation Scenarios

As we have noticed in the pedestrian trajectories, after a certain time that the students
walk towards the entrance, the clusters reach a certain stable phase where the same set
of nodes moves almost at the same pace resulting in the same number of nodes in the
proximities of each other. A single CH and multiple CM scenario is illustrated in Figure 5.
In this case, each cluster enters the normal operation described above. This is the best-case
scenario since there is no need for additional packet transmissions and, after a few seconds,
only the CH is periodically transmitting the beacon packet, but CMs no longer respond.
However, due to the mobility of nodes, CHs and CMs can enter or leave an already formed
cluster, which would trigger the following actions from the mobile clustering scheme.

Figure 5. Scenario 1: A single CH and multiple CMs.

(A) Multiple CMs and no CH: This is the case where the CH leaves its cluster given
that this node walks slower or faster than the rest of the nodes in the cluster and CMs
have not transmitted their packet, as depicted in Figure 6. In this case, after Tw seconds,
the CMs do not receive the beacon signal and assume that the CH is no longer present.
Hence, each member becomes a new CH with probability p. The first CM to become CH
sends its beacon packet, informing the rest of the nodes that he has taken the role of CH. In
the case that another CM also becomes CH, when listening to the beacon packet, it returns
to the CM role. At this point, the cluster enters the normal protocol operation.
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Figure 6. Scenario 2: Multiple CMs and no CH.

(B) Multiple CHs: In this case, when two pedestrians with the role of CH encounter
each other in the same contagion range illustrated in Figure 7, each one with its beacon
transmission time (even if the beacon is transmitted each Tb seconds, the transmissions do
not occur at the same time), the first CH that transmits its beacon will remain as CH, while
the other CHs become CMs, returning to a normal operation state. CHs that become CMs
transmit all the gathered data retrieved at this point to the new CH.

Figure 7. Scenario 3: Multiple CHs and CMs.

Since our proposal is based on clustering nodes according to the distance among
them, and this distance is estimated by the signal strength, there could be inaccuracy and
uncertainty given by signal fading, interference, and noise in the environment. Hence,
to further improve the system precision, different fuzzy techniques applied to clustering
can be used, such as the one presented in [40].

5. Mobility Statistics

In this section, we study in detail the duration of the connection times among nodes
during their trajectory towards the entrance. Specifically, using the videos taken at rush
hours, we determine the times that each node remains in each cluster either as a CH or CM.

Specifically, the videos show frame by frame the position of each pedestrian that
walked along the street, giving us the location of each potential node (at this point, pedes-
trians are not equipped by RF nodes). These positions are placed in a virtual map, such
as the one presented in Figure 8. Then, each node is elected as either CM or CH, with
probability 1− p and p, respectively, at the beginning of the street. This role can change
while pedestrians move along the street. Each CH is depicted in this figure with a red circle
with the node at the center. Then, the rest of the nodes (CMs) are associated with the closest
CH. (In this case, it is a geometric distance, but, in the practical system, the distance can
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be approximated by the strength of the CH signal.) At this point, we can determine the
connection time of each node in its corresponding cluster.
 
 
 

 
Figure 8. Virtual mobile clusters for the connection radius of 2.5 m.

Building on this, we find the connection time histograms considering all the connection
times from all of the videos (all pedestrian trajectories recorded) such as the one presented
in Figure 9, which is obtained for a radius of 2.5 m, i.e., the red virtual circle is scaled
to be 2.5 m. The histograms represent the frequency or the number of samples in each
connection time bin. From this, we can characterize the probability density function as
described below.
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Figure 9. Histogram of the connection times of nodes with a radius of 2.5 m.

For each histogram, we determine some statistical parameters, such as the mean
(E[X]), standard deviation (σX), variance (σ2

X), and Coefficient of Variation (CoV), which
are defined as follows [41]:

E[X] =
1
n

n

∑
i=1

xi, (1)

σ2
X =

1
n

n

∑
i=1

(xi − E[X])2, (2)

σX =
√

σ2
X , (3)

CoV =
σX

E[X]
, (4)
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where n is the number of connection times measured in the pedestrian trajectories consid-
ering contagion ranges of 2.5, 3.0, 3.5, and 4.0 m, and 2, 3, 4, and 5 initial CHs. (We consider
that some nodes can enter the facilities as either CH or CM and we want to study the effect
of having a different number of CHs on the performance of the mobile clustering protocol.)
As a result of this analysis, we obtained a CoV higher than one for all considered cases
(CoV = 1.7). This information is relevant because a Hyper-Exponential distribution can be
used to model these connection times. The mathematical model presented below is based
on this fact.

In addition, note that, as the communication range increases, the mean connection time
is increased accordingly, which is an expected result since pedestrians remain connected
longer times.

Phase-Type Distributions for Pedestrian Connection Times

Given that all the connection times have a CoV = 1.7, we focus on finding the
parameters of a Hyper-Exponential distribution. This distribution is obtained using two
exponential distributions, where the first one with rate µ1 is selected in probability p,
and the other one with rate µ2 has the complementary probability 1− p, as shown in the
following Figure 10, where each phase represents a random exponentially distributed value
with rate µ1 and µ2, respectively.

Figure 10. Hyper-exponential process.

From this, the probability density function is described by [42]

fX(x) = pθ1e−θ1x + (1− p)θ2e−θ2x (5)

Then, the mean is given by

E[X] =
∫ ∞

0
x fX(x)dx (6)

=p
1
θ1

+ (1− p)
1
θ2

, (7)

and the variance can be calculated, after some algebraic manipulation, as

σ2
X =

∫ ∞

0
(x− E[X])2 fX(x)dx (8)

=
p
θ2

1
(2− p) +

(1− p)
θ2

(
(1 + p)

θ2
− 2p

θ1

)
. (9)

Solving (7) for p, we get

p =

(
E[X]− 1

θ2

)
(θ1θ2)

θ2 − θ1
. (10)
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Clearly from this expression, we have the following restrictions: µ2 > µ1 and 0 ≤ p ≤ 1,
then: (

E[X]− 1
µ2

)
(µ1µ2)

µ2 − µ1
< 1,

µ1 + (E[X]µ2 − 1)µ1 < µ2,

µ1 <
1

E[X]
.

Using these expressions, we can find all the parameters of the Hyper-Exponential dis-
tribution, namely, p, µ1, and µ2, for each pedestrian environment. The fitting distributions
are shown in Tables 1–4.

Table 1. Parameter values of the hyper-exponential distribution for two initial CHs.

Radio µ1 µ2

2.5 0.078 1.31
3 0.0808 1.33

3.5 0.07 0.2933
4 0.0566 0.168

Table 2. Parameter values of the hyper-exponential distribution for three initial CHs.

Radio µ1 µ2

2.5 0.064 0.2085
3 0.058 0.1321

3.5 0.0608 0.0975
4 0.0722 0.0806

Table 3. Parameter values of the hyper-exponential distribution for four initial CHs.

Radio µ1 µ2

2.5 0.075 1.073
3 0.0589 0.1942

3.5 0.07066 0.1875
4 0.059 0.091

Table 4. Parameter values of the hyper-exponential distribution for five initial CHs.

Radio µ1 µ2

2.5 0.01026 0.1136
3 0.0738 0.1612

3.5 0.079 0.079
4 0.077 0.077

6. Mathematical Model

We model the potential contagion risk through the time and distance that a node was
in contact with another node that later was proven to be positive for SARS-CoV-2 or any
other virus that propagates in the air and through the close interchange between people in
a pedestrian case. To this end, we derive and numerically solve a Continuous Time Markov
Chain (CTMC), depicted in Figure 11, where the states represent the number of nodes
inside a mobile cluster. As shown above, the times inside a mobile cluster can be modeled
using hyper-exponentially distributed random times. As such, nodes can experience times
inside a cluster exponentially distributed either with rate µ1 (and probability p), or with
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rate µ2 (and probability 1− p). The values of these parameters are shown in Tables 1–4
depending on the particular scenario (number of initial CHs and contagion radio).

Building on this, each state of the proposed CTMC is formed as an order pair (i, j),
where i is the number of nodes in phase 1 (nodes enter this phase with probability p) and j
is the number of nodes in phase 2 (nodes enter this phase with probability 1− p). Nodes
remain in this phase during the time inside the cluster until they leave it or the cluster van-
ishes. Hence, the valid states space is described by

{
Ω(i,j) | 0 ≤ i ≤ nmax; 0 ≤ j ≤ nmax

}
.

For the specific pedestrian scenarios considered in this work, the number of people in close
interactions was not higher than 10. As such, we observe that nmax = 10, which is the
maximum number of nodes inside a mobile cluster observed during the real pedestrian
trajectories, but the Markov chain is not limited to this number. In fact, nmax would take
the proper value according to the system conditions, i.e., the values of p, λ, µ1, and µ2,
which is also true for our analysis. In addition, we calculated the rate λ at which nodes can
enter an already formed mobile cluster, according to the specific speed and trajectory of
each recorded pedestrian.

Figure 11. Markov chain that models the mobile clustering scheme.

From this, we can see that transitions in the Markov Chain occur as follows:

• When the system is in the state (i, j) (0 < i, j < nmax), it moves to the state (i + 1, j)
when a new arrival to phase 1 occurs with rate p× λ (in case of arrival, i.e., a node
entering a particular mobile cluster in phase 1); it moves to the state (i, j + 1) when a
new arrival happens to phase 2 with rate (1− p)× λ (in case of an arrival to phase 2);
the system goes to state (i− 1, j) with rate i× µ1 when a node in phase 1 leaves the
cluster; and to state (i, j− 1) with rate j× µ2 when a node in phase 2 leaves the cluster.

• When the system is in the state (0, j) (0 < j < nmax), the system moves to the state
(1, j) when a new arrival to phase 1 occurs with rate p× λ (in case of arrival, i.e., a
node entering a particular mobile cluster in phase 1); it moves to the state (0, j + 1)
when a new arrival happens to phase 2 with rate (1− p)× λ (in case of an arrival to
phase 2); note that the system cannot transit to the state (−1, j); and it moves to the
state (0, j− 1) with rate j× µ2 when a node in phase 2 leaves the cluster.
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• A similar behavior like the previous case occurs in the state (i, 0) (0 < i < nmax) with
the appropriate modifications.

• When the system is in the state (nmax, j) (0 < j < nmax), it cannot move to the state
(nmax + 1, j); it moves to the state (nmax, j + 1) when a new arrival happens to phase
2 with rate (1− p)× λ (in case of an arrival to phase 2); the system goes to the state
(nmax − 1, j) with rate nmax × µ1 when a node in phase 1 leaves the cluster and to the
state (nmax, j− 1) with rate j× µ2 when a node in phase 2 leaves the cluster.

• A similar behavior like the previous case occurs in the state (i, nmax) (0 < i < nmax)
with the appropriate modifications.

• In the state (0, 0), only arrivals are allowed, and, in the state (nmax, nmax) only depar-
tures can occur with the appropriate rates.

Nodes cannot transit from phase 1 (2) to phase 2 (1) due to the nature of the hyper-
exponential process, i.e., nodes either remain in the system with rate µ1 or µ2 but not a
combination of these rates, as shown in Figure 10. Since this chain corresponds to an
irreducible CTMC, we numerically solve it using the rate equalization method to find the
stable state probabilities, π(i,j) that represent the probability that the cluster has i nodes in
phase 1 and j nodes in phase 2.

Note that this Markov Chain can model all the dynamics of the system, and we use it
to obtain the main system performance parameters. First, the average number of nodes
in a cluster is calculated. Recall that the state of the Markov chain depicts the number
of nodes in phase 1, i, and the number of nodes in phase 2, j, then i + j gives the actual
number of nodes at each instant with probability π(i,j), which is found numerically solving
the Markov Chain. Hence, the average number of nodes can be calculated as:

n̄ =
nmax

∑
i=0

nmax

∑
j=0

(i + j)π(i,j). (11)

Then, we calculate the probability that a packet is successfully transmitted from a CM
to their respective CH. Since CM only transmits with probability τ after the reception of
the beacon packet, the system behaves as a Slotted ALOHA random access protocol [43],
where slots have a duration of Tb seconds. In view of this, the packet success probability
in a beacon period, when there are i nodes in phase 1 and j nodes in phase 2, can be
calculated as:

Psuc(i, j) =
(

i
1

)
τ(1− τ)i−1(1− τ)j

+

(
j
1

)
τ(1− τ)j−1(1− τ)i.

Hence, the average successful transmission probability in the system can be calculated as:

Psuc =
nmax

∑
i=0

nmax

∑
j=0

Psuc(i, j)π(i,j). (12)

Similarly, the probability of idle beacon period, i.e., the probability that no node
transmits in the beacon period when there are i nodes in phase 1 and j nodes in phase 2,
can be calculated as:

Pidle(i, j) =
(

i
0

)
(1− τ)i(1− τ)j

+

(
j
0

)
(1− τ)j(1− τ)i.
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Hence, the average idle probability in the system can be calculated as:

Pidle =
nmax

∑
i=0

nmax

∑
j=0

Pidle(i, j)π(i,j). (13)

Finally, the packet collision probability can be calculated as:

Pcol = 1− Pidle − Psuc. (14)

7. Design of the RF Device

In this section, we show the design of an RF device that is carried by every pedestrian
of our model. We highlight that this device was designed to be reliable, portable, and simple.
As such, this device is not to intended to be a highly sophisticated piece of equipment nor
to compete with already available commercial solutions. The RF device consists of four
main parts: a microcontroller, a transceiver, an antenna, and a battery. Next, we provide
details about each of these parts.

7.1. Microcontroller Section

The chip ATMega328p is the microcontroller used in the design of the RF device. It
is a low-power CMOS 8-bit microcontroller with an advanced RISC architecture. This
microcontroller possesses 32 KBytes of in-system self-programmable flash program mem-
ory, 1 KByte EEPROM, and 2 KBytes internal SRAM. In addition, this microcontroller
provides six sleep modes: idle, ADC noise reduction, power-save, power-down, standby,
and extended standby.

The microcontroller is set up in a stand-alone configuration, running with the internal
8 MHz clock, see Figure 12. The SPI interface is used for burning (flashing) the microcon-
troller’s program, and for driving the transceiver. Several ports are available for interfacing
sensors for physical variables such as temperature, heart rate, etc., if necessary. For burning
the program, we can use well-known utilities such as AVRDUDE, which is available under
Linux, Windows, and Mac OS distributions.

Figure 12. Stand-alone configuration for the ATMega328p.

7.2. Transceiver Section

A transceiver is needed for establishing wireless communications between CMs and
CHs. Several commercial options are available such as XBee modules, see Figure 13a,
which provide integrated solutions for configuring a wireless network based on the IEEE
802.15.4 networking protocol. These modules work in the 2.4 GHz ISM band, which
is highly populated by the radiation of Wi-Fi and Bluetooth devices, microwave ovens,
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and other devices. The interfering sources increase the packet error rate [44–46]; reduce
the throughput [47,48]; and induce higher path loss, and fading [49]. A drawback is the
impossibility to write custom firmware for specific applications.

Some cheap RF modules allow certain customization for they lack communication
firmware. For instance, the transmitter (TX) module of Figure 13b is a Colpitts oscillator
that is turned on/off by an electronic switch, resulting in OOK modulation. The receiver
(RX) module is a super-regenerative circuit together with an op-amp comparator for detect-
ing digital symbols. These modules consume up to 20 mW and 10 mW [50], respectively,
and work in the ISM band of 315 MHz or 433 MHz. A notable drawback is the large
amount of source code needed for equipping the wireless link with the essential functional-
ity for establishing reliable communications, thus occupying most of the microcontroller’s
program memory.

On the other hand, there are highly configurable transceiver modules and well de-
veloped libraries for existing custom firmware. One example is found in the family of
chips nRF24 from Nordic®, see Figure 13c, which work in the 2.4 GHz ISM band. Another
example comes from the chip CC1101 from Texas Instruments®, which work in the sub-1
GHz ISM bands [51]. The coverage range of these modules is quite high when using
high-gain well-matched antennas at the maximum output power (up to 0 dBm for the
nRF24L01+ at 2.4 GHz, and up to 11 dBm for the CC1101 at 915 MHz).

In the present work, we use the chip MRF49XA from Microchip [52] as transceiver,
see Figure 13d. It can work in the 433, 868, and 915 MHz ISM bands. We choose the
915 MHz ISM band since, at this frequency, the RF device can be equipped by a small
antenna. Moreover, this band is not populated. The chip employs FSK modulation, with a
data rate ranging from 1.2 kbps to 256 kbps. The reception has an increased sensitivity
of –110 dBm. The transceiver allows different sleep modes for a reduced overall current
consumption. All of the above leads to robust enough wireless links to surpass multipath
fading and interference.

Some external components and few extra signals from the ATMega328p are needed
for designing a completely RF transceiver, see Figure 14a. Configuration is performed via
the SPI interface. The RF interface (RFN and RFP pins of the chip) form an open-collector
differential output of 9 + i77Ω impedance at 915 MHz. This in turn is the input impedance
of the balun designed to feed a 50 Ω antenna, see Figure 14b.

In addition, the MRF49XA provides an analog output for determining the strength of
the received signal, when the chip works as a receiver. This is the pin RSSIO, which stands
for Received Signal Strength Indicator Output. This signal can be connected to any of the
ADC ports of the microcontroller, say, the port PC3, see Figure 14c. The digital value of
the RSSIO signal can be used for estimating the closeness of another transmitting node,
and determine if that node is inside the contagion range.

The output power of a node working as a transmitter will have losses throughout
its trajectory until it reaches the receiving antenna. In our case, the transmitting power is
set at the lowest value of –17.5 dBm. Losses include the dispersion by the air interface,
coupling losses, polarization losses, among many others [53] (§12.3), so that, at the end,
the received power will be in the range of –100 dBm to –60 dBm. Determining the exact
value of the received power in a radio link is difficult (not to say impossible) so that at most
some estimations can be drawn. Nonetheless, by means of the voltage at the RSSIO pin of
the transceiver, we can perform certain calibration processes to estimate distances. That
is, we can measure the voltage in this pin in function of the distance to the receiving node
under normal conditions in the scenario with pedestrians walking towards the entrance of
the building or campus. The voltage corresponding to 2 m is used as a threshold. Thus, if
the RSSIO voltage is below this threshold. it implies that the node is outside the contagion
radio; otherwise, the nodes are effectively close to each other at a distance less than 2 m.
This calibration can be performed to other radii for different infectious diseases. This
calibration should agree with Figure 14c, in which the input power dBm on the horizontal
axis is translated into distance.
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Figure 13. Some commercial RF modules. (a) XBee module; (b) 433 MHz TX/RX modules; (c) NRF24L01+
transceiver; (d) MRF49XA transceiver.

Figure 14. (a) Circuitry for the radio chip: C2–C4, and C8 are decoupling capacitors; (b) design of
the balun for a 50 Ω antenna; (c) analog RSSI voltage provided by the chip as a function of power
received by the antenna; the larger the receiving power, the shorter the distance of the transmitting
node, and vice versa.

7.3. Antenna Section

The antenna of the RF device is made of a single strand of 24 AWG wire (0.5106 mm
diameter). Its length ` was experimentally determined by successively shortening the wire
up to observing the resonance at f0 = 915 MHz. This was performed with a vector network
analyzer (VNA) MS46121B from Anritsu®. Resonance is determined from the scattering
parameter s11, which corresponds to the reflection coefficient Γ = B/A at the input of the
antenna. Here, B and A are amplitudes of the reflected and incident waves at the input
port, respectively. The lower the value of |Γ|, the smaller the reflected power and the better
the coupling of the antenna. This implies that most of the power supplied to the antenna
will be radiated as electromagnetic waves. Similarly, in the reception mode, most of the
received power will be transferred to the transceiver.
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The measured values of s11(ω) as the frequency ω = 2π f is swept over a given
bandwidth are plotted on a Smith chart, see Figure 15a. The central point s11 = 0 of this
diagram represents the best coupling. Around this point, indicated by a gray disc in the
chart, the coupling is optimal. On the contrary, the outer circle |s11| = 1 corresponds
to the worst coupling since all of the energy is reflected. We determined two resonant
lengths, namely, `1 = 10.3 cm and `2 = 25.8 cm, and the measured impedances are
Zin = 37.858+ i10.101 Ω and Zin = 46.405+ i7.702 Ω, respectively. At 915 MHz, the strokes
are closer to the central point associated with the Z0 = 50 Ω, impedance at which the
balun was designed. Figure 15b shows the same information but in a Cartesian plane.
Resonance corresponds to the minimum reached by the curves, which lie in the gray stripe
in the figure.
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Figure 15. Frequency response of the antenna: (a) parameter s11(ω) plotted on a Smith chart; (b)
rectangular plot of |s11(ω)|.

7.4. Battery Section

The power consumption W = ITVCC of the RF device is determined from its con-
sumed current IT at the voltage VCC applied at its terminals. We measure the power
consumption in the TX, RX, sleep modes. Let IµC and Iradio denote the current consumed
by the microcontroller and the transceiver, respectively, thereby IT = IµC + Iradio. Tables 5
and 6 show the results of the power consumption in TX mode, and RX and Sleep modes,
respectively. The measures were taken with the RF device operating in a continuous form.
The first column of Table 5 shows the available transmitting powers of the radio chip, being
–17.5 dBm and 0 dBm the lowest and the highest available powers, respectively.

According to the results of the tables, at VCC = 3.3 V, the average current consumption
of the microcontroller in TX mode is IµC,TX = 4.37 mA; in RX mode, it is IµC,RX = 4.1 mA;
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and, in sleep mode, it is IµC,Sleep = 3.94 mA. These values agree with that specified in
the datasheet of the ATMega328p [54], namely, IµC,max = 5 mA @ 4 MHz, and VCC = 3
V. With respect to the transceiver, the average current consumption is Iradio,TX = 13.6 mA
and Iradio,RX = 12.8 mA in TX and RX modes, respectively. No substantial changes are
observed in TX or RX mode, and these values are below the typical value indicated in the
datasheet of about 17 mA. However, a substantial reduction is observed in the sleep mode,
with a current consumption of Iradio,Sleep = 552 µA.

Table 5. Power consumption in TX mode at VCC = 3.3 V.

TX Power Iradio IµC IT W
(dBm) (mA) (mA) (mA) (mW)

0 15.2 4.4 19.6 64.68
−2.5 14.2 4.6 18.8 62.04
−5.0 13.9 4.3 18.2 60.06
−7.5 13.5 4.0 17.5 57.75
−10.5 13.3 4.2 17.5 57.75
−12.5 13.0 4.4 17.4 57.42
−15.0 12.9 4.5 17.4 57.42
−17.5 12.8 4.6 17.4 57.42

Table 6. Power consumption in RX and sleep modes at VCC = 3.3 V.

Iradio IµC IT W
(mA) (mA) (mA) (mW)

Reception mode
12.8 4.1 16.9 55.77

Sleep mode
0.552 3.94 4.5 14.85

The necessary energy for transmitting a chain of digital symbols during a time interval
∆tTX is calculated as follows [55]

ETX = WTX∆tTX, (15)

where WTX is the power consumption in TX mode (see Table 5). Similarly, the formulas

ERX = WRX∆tRX, (16)

ESleep = WSleep∆tSleep (17)

give the necessary energy for receiving a chain of digital symbols during a time interval
∆tRX, and for keeping the RF device in the sleep mode during a time interval ∆tSleep,
respectively, where WRX and WSleep are the corresponding power levels (see Table 6).

Assume a data rate of 100 kbps (which is well supported by the transceiver) in both
the TX and RX mode, and assume a sequence of 100 Bytes (that take 8 ms at the considered
data rate), then the energy consumption in both modes is:

ETX = 459.36 µJ, ERX = 446.16 µJ, (18)

where we have considered a transmission power of –17.5 dBm. The energy consumption
of the RF device in the sleep mode during one second is

ESleep = 14.85 mJ. (19)

These raw data allow for choosing a suitable battery for feeding the RF device.
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In this work, we have considered a LiPo (Lithium-ion Polymer) battery, due to the
ease charging, and its small dimensions and weight, which contributes to its portability.
For instance, the model DTP502535 [56] is a LiPo battery with a rated capacity of 400 mAh
@ 3.7 V, see Figure 16a. The RF device can be fed with this voltage (indeed, the device
can work well at the maximum rating voltage of 6 V). Moreover, the maximum rated
current is 400 mA, which is more than enough for powering the RF device. The capacity of
this battery allows approximately 11,598,746 uninterrupted transmissions and 11,941,904
uninterrupted receptions (of the order of 9.5× 109 bits in both cases), and up to 365,432 s
(about 101.5 h, a little more than four days) in the sleep mode continuously. A battery with
a larger capacity will increase these estimations proportionally.

LiPo batteries, like the one considered, can be charged by inexpensive charging modules
such as the Tp4056 module, see Figure 16b, which provides a USB port for plugging standard
phone chargers.

Figure 16. (a) LiPo Battery DTP502535; (b) charging module Tp4056.

The final assembly of the RF device is shown in Figure 17. This image does not show
the battery and the charging module. The small size of the device allows keeping it in
a small case that could be worn by the pedestrian. The hardware thus designed is not
equipped with a real-time clock or a location mechanism. However, this information can be
emitted by a beacon located at strategic locations, such as bus stations, subway entrances,
parking lots, or any other location close to the entrance of the campus of the university or
other important buildings. In this sense, our RF device is able to handle such information,
and can transmit it to the sink node when available. Nonetheless, a more sophisticated
design can be included with a real-time clock and a location mechanism, but its power
consumption will be greater. For the sake of simplicity and lower power consumption, we
opt for the RF device as shown in this work.

Figure 17. (a) Top view of the RF device with the transceiver section and the antenna; (b) bottom
view of the RF device with the microcontroller section.

8. Numerical Results

We now discuss some of the relevant results of this study. First, we validate the Markov
chain by comparing the average number of nodes per cluster using the real trajectories
and the results obtained through the mathematical model. In Figure 18, we present these
results for a different number of initial CHs and contagion radii. We can observe that the
results of the model closely match the results of the real trajectories, lightly overestimating
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the number of nodes having a maximum difference of 0.6 nodes in the worst case. Hence,
we believe that the model correctly predicts the behavior of the mobile clustering scheme
and can be used to design and analyze contact tracing in other scenarios.

Figure 18. Average number of nodes per cluster: the hyper-exponential approach.

We further verify the accuracy of the mathematical model by calculating the packet
success probability using Equation (12) and comparing it to simulation results. The simula-
tion model consists of tracking each individual node and simulating the mobile clusters
based on the protocol described in Section 4. Specifically, we choose the initial number
of CHs (2, 3, 4, and 5) by randomly selecting the nodes in the system. Then, the selected
CHs begin the beacon transmission. At this point, the system can be found in any of the
possible operation scenarios previously described. Then, after all the clusters are found
with a single CH and multiple CMs, the packet transmission procedure from CMs to CH
begins. Whenever a CM successfully transmits its packet, it stops further transmissions.
From this, the simulation counts the time where a single transmission occurs in order
to find the success transmission probability (labeled as Real Walk) divided by the total
operation time and is compared to the analytical results as shown in Figure 19.

From these results, we can see a good match between simulation and analytical
results, especially for two and three initial CHs. In the case of four and five initial CHs,
the analytical results slightly separate from the simulation results. The rationale of this
is that the mathematical model does not consider the cases where clusters are broken
and rebuild in case CH leaves and/or enters a different cluster. Even if we propose the
appropriate rules for the mobile clustering protocol to react to these cases, the Markov
chain only considers a normal operation situation where clusters are formed by a single CH
and multiple CMs. However, the simulation considered all the operation time. As such, in
the simulation results, the successful time is lower due to this forming and reforming time
of clusters. This effect is further accentuated when the contagion range is increased since
the CHs cover a higher area and is more probable to have multiple CHs inside a single
cluster, causing higher reconfiguring times.



Entropy 2021, 23, 326 24 of 29

(a) 2 Mobile Clusters

(b) 3 Mobile Clusters

(c) 4 Mobile Clusters

(d) 5 Mobile Clusters

Figure 19. Success probability for the hyper-exponential Markov chain with different number of
mobile clusters.

Now that the mathematical model is validated, and the system variables where the
model is more accurate are identified, the following figures use the numerical results
derived from the Markov chain and Equations (12) and (13). In Figure 20, we present
the success, idle, and collision probabilities in a beacon period. From these results, it is
important to note that the successful transmission probability achieves a maximum value
when τ is in the range of 0.4 to 0.6. For lower values of τ, the idle (collision) probability is
too high (low), while, for higher values, the collision (idle) probability increases (decreases).
This is true for almost all values of the initial number of CHs and contagion range.
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(a) Probability of a Successful Slot

(b) Probability of an Idle Slot

(c) Probability of A Collided Slot

Figure 20. Success, idle and collision probabilities for the mobile clustering scheme.

Another interesting observation is that the performance of the system in terms of these
probabilities does not vary much for different radii, which can be explained by observing
the dynamics of the pedestrian movement. Indeed, we observe that most of the pedestrians
are close to each other and tend to remain together during the trajectories, closer than the
minimum contagion range. As such, the number of nodes per cluster is not impacted
by increasing the contagion range. We believe that this characteristic may be similar in
other scenarios where people are walking to the entrance of another facility or building or
subway station, where many people remain in the same range for long periods. However,
in other cases, such as people walking in a commercial mall or a park, this characteristic
may not be present. We leave this research line open for future works.

Finally, in Figure 21, we present the system performance of the mobile clustering
scheme compared to the non-clustered system, i.e., where nodes transmit directly to the
sink node. In this case, the sink is located at the entrance of the building. Hence, in the
non-clustered system, when nodes enter the communication range of the sink node, they
transmit with probability τ.
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(a) Idle Slot Probability

(b) Success Slot Probability

(c) Collision Slot Probability

Figure 21. Total registration process: success, idle, and collision probabilities.

We can see that the mobile clustering scheme entails better performance than the
non-clustered system, in terms of higher successful transmission and lower packet col-
lision probability for almost all the cases investigated, proving the effectiveness of the
proposed scheme.

9. Conclusions

In this work, we develop a mobile clustering protocol to efficiently provide contact
tracing information for contagion contention purposes. We frame this work in the context
of smart cities where smartphones of the population or specific communication devices
actively share their information with a trusted authority. In a smart city environment,
nodes and personal communication devices collaborate with the city administration to
achieve common goals for the benefit of the residents and population in general. Since per-
sonal information (location and health status) is used to detect possible disease-spreading
hot spots, the system has to be supervised and managed by a trusted health authority.
The aforementioned system is mathematically modeled, studied, analyzed, and verified
through simulation results. The model is accurate in most of the presented scenarios
and system parameters. Hence, it can be used for system design in different scenarios
than the ones presented in this work. In addition, we designed and constructed an RF
capable device that could be used in closed communities, such as university campuses,
governmental buildings, hospitals, and schools among others. We focused our research on
pedestrians entering the university campus in order to have a controlled environment and
obtain data in an expedited manner. However, the same methodology can be used for any
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other environment, such as commercial, leisure, cultural, and sports events, among others.
For these other applications, the first step is to characterize the connection times among
people given by the mobility pattern in each scenario, i.e., determine the probability density
function of the connection times. In our case, we obtained a Hyper-Exponential distribution
where all the parameters were obtained through visual observation. However, in a future
work, these times can be obtained directly by the data generated by the Radio Frequency
devices or the mobile phones performing the contact tracing application. Given these
connection times, we can perform a similar mathematical analysis of the system in order to
obtain preliminary/theoretical performance metrics by solving the corresponding Markov
Chain. It is important to note that the mobile clustering scheme is independent of these
connection times and can operate in any mobility scenario, since CHs and CMs are elected
in a distributed manner and based on the number of nodes in the neighborhood. In a future
work, we intend to determine the performance of the mobile clustering scheme in such
alternative scenarios.

The use of these contact tracing tools will be fundamental in the efforts to control
and reduce the impact of the COVID-19 pandemic and future pandemic to come. As such,
it is important to have the mathematical and hardware tools to design and implement
computational tools in a timely manner in emergency cases. As an additional feature of
this work, the use of mobile clusters can be extended to many other applications such as
traffic control in vehicular networks or vehicle tracing where also specific devices may be
required. In smart city applications in conjunction with autonomous driving scenarios, it
may provide a valuable tool for safety and data dissemination.
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