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Abstract 
The DNA damage response is critical for cells to maintain genome stability and survival. In this 

review, we discuss approaches to targeting critical elements of the DNA damage response for 
radiosensitization and chemosensitization. In addition, we also discuss strategies for targeting DNA 
damage response and DNA repair defects in cancer cells for synthetic lethality. 
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Editorial 

Maintaining genomic integrity by protecting against 
various types of DNA damage is an essential process for 
all living creatures. Studies of mammalian mechanisms 
involved in responding to and repairing damaged DNA 
revealed that there are comprehensive coordinated 
pathways activated that regulate the DNA damage 
response (DDR) and DNA repair [1,2] . Investigations have 
demonstrated that cells with atypical expression of 
prominent proteins involved in these pathways frequently 
displayed altered sensitivity to DNA damaging agents 
such as ionizing radiation or many chemotherapeutic 
drugs  [3] . These findings led to a rapid interest in exploring 
targeting DDR proteins (mainly through inhibition) to 
increase the effectiveness of cancer therapeutics (termed 
radiosensitization and chemosensitization). While several 
approaches have been developed successfully in this 
direction, achieving tumor selectivity remains a critical 
challenge to the molecular targeted cancer therapy. 

DDR and DNA Repair 
The optimal DDR deals with environmental or 

endogenous insults to DNA to prevent genetic instability 
and promote survival (Figure 1). Activation of cell cycle 
checkpoints, which slows down cell cycle progression, is 
one of the early steps in the DDR. The overall function of 
cell cycle checkpoints is to provide time for damage 
detection and appropriate DNA repair [4] . With optimal 
DNA repair, cells are sometimes able to recover from the 
damage and resume normal cell growth. On the other 
hand, when the damage is irreparable, programmed cell 
death is triggered. To deal with various types of DNA 
damage, the mammalian DNA repair system includes 
mechanisms such as base excision repair (BER), 
nucleotide excision repair (NER), mismatch repair 
(MMR), non­homologous end joining (NHEJ), and 
homologous recombination (HR) [5] . Altogether, the DDR 
and DNA repair systems are orchestrated by a 
comprehensive signaling network controlling processes 
from transcriptional regulation to posttranslational 
modifications. Several categories of proteins have been 
extensively studied, including damage sensors, 
transducers, mediators and effectors [6] . Sensors are 
typically chromatin­bound proteins that recognize DNA 
damage and recruit transducers. Transducers can 
amplify damage response signals by posttranslational 
modifications, such as phosphorylation. Mediators are 
critical for transducers to recognize downstream effectors 
and may be critical for the signal on/off switch. Effectors 
negatively regulate cell cycle progression and might also 
be critical for activation of DNA repair or apoptosis. 
Overall, many of these evolutionarily conserved gene 
products that are critical for DDR and DNA repair 
have been explored as potential targets for cancer 
therapy [7] . 
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Targeting the DDR for Radiosensitiza鄄  
tion and Chemosensitization 

Several major kinases that play a critical role in the 
DDR have been extensively investigated for developing 
small molecules to enhance sensitivity to radiotherapy 
and chemotherapy. These druggable kinases include the 
ataxia telangiectasia mutated (ATM) and DNA­dependent 
protein kinase catalytic subunit (DNA­PKcs). Well 
conserved through evolution, ATM and DNA­PKcs are 
family members of the phosphatidylinositol­3 (PI­3) 
kinase­related kinase family, and mutation of the ATM 
kinase causes ataxia telangiectasia manifested by 
neurodegeneration, cancer, immunodeficiency, and 
hyper­radiosensitivity [8] . Early studies show that PI­3 
kinase inhibitors such as wortmannin and LY294002 can 
inhibit ATM, the ATM and Rad3­related kinase (ATR), 

and DNA­PKcs to achieve radiosensitization  [9,10] . More 
specific inhibitors of ATM (KU55933, KU60019, and 
CP466722) have been developed and showed 
impressive  activity as radiosensitizers and 
chemosensitizers [11­13] . For DNA­PKcs, small molecules 
such as Nu7441, IC8736 (flavone­based inhibitor), and 
SU11752 (ATP competitive inhibitor) have shown 
promising sensitization effects, despite significant 
cytotoxicity due to inhibition of the NHEJ process [14­16] . 
The bottleneck of developing radiosensitizers and 
chemosensitizers is to achieve specificity and selectivity. 
Since ATM (as well as DNA­PKcs) is a master controller 
of DDR, determining the specific downstream pathway 
regulating  radiosensitivity is critical for development of 
inhibitors. In addition to small molecules, small peptides 
targeting  Chk2 kinase activatio n  [17] , the ATM­NBS1 
interaction [18] , and DNA­PKcs autophosphorylation [19]  have 
been reported  to possess radiosensitization activity 
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. These studies used fusion peptides containing a 
domain for internalization and an interference domain for 
specific pathway targeting. Although small inhibitory 
peptides provide specificity for signaling pathways 
targeted, concerns regarding the stability as well as the 
potential for the immunogenicity of fusion peptides limit 
further clinical development. 

Targeting DDR for Synthetic Lethality 
A critical challenge for molecular targeted cancer 

therapy is how to discriminate tumor and normal cells. 
Traditional chemotherapeutic drugs are cytotoxic 
because they affect DNA synthesis. Since tumor cells 
typically have a high proliferation rate, cytotoxic drugs 
prevail against tumor cells. On the other hand, 
overexpression of some oncoproteins has been explored 
for molecular targeted therapy. Synthetic lethality, which 
is caused by a combination of two genetic mutations that 
lead to cell death, is one emerging strategy for molecular 
targeted cancer therapy [20] . Since suboptimal DDR and 
DNA repair are well recognized in cancer cells, it is likely 
that when one DDR protein has been functionally 
mutated, an additional functional mutation on a different 
protein can result in cell death. This concept offers an 
intriguing strategy for developing anti­cancer therapies. 

One example of successfully targeting DNA repair for 
synthetic lethality is the use of poly (ADPribose )poly鄄  
merase (PARP) inhibitors in  ­mutant 
breast cancer or ovarian cancer cells [21,22] . BRCA1/ 
BRCA2 are critical elements in HR­based repair of DNA 
double strand breaks [7] .  and  are frequently 
mutated in breast cancer and ovarian cancer patients, 
and mutation of these genes leads to inefficient DNA 
DSB repair. On the other hand, PARP binds to 
single­strand breaks (SSBs) and facilitates SSB repair. 
Inhibition of PARP results in persistent SSBs, resulting in 
replication­associated DSBs that could be lethal for 
HR­defective tumors. This makes PARP inhibitors a 
thousand times more toxic in  ­mutant cells. 
Promising preclinical studies have led to the 
development of several inhibitors including iniparid, 
olaparib, PF­01367338, veliparib, and CEP­9722 for 
clinical trials [7] . 

Using small interfering RNA (siRNA) screening, 
investigators are also currently working to identify 
additional HR repair genes that can mediate synthetic 
lethality with PARP1 inhibition [23] . Genes involved in NER 
(such as  and  ) and the tumor suppressor 
gene  have been found to be synthetically lethal 

with a PARP inhibitor [23,24] . BRIT1, a chromatin­binding 
protein required for recruitment of many important DDR 
proteins such as ATM, MDC1, NBS1, RAD51, and 
BRCA2 to DNA damage sites, also shows synthetic 
lethality with PARP inhibitors [25,26] . In addition, tankyrase 
1, another PARP family member involved largely in 
telomere maintenance, shows synthetic lethality with 
BRCA1 deficiency [27] . A recent study demonstrated that 
mantle cell lymphoma (MCL) cells deficient in both ATM 
and p53 are more sensitive to PARP inhibition than 
cells lacking ATM function alone or their normal 
counterparts [28] . 

Despite promising early clinical results [29] , iniparib 
combined with chemotherapy failed to demonstrate any 
survival improvement in triple­negative metastatic breast 
cancer patients in a randomized phase III clinical trial 
(American Society of Clinical Oncology 2011 Annual 
meeting report). This study raises concerns about the 
clinical significance of PARP inhibition and has since 
attracted extensive discussion [30] . One major concern is 
that there are additional, yet unidentified molecular 
factors that may affect PARP1 inhibitors [28] . Synthetic 
lethality might be compromised because cancers may 
employ multiple pathways to overcome a defect in one 
DNA repair pathway [31] . More importantly, the tumor 
specificity of many DNA repair components is not well 
defined. Since iniparib is less potent than most of other 
compounds under development, there are concerns 
whether iniparib should represent a PARP inhibitor in 
clinical studies. Recent studies have shown that iniparib, 
which can modify cysteine­containing proteins nonselec鄄  
tively in tumor cells, is not a  inhibitor of PARP, 
and cautions against comparing clinical trial results using 
iniparib with other PARP inhibitors [32] . Further, another 
article published afterwards supports the finding that 
iniparib does not actually inhibit PARP  and 
concludes that iniparib is not suitable for clinical studies 
involving PARP inhibition [33] . Unrelated to the molecular 
mechanisms, a concern has been raised that patient 
野cross­over冶 in the randomized clinical trial might 
partially contribute to the negative clinical result [34] . 
Together, these studies indicate that despite the 
disappointing phase III clinical trials of iniparib, studies 
should continue to investigate clinical benefits of PARP 
inhibitors. Further clinical trials using verified, specific 
inhibitors of PARP as monotherapy and/or in com鄄  
bination with radiotherapy and chemotherapy are greatly 
anticipated. Studies on the mechanisms of  synthetic 
lethality would help identify critical patient populations 
that will benefit from the therapy.  Meanwhile, further 
research on identifying inhibitors of  other potential DDR 
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targets in a variety of tumor tissue types will broaden the 
applicability of this strategy. 
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