
Identification and Validation of
Necroptosis-Related LncRNA
Signature in Hepatocellular
Carcinoma for Prognosis Estimation
and Microenvironment Status
Cong Chen1†, Yumeng Wu2†, Kang Chen1, Zicong Xia1, Xiaokan Liu1, Chaojie Zhang1,
Hui Zhao1* and Aiguo Shen2*

1Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, China, 2Cancer Research Center
Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China

Background: Hepatocellular carcinoma (HCC) is among malignancies with the highest
fatality toll globally and minimal therapeutic options. Necroptosis is a programmed form of
necrosis or inflammatory cell death, which can affect prognosis and microenvironmental
status of HCC. Therefore, we aimed to explore the prognostic value of necroptosis-related
lncRNAs (NRLs) in HCC and the role of the tumor microenvironment (TME) in
immunotherapy.

Methods: The RNA-sequencing data and clinical information were downloaded from The
Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC).
NRLs were identified by Pearson correlation analysis. The signature was constructed using
the LASSO–Cox regression analysis and evaluated using the receiver operating
characteristic curve (ROC) and the area under the Kaplan–Meier curve. The nomogram
was built based on clinical information and risk score. Gene set enrichment analysis
(GSEA), immunoassay, half-maximum inhibitory concentration (IC50) analysis of the risk
group, and the HCC subtype identification based on NRLs were also carried out. Finally,
we detected the expression of lncRNAs in HCC tissues and cell lines in vitro.

Results: A total of 508 NRLs were screened out, and seven NRLs were constructed as a
risk stratification system to classify patients into distinct low- and high-risk groups. Patients
in the high-risk group had a significantly lower overall survival (OS) than those in the low-risk
group. Using multivariate Cox regression analysis, we found that the risk score was an
independent predictor of OS. Functional analysis showed that the immune status of
different patients was different. The IC50 analysis of chemotherapy demonstrated that
patients in the high-risk group were more sensitive to commonly prescribed drugs. qRT-
PCR showed that three high-risk lncRNAs were upregulated in drug-resistant cells, and
the expression in HCC tissues was higher than that in adjacent tissues.

Edited by:
Ruowen Zhang,

Jiahehongsheng (Shenzhen) Health
Industry Group, China

Reviewed by:
Feng Jiang,

Fudan University, China
Zhigang Jie,

The First Affiliated Hospital of
Nanchang University, China

*Correspondence:
Hui Zhao

zhaohui800@163.com
Aiguo Shen

aiguoshen_nt@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

Received: 17 March 2022
Accepted: 16 May 2022
Published: 08 June 2022

Citation:
Chen C, Wu Y, Chen K, Xia Z, Liu X,
Zhang C, Zhao H and Shen A (2022)

Identification and Validation of
Necroptosis-Related LncRNA

Signature in Hepatocellular Carcinoma
for Prognosis Estimation and

Microenvironment Status.
Front. Genet. 13:898507.

doi: 10.3389/fgene.2022.898507

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8985071

ORIGINAL RESEARCH
published: 08 June 2022

doi: 10.3389/fgene.2022.898507

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.898507&domain=pdf&date_stamp=2022-06-08
https://www.frontiersin.org/articles/10.3389/fgene.2022.898507/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.898507/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.898507/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.898507/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.898507/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhaohui800@163.com
mailto:aiguoshen_nt@126.com
https://doi.org/10.3389/fgene.2022.898507
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.898507


Conclusion: The prediction signature developed in this study can be used to assess the
prognosis and microenvironment of HCC patients, and serve as a new benchmark for
HCC treatment selection.

Keywords: hepatocellular carcinoma, prognostic signature, microenvironment, lncRNA, necroptosis, immune
infiltrate

INTRODUCTION

According to the 2020 global cancer statistics, primary liver
cancer ranks the sixth and the third in the worldwide
incidence rate and mortality rate, respectively, and
hepatocellular carcinoma (HCC) accounts for the
overwhelming majority of liver cancer cases (Sung et al.,
2021). Even though early diagnosis of HCC has developed
rather rapidly in recent years, in most patients HCC is already
in the intermediate or advanced stage at the time of diagnosis,
having missed the best time for surgical resection. New
treatments, such as transcatheter arterial chemoembolization
(TACE), radiofrequency ablation, immunotherapy, and
targeted therapy, can bring hope to patients with advanced
liver cancer (Anwanwan et al., 2020). However, the overall
survival (OS) of patients with HCC remains unsatisfactory,
and changes in the immune microenvironment possibly play a
pivotal role in immune escape and resistance in HCC. In recent
years, immunotherapy—represented by immune checkpoint
inhibitors, adoptive cell therapy (ACT), and tumor
vaccines—has brought new hope to patients with advanced
HCC (Mizukoshi and Kaneko, 2019). However, only a small
fraction of patients can benefit from immunotherapy (Fu et al.,
2019), which may be due to tumor heterogeneity and changes in
immune-related factors in the tumor microenvironment (TME).
Therefore, finding an indicator that can predict the effect of
immunotherapy and the state of the microenvironment is crucial
for improving the prognosis in patients with HCC.

Cell death is a complex process, that is, achieved through
pathological and physiological ways (Tang et al., 2019). One form
of cell death is necroptosis, which can be acquired in a
programmed way during the development of certain
organisms. Unlike typical apoptosis and necrosis, necroptosis
induces cell death when the apoptotic mechanism fails.
Necroptosis is closely related to the immune
microenvironment and can induce cell rupture, activate
inflammatory response while releasing cellular contents, and
promote infiltration of many inflammatory cells (Green, 2019).
Receptor-interacting serine/threonine-protein kinase 3 (RIPK3)
can act as a critical regulator of necroptosis to affect the function
of immune cells by regulating the activation of natural killer T
(NKT) cells and dendritic cells (DCs) (Degterev et al., 2008). The
pan-caspase inhibitor Z-VAD (OH)-FMK (zVAD) has been
reported to induce necroptosis in melanoma via reducing
tumor infiltration by regulatory T cells (Tregs) while
increasing DC and CD8+ T cells to reduce tumor growth
(Werthmöller et al., 2015). Necroptosis also plays a vital role
in HCC since heparinase can induce necrotic proliferation of
microvascular endothelial cells and promote liver cancer

metastasis (Chen et al., 2021). Hence, necroptosis may be a
potential target for HCC therapy.

Long noncoding RNAs (lncRNAs) are a class of noncoding
RNAs. lncRNAs are closely related to HCC. Specifically,
downregulation of lncRNA growth arrest-specific 5 (GAS5) in
HCC promotes proliferation and drug resistance through the
decrease of phosphatase and tensin homolog (PTEN) expression
(Wang et al., 2020). lncRNA small nucleolar RNA host gene 3
(SNHG3) induces epithelial–mesenchymal transition (EMT) and
sorafenib resistance by regulating the miR-128/cluster of
differentiation 151 (CD151) pathway in HCC (Zhang et al.,
2019), having the potential to affect necroptosis through
different pathways such as H19-derived miR-675 targeting
FAS-associated death domain protein (FADD) (Harari-
Steinfeld et al., 2021). In addition, lncRNAs can protect tumor
cells from necroptosis by suppressing the expression of some
related proteins (Tao et al., 2019). There is also a close correlation
between lncRNAs and TME. Long intergenic non-protein coding
RNA 665 (LINC00665) affects the level of macrophage and DC
infiltration, suppresses Tregs, and prevents T cell failure by
targeting lncRNA five prime to Xist (FTX) as competing
endogenous RNA (ceRNA) (Zhang et al., 2020a). lncRNA
T cell leukemia/lymphoma 6 (TCL6) positively correlates with
tumor-infiltrating lymphocyte (TIL) infiltration and immune
checkpoint molecules such as cytotoxic T-cell lymphocyte-
associated protein 4 (CTLA-4), programmed death receptor 1
(PD-1), and its ligand (PD-L1) (Zhang et al., 2020b). Exploring
the lncRNA signatures associated with necroptosis and their role
in HCC treatment requires special attention.

In this study, we first downloaded lncRNA expression profiles
and clinical information from The Cancer Genome Atlas (TCGA)
and the International CancerGenomeConsortium (ICGC); then, we
constructed a necroptosis-related lncRNA prognostic signature,
which allowed us to analyze TME, immune cell infiltration,
immune checkpoints, human leukocyte antigens (HLA),
functional enrichment, and drug sensitivity in different risk
groups. Finally, we validated the lncRNAs in the signature using
tissues and cell lines. This study may provide a new reference for
selecting HCC treatment methods and predicting prognosis.

MATERIALS AND METHODS

Datasets and Preprocessing
The RNA-sequencing data (TPM format) used for HCC samples
were downloaded from TCGA (https://portal.gdc.cancer.gov/).
After excluding the patients from repeated sequencing, those
lacking complete follow-up information, and those with 0
survival days, a total of 50 normal samples and 365 tumor
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samples were included. Next, bioinformatics analysis, survival
analysis, and model building were performed on these samples.
Data from 231 HCC patients were additionally downloaded from
ICGC (https://dcc.icgc.org/projects/LIRI-JP) for external
validation using the same exclusion criteria. The “SVA” R
package was used to perform background correction,
normalization, and expression estimates for internal and
external validation on the genes associated with the modeling
(Supplementary Figure S1). R software (version 4.0.5) was used
to conduct all of the analyses.

Construction and Validation of Prognostic
Signature
Necroptosis-related genes (NRGs) were extracted from previous
studies (Supplementary File S1) (Zhao et al., 2021). Differential
expression of NRGs in normal andHCC samples was analyzed using
the limma R package, with p < 0.05 and | log2FC| > 0.5 as thresholds.
Having performed the Pearson correlation analysis on all lncRNAs
and having identified differentially expressed NRGs (p < 0.001,
correlation coefficient >0.4), we finally screened necroptosis-
related lncRNAs (NRLs) for subsequent bioinformatics analysis.

Univariate Cox proportional-hazard regression analysis filtered
lncRNAs linked to survival (p < 0.05) in the batch-adjusted cohort. A
risk model was then built using Least Absolute Shrinkage and
Selection Operator (LASSO) regression with 10-fold cross-
validation and run for 1,000 cycles with 1,000 random
stimulations to avoid overfitting effects (Tibshirani, 1997; Simon
et al., 2011). After integrating the gene expression values weighted
by the LASSO–Cox coefficient, the following formula for the risk
score was established:

risk score � ∑[Exp(IncRNA) × coef(IncRNA)] (1)
where Exp (lncRNA) is the expression of survival-related lncRNAs,
and coef (lncRNA) is the associated regression coefficient. Patients
in the TCGA and ICGC cohorts were divided into high- and low-
risk groups based on the median risk score. Kaplan–Meier (K-M)
curves were plotted to find differences in OS between the risk
groups, and log-rank tests were performed on the results. Likewise,
receiver operating characteristic (ROC) curves were plotted using
the survival ROC R package. The area under the curve (AUC) was
calculated to assess the model’s accuracy.

Finally, we analyzed the clinicopathological information in the
dataset through univariate and multivariate Cox regression
analysis. We used a nomogram that included tumor-node-
metastasis (TNM) staging and risk score to predict the
survival of HCC patients at 1, 3, and 5 years. The nomogram’s
accuracy was measured using ROC curves. The p-values in
analyzing the differentially expressed genes were adjusted.

Immunology and Cluster Analysis
We utilized different algorithms such as TIMER, CIBERSORT,
CIBERSORT-abs, QUANTISEQ,MCP-counter, XCELL, and EPIC
to estimate the abundance and correlation of immune cells in
different risk groups. In addition, the single-sample gene set
enrichment analysis (ssGSEA) algorithm was selected to evaluate

immune cells and immune-related functions (Rooney et al., 2015).
The enrichment fraction of 29 immunological characteristics per
sample in TME was calculated using the R package GSVA (version
1.34.0). The estimation of stromal and immune cells in malignant
tumor tissues using the expression data (ESTIMATE) algorithm
was employed to calculate the immune score, stromal score, and
tumor purity to reflect the state of the immune microenvironment
(Yoshihara et al., 2013). Regarding the TCGA cohort, we used a
nonnegative matrix factorization (NMF) clustering algorithm to
cluster the HCC samples from the NRLs. The ICGC cohort was
verified using the same candidate genes. The K value refers to the
value selected when the size of the correlation coefficient starts to
decrease with the optimal number of clusters. The class mapping
analysis evaluated the similarity of subtype classification among
different datasets. Simultaneously, the dimensionality reduction
analysis was performed on the expression data of the candidate
genes, and the principal component analysis (PCA) method was
adopted to verify the subtype distribution. In addition, the nearest
template prediction (NTP) algorithm was applied to predict the
different risk groups of genetic signatures in both cohorts. The
prediction results were compared with the classification results of
the NMF algorithm.

Functional Enrichment Analysis
Gene pathways were annotated with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Gene Ontology (GO) using the
“clusterProfiler” software R package. p-value < 0.05 and q-value <
0.05 indicated significantly enriched pathways. The Gene Set
Enrichment Analysis (GSEA) algorithm is an enrichment method
based on expression profiles, and calculates the estimated proportion of
a particular pathway or feature in different clusters. We used the gene
set (Kegg.v7.4.symbols.gmt) for GSEA analysis (http://www.gsea-
msigdb.org/gsea/index.jsp), where p < 0.05 and false-discovery rate
(FDR) < 0.05 were considered statistically significant. One thousand
permutations of gene sets were done for each analysis to provide a
normalized enrichment score (NES). The Benjamini–Hochberg (BH)
multiple testing correction was used to adjust the p-values.

Drug Sensitivity Analysis
Half-maximum inhibitory concentration (IC50) values of
chemotherapy drugs were obtained from the Genomics of
Cancer Drug Sensitivity (GDSC) database (https://www.
cancerrxgene.org/) (Geeleher et al., 2014) and calculated using
the “PRrophytic” R package in R software. The difference in the
IC50 between the different risk groups was analyzed by the
Wilcoxon signed-rank test. The results are shown as box plots.

Cell Lines and Culture Conditions
All cell lines were purchased from the National Certified Cell
Culture Collection Center (Shanghai, China). Huh7 and HepG2
cells were cultured in DMEMmedium (Gibco) supplemented with
10% fetal bovine serum and 1% penicillin–streptomycin. Hep3B
cells were cultured in MEM medium (HyClone), supplemented
with 10% fetal bovine serum, 1% penicillin–streptomycin, and 1%
non-essential amino acids (Gibco, #11140050). SNU-387 and L-02
cells were cultured in RPMI medium (Gibco) supplemented with
10% fetal bovine serum and 1% penicillin–streptomycin. Cell
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culture took place in a cell incubator at 37°C under 5% carbon
dioxide and 10% humidity conditions. None of the cell lines used in
this study were tested for mycoplasma contamination.

Cell Viability and Drug Sensitivity
Cells were seeded in 96-well plates at a density of 5,000 cells/well
and placed in a 37°C, 5% CO2 incubator for 24 h. We added
doxorubicin (MCE, #HY-15142A), cisplatin (MCE, #HY-17394),
and sorafenib (MCE, #HY-10201) to the experimental group
according to the concentration gradient. After 48 h, the plates
were removed from the incubator and placed in a dark
environment to add 10 μl of CCK8 reagent (Vazyme, #A311-02)
to each well. Then, the plates were returned to the incubator for
1–2 h. The optical density (OD) value was measured with a
microplate reader (Thermo, Multiskan FC), and GraphPad

FIGURE 1 | Flow chart of the study.

TABLE 1 | PCR primer sequences.

Gene Primers

HCG27 F: CAGCCCTGGGTGGAGATTTAAGATG
R: AGGTGGGTGGGAAGAGGTGTTAC

C2orf27A F: CATGCGGTCCTCCAGGTTCAAC
R: CTCTGCCAACCAACTGCCCATC

BACE1-AS F: TGGCTGTTGCTGAAGAATGTGACTC
R: CAACCTTCGTTTGCCCAAGAAAGTG

SNHG4 F: AACTCCTGACCTTGCGATTTGCC
R: GAGGTTGTAGTGAGCCGAGATTGC

MIR210HG F: AATAACCAAGCCGAGTTGCCTCTG
R: TCTGGAGCACACAAAGGGAACAAG

SNHG3 F: CAGCCGTTAAGCCATTTGGAACTTG
R: CAACCCTGACCTCAACACCTTGG

HCG11 F: CTGAGGCAGGAGAATCACTTGAACC
R: TGAGATGGAGTCTTGCTGTGTTGC
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(Version 9.3.1.471) was used to calculate the IC50 value after the
exportation of data.

Quantitative Real-Time PCR
We obtained 12 pairs of HCC tissues and paracancerous tissues
from the Department of Pathology, the Affiliated Cancer Hospital
of Nantong University. Total RNAs from the tissue samples and
cell lines were extracted using an RNA isolation kit (Vazyme,
#RC112-01), and were then used to synthesize complementary
DNA (cDNA) with the help of the cDNA Synthesis Kit (Vazyme,
#R233-01) in line with the manufacturer’s instructions.
Quantitative real-time PCR (qRT-PCR) was conducted on the
SteponePlus (Applied Biosystems) using SYBR qPCRMaster Mix
(Vazyme, #Q511-02) and 10 μM primers. Relative expression
values were normalized to the control gene (GADPH). The
primer pairs used in this study are shown in Table 1.

RESULTS

A total of 365 HCC patients from the TCGA cohort and 231
HCC patients from the ICGC (LIRI-JP) cohort were finally
enrolled. The overview of this study is presented as a flowchart
in Figure 1.

The Landscape of Necroptosis-Related
Genes in The Cancer Genome Atlas Cohort
In total, 19 of 67 NRGs showed significant differences in
expression (Figure 2A); specifically, 12 genes were
upregulated, and seven genes were downregulated
(Figure 2B) (Supplementary File S2). As shown in
Figure 2C, the correlation analysis of the 19 NRGs showed
that DNA methyltransferase 1 (DNMT1) had the strongest
positive correlation with polo-like kinase1 (PLK1) (r = 0.75)
and that tripartite motif-containing protein 11 (TRIM11) had
the strongest negative correlation with kruppel-like factor 9
(KLF9) (r = −0.31).

Identification and Validation of
Necroptosis-Related Long Noncoding
RNAs
Having analyzed the correlation between the 19 NRGs and all
annotated lncRNAs, we obtained 365 tumor samples and 50
normal samples from the TCGA cohort. Finally, we identified
508 NRLs (correlation coefficient >0.4 and p < 0.001), as
presented in Figure 3A, showing the network diagram
between NRGs and lncRNAs. Univariate Cox regression
analysis was performed in the batch-adjusted TCGA-HCC

FIGURE 2 | The landscape of NRGs in the TCGA cohort. (A) Heat map of the differentially expressed mRNAs in tumor tissues and adjacent normal tissues. (B)The
volcano plot of 19 differentially expressed genes. (C) Correlation analysis of 19 NRGS revealed that DNMT1 has the strongest positive correlation with PLK1 (r = 0.75),
and TRIM11 has the strongest negative correlation with KLF9 (r = −0.31).
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cohort to determine the NRLs and their association with
survival. Finally, 10 NRLs were screened for subsequent
analysis (all p < 0.05) (Figure 3B). The Wilcoxon test
showed that HLA complex group 27 (HCG27), small
nucleolar RNA host gene 6 (SNHG6), antisense transcript
of BACE1 (BACE1-AS), small nucleolar RNA host gene 4
(SNHG4), small nucleolar RNA host gene 3 (SNHG3), and
small nucleolar RNA host gene 1 (SNHG1) were highly
expressed in tumors, while MIR210 host gene (MIR210HG),
HLA complex group 11 (HCG11), and TTC28 antisense RNA
1 (TTC28-AS1) were highly expressed in normal samples
(Figures 3C,D).

Construction of the Risk Signature
Based on the optimal value of λ, we performed LASSO
regression analysis on these 10 prognosis-related NRLs and
screened seven NRLs (Figures 4A,B) to avoid overfitting of the
prognostic signature. Then, we used multiple Cox regression

analysis (ENTER method) to construct a risk stratification
system, and showed that HCG27 and HCG11 were moderate-
risk genes (Figure 4C). Finally, by combining the expression
levels and regression coefficients of the seven NRLs
(Figure 4D), we were able to derive the formula for the
risk score of HCC patients: risk score = (−0.7184 × HCG27)
+ (0.4253 × C2orf27A) + (0.3929 × BACE1-AS) + (0.6010 ×
SNHG4) + (0.4291 × MIR210HG) + (0.1360 × SNHG3) +
(−0.4251 × HCG11).

Validation of the Risk Signature
We calculated the risk scores for patients in the TCGA cohort
based on the risk score formula. We selected 231 tumor
samples and 202 normal samples from the ICGC cohort as
a validation set to test the stability of the signature. We then
evaluated the predictive performance for OS using time-
dependent ROC curves; the AUC for the TCGA cohort
was 0.745, 0.727, and 0.653 at 1, 3, and 5 years,

FIGURE 3 | Identification of NRLs. (A) The network between NRGs andNRLs (correlation coefficients >0.4 and p < 0.001). (B) The prognostic NRLswere extracted
by univariate Cox regression analysis. (C)Heatmap of prognostic NRLs in tumour tissues and adjacent normal tissues. (D) The expression of prognostic NRLs in tumour
tissues and adjacent normal tissues. (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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respectively (Figure 5A). The AUC of the ICGC cohort was
0.646, 0.632, and 0.613 in the same periods (Figure 5B).
Kaplan–Meier curves showed that the OS of patients in the
high-risk group was significantly lower than that in the low-
risk group in both cohorts (all p < 0.01) (Figures 5C,D). In
addition, we compared the risk score distribution and
survival status of the high-risk group and the low-risk
group using the risk score formula (Figures 5E,F).

Afterward, we performed univariate and multivariate Cox
regression analysis on clinical characteristics and risk score to
determine whether the risk score could serve as an independent
prognostic factor for OS in HCC patients. Based on univariate
Cox regression analysis, there was a significant association
between the risk score and OS (TCGA cohort: HR = 1.462,
95% CI = 1.331–1.607; ICGC cohort: HR = 2.203, 95% CI =
1.519–3.195) (Figures 6A,C). After adjusting for other
confounding factors, the risk score proved to be an
independent predictor of OS in the multivariate Cox
regression analysis (TCGA cohort: HR = 1.397, 95% CI =
1.262–1.546; ICGC cohort: HR = 2.296, 95% CI =

1.570–3.359) (Figures 6B,D). The hazard ratio (HR) and 95%
confidence interval (CI) of the tumor stage in the multivariate
Cox regression analysis of the TCGA cohort were 1.508 and
1.216–1.871 (p < 0.001), respectively. We believe that the TNM
stage can also be considered an independent predictor.

Construction of a Nomogram
Considering the complexity of the risk signature, we visualized
the risk signature by constructing a nomogram based on the risk
score and TNM stage (Figure 7A). We used calibration curves for
the TCGA and ICGC cohorts to verify the consistency of the
nomogram in predicting the patients’ 1-, 3-, and 5-year OS. The
prediction curves for both cohorts were close to the standard
curve (Figures 7B,C), meaning that the nomogram can predict
the patients’ OS quite well. Finally, we used the ROC curve to
evaluate the sensitivity and specificity of the constructed risk
signature for prognosis. The results showed that in the TCGA
cohort, the areas under the ROC curve were 0.731, 0.728, and
0.677 at 1, 3, and 5 years (Figure 7D). In the ICGC cohort, the
areas under the ROC curve were 0.670, 0.672, and 0.640 at the

FIGURE 4 |Construction of the prognostic signature. (A) The LASSO coefficient profiles of seven NRLs. (B) The ten-fold cross-validation for variable selection in the
LASSO model. (C) Multivariate Cox analysis of the seven NRLs (ENTER method). (D) The regression coefficient of the seven NRLs in the signature.
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same time points (Figure 7E). In summary, the risk model
showed an excellent predictive potential.

Immune Phenotype Landscape in the
Tumor Microenvironment of Hepatocellular
Carcinoma
Necroptosis is closely related to the immune signaling of tumor cells.
Targeting the necroptotic process has been reported to induce the
immune system to kill tumors. RIPK3, which is involved in
necroptosis, can drive cells to produce inflammatory chemokines
and cytokines during cell death, thereby activating killer T cells
(Snyder et al., 2019). To understand the immune cell infiltration of
the patients grouped by the predictive model, we used seven

algorithms to draw a heat map of immune cell infiltration and
found that the high-risk group had a higher immune cell infiltration
status (Figure 8A). The bubble plot depicting the association of
immune cell infiltration with the risk score showed increased
immune cell infiltration, including CD4+ memory T cells, mast
cells, and B cells at XCELL, CD4+ T cells at TIMER, T cell regulatory
at QUANTISEQ, monocytes at MCPCOUNTER, and macrophages
M0 at CIBERSORT, in the high-risk group (Figure 8B).

We used ssGSEA to quantify the enrichment scores of the
immune cell subsets and their associated functions for each
sample in the TCGA cohort. The results showed apparent
differences in immune cell infiltration among the different risk
groups (Figure 9A). Antigen-presenting cells such as
macrophages were more highly expressed in the high-risk group

FIGURE 5 | Evaluation of prognostic signature in the TCGA and ICGC cohorts. (A) ROC curves of the NRLs signature in the TCGA cohort. The AUCs of 1, 3, and
5 years OS were 0.745, 0.727, and 0.653. (B) ROC curves of the NRLs signature in the ICGC cohort. The AUCs of 1, 3, and 5 years OS were 0.646, 0.632, and 0.613.
(C,D) Kaplan–Meier survival curves of OS (survival probability) of patients between different risk groups in the TCGA (C) and ICGC (D) cohorts. (E,F) Scatter plot (up) and
curve plot (down) of risk score in the TCGA (E) and ICGC (F) cohorts.
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(Figure 9C). ESTIMATE is a tool that uses gene expression data to
predict tumor purity and the presence of infiltrating stromal/
immune cells in tumor tissue (Yoshihara et al., 2013). We used
the ESTIMATE algorithm to evaluate the composition of immune
cells in each sample by stromal score, immune score, estimated score,
and tumor purity; the results showed that the high-risk group had
higher stromal, immune, and estimated scores (Figure 9B).We then

analyzed the expression of HLA. HLA-C, which belongs to HLA-I
and can present endogenous tumor antigens to kill tumor cells
effectively, was less expressed in the high-risk group, while HLA-II,
such as HLA-DPB2, HLA-DQB2, HLA-DOA, and HLA-DQA2,
showed an increase in the high-risk group (Figure 9D). HLA-II is
mainly expressed on the surface of antigen-presenting cells, and we
speculated that the increased expression of HLA-II in high-risk

FIGURE 6 | Assessment of the prognostic signature. (A,C) Univariate analysis of risk score and clinical characters in the TCGA (A) and ICGC (C) cohorts. (B,D)
Multivariate analysis of risk score and clinical characters in the TCGA (B) and ICGC (D) cohorts.

FIGURE 7 | Construction and validation of nomogram. (A) The nomogram integrated the risk score and TNMstage to predict the survival rate of the 1, 3, and 5 years. (B,C)
The 1, 3, and 5 years OS calibration curves for the TCGA (B) and ICGC (C) cohorts. (D,E) The 1, 3, and 5 years ROC curves of the TCGA (D) and ICGC (E) cohorts.
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patients might be associated with increased immune cell infiltration
in a necroptotic environment.

The analysis of HLA reflected the possible differences in the
immune status and susceptibility of patients with different risk
groups to immune checkpoint blockade (ICB). Given that
heterozygosity of HLA-I can reflect the effectiveness of tumor
ICB (Chowell et al., 2018), we conducted a differential analysis of
immune checkpoints. We found that multiple immune checkpoint
proteins, including programmed cell death protein 1 (PDCD1) and
CTLA4, were highly expressed in the high-risk group (Figure 9E).

These findings suggest that patients in the high-risk group may
benefit more from ICB therapy.

Functional Enrichment Analysis of Different
Risk Groups
To explore the underlying molecular mechanisms of the different
risk groups, we performed a differential gene expression analysis
of patients in the TCGA cohort and identified 206 genes (p < 0.05,
|log2FC| > 1) (Supplementary File S3). The top 20 differentially

FIGURE 8 | Relationship between immune cells and risk score. (A) TIMER, CIBERSORT, CIBERSORT-abs, QUANTISEQ, MCP-counter, XCELL, and EPIC
algorithms were used to draw heat maps of immune cell infiltration of patients with different risk scores. (B) Correlation coefficient between immune cells and risk score.
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expressed genes are shown in a heat map in Figure 10A. The GSEA
algorithm was used to detect the main enrichment pathways. Cell
cycle and ECM receptor interaction were dominant in the high-risk
group (Figure 10B), whereas drug metabolism, cytochrome p450,
fatty acid metabolism, and peroxisome were critical pathways in
the low-risk group (all p < 0.05, FDR <0.25, |NES| > 1.5)
(Figure 10C). Immune- and metabolism-related processes
accounted for most of the top 10 results of the GO enrichment
analysis, such as xenobiotic metabolic process, fatty acid metabolic
process, and steroid metabolic process (Figure 10D). As shown in
the circle diagram of the KEGG analysis results, the top five
enriched pathways mainly involved cell metabolism, drug
metabolism, and drug sensitivity, including metabolism of
xenobiotics by cytochrome P450, drug metabolism–cytochrome
P450, retinol metabolism, bile secretion, and chemical
carcinogenesis–DNA adducts (Figure 10E).

Drug Effectiveness Analysis
Due to the limitations of systemic chemotherapy, most patients
with advanced HCC can choose local therapy based on TACE,
which delivers chemotherapy drugs to the vicinity of the tumor
(Raoul et al., 2019). The enrichment analysis presented above
showed that patients in the different risk groups may differ in
drug metabolism and sensitivity. We quantified the IC50 values of
six drugs commonly used for HCC and found that cisplatin,
doxorubicin, etoposide, sorafenib, and vinblastine had lower IC50

in the high-risk group (all p < 0.05) (Figure 11). Cisplatin,
doxorubicin, and sorafenib are the first-line drugs
recommended for treating HCC in China’s standard for
diagnosis and treatment of primary liver cancer (2022 edition)
(National Health Commission of the people’s Republic of China,
2022). The predictive model identified in this study could be a
potential predictor of chemosensitivity.

FIGURE 9 | Immune microenvironment analysis in different risk groups. (A,B) Stromal, immune, and estimate scores of patients with different risks. (C) The
ssGSEA scores of immune cells and immune functions. (D) Expression of HLAs in different risk groups. (E) The comparison of immune checkpoints between high and
low-risk groups. (ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001).
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Construction of Molecular Subtypes
We divided the TCGA cohort patients into different subtypes
based on the NMF algorithm to further explore the role of NRLs
in HCC progression. The optimal number of clusters k was
established by calculating the cluster correlation coefficient,
with k = 3 being the optimal number of clusters (Figure 12A).
A consistent NMF was performed again to define three clusters,
C1 (n = 141), C2 (n = 83), and C3 (n = 141), with an average
silhouette width of 0.84 (Figure 12C).

Consistent NMF was also performed on the validation set
(ICGC cohort), and k = 3 was the optimal number of clusters
(Figure 12B). We identified three clusters, C1 (n = 82), C2 (n =
67), and C3 (n = 82), with an average silhouette width of 0.86
(Figure 12D). The PCA analysis showed obvious distinctions in
the different two-dimensional distribution maps of the three
clusters (Figure 12E). The subtype matching model of the
TCGA and ICGC cohorts was identified through the subclass
algorithm; we determined the following: TCGA-C1 = ICGC-C2;
TCGA-C2 = ICGC-C3; and TCGA-C3 = ICGC-C1. Moreover,
the NTP algorithm suggested that the high-risk subgroup in the
TCGA cohort (k = 0.774, p < 0.001) and in the ICGC cohort (k =
0.679, p < 0.001) could better correspond to the cluster C2, with
the OS of the C2 being significantly lower than that of C1 and C3
in both cohorts (log-rank test p < 0.05, Figures 12F,G). The
clusters constructed based on the NMF algorithm and prognosis-
related NRLs showed better prediction skills concerning survival.
We believe that different molecular subtypes can provide another
insight into distinguishing patients.

Validation of the Necroptosis-Related Long
Noncoding RNAs in Hepatocellular
Carcinoma Tissues and Cell Lines
We collected 12 pairs of HCC tissues and paracancerous
tissues from the Affiliated Tumor Hospital of Nantong

University to verify the expression of the seven NRLs in the
signature. We performed RT-PCR after the extraction of total
RNA from tissues and found that three out of five high-risk
(HR > 1, Figure 3B) NRLs (BACE1-AS, SNHG3, SNHG4)
were more expressed in HCC tissues than in paracancerous
tissues (all p < 0.01, Figures 13D–F). As a protective factor, the
expression of HCG11 in HCC was lower than that in adjacent
tissues (p < 0.05, Figure 13G), which was consistent with the
results from the TCGA database. The three remaining
lncRNAs (HCG27, C2orf27A, MIR210HG) were not
significantly different (Figures 13H–J).

Next, we examined the expression of these four NRLs
(BACE1-AS, SNHG3, SNHG4, HCG11) in different drug-
sensitive HCC cell lines and liver cell lines. Among the five
drugs analyzed above (Figure 11), cisplatin, doxorubicin, and
sorafenib are commonly used for treating HCC. We selected
SNU-387, Huh7, Hep3B, and HepG2 cell lines to detect the cell
viability at different drug concentrations (Figures 13A–C).
The IC50 values are shown in Table 2. The IC50 values of the
three drugs of SNU-387 were the highest among the four cell
lines, indicating that this cell line had apparent resistance to
the commonly used drugs. RT-PCR results showed that the
expression levels of SNHG3, SNHG4, and BACE1-AS in SNU-
387 were higher than those in the other four cell lines (all p <
0.001), and the expression in normal hepatocytes was the
lowest (Figure 13K–M). The expression of HCG11 as a
protective factor was the highest in HepG2 cells, but the
expression level in other HCC cell lines, including SNU-
387, was not significantly different from that in normal
hepatocytes (Figure 13N).

DISCUSSION

Despite the variety of treatment options, OS in patients with HCC
remains poor. It is important to understand what hinders the

FIGURE 10 | Functional enrichment analysis in different risk groups. (A) The heatmap of differentially expressed genes. (B,C) GSEA of the top 5 pathways
significantly enriched in both high (B) and low-risk groups (C). (D,E) GO and KEGG enrichment analysis of differentially expressed genes.
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progress of HCC treatment. TMEmay be an essential factor in the
occurrence and development of HCC (Krishnan et al., 1985).
Some traditional grading systems, such as TNM grading and
Barcelona staging, neither reflect the TME of HCC patients nor
accurately predict the patient’s prognosis. As an important part of
TME, the infiltration by immune cells also affects the benefits of
HCC immunotherapy to a certain extent (Yu et al., 2020), with
many clinical trials of immunotherapy related to HCC having
been conducted globally (Sangro et al., 2013; Kudo et al., 2021).
However, the TME may cause an inadequate response and
limited therapeutic efficacy when using immunotherapy (El-
Khoueiry et al., 2017; Kudo et al., 2021). It is therefore
necessary to continue exploring the role of immune factors in
the treatment of HCC. It has been reported that necroptosis may

alter the TME, thereby affecting the type of liver cancer (Saeed
and Jun, 2019). However, its specific role and impact on the
prognosis of HCC patients remain unclear. In this study, a
prognostic model was constructed based on necroptosis-
related lncRNAs, and the patients were grouped into high-
and low-risk groups. We systematically investigated differences
in immune cell infiltration, immune checkpoints, HLA, and drug
sensitivity among the different subgroups and constructed HCC
molecular subtypes based on the NMF algorithm. Finally, we used
RT-PCR to verify the expression levels of NRLs in tissues
and cells.

We analyzed the expression of 67 NRGs in HCC, of which
12 of 19 screened were found to be upregulated and seven
were downregulated. Nineteen NRGs and all annotated

FIGURE 11 | Drug effectiveness of different risk groups. (A)Cisplatin. (B) Doxorubicin. (C) Etoposide. (D)Mitomycin C. (E) Sorafenib. (F) Vinblastine. Five of the six
drugs showed IC50 differences (p < 0.05).
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lncRNAs were subsequently analyzed, and 508 NRLs were
identified. We constructed the prognostic signature
containing seven NRLs and validated it using an external
cohort. The biological function of these NRLs is associated
with the progression of HCC. BACE1-AS can promote
abnormal proliferation, cell cycle progression, migration,
invasion, and apoptosis of HCC through the miR-214-3p/
APLN axis (Tian et al., 2021). In HCC cell lines, SNHG3
overexpression promotes the proliferation, migration, and
EMT, and inhibits apoptosis (Zhao et al., 2019), while higher
levels of SNHG4 are more likely to indicate poor prognosis in
liver cancer (Jiao et al., 2020). Through transcriptomic
analysis, some studies have suggested that C2orf27A can
affect the resistance of HCC cells to sorafenib through
immune infiltration (Yuan et al., 2021), which is consistent
with our findings. MIR210HG can be used as a glycolysis-
related lncRNA to influence the progression of HCC (Xia

et al., 2021). We plotted nomograms to predict 1-, 3-, and 5-
year OS in HCC patients to intuitively use this predictive
model. It was clear from the ROC curves that the predictive
model built with NRLs was accurate and reliable.

After measuring the single-cell transcriptomic profiles of HCC
biological samples from 19 patients, Wang’s team found that the
heterogeneity of HCC TME significantly affected the treatment
response and prognosis (Ma et al., 2019). Therefore, it is
necessary to deeply understand the role of TME in HCC. It
has been shown that necroptosis is involved in CD4+

T cell–mediated endothelial cell death (Kwok et al., 2017). Our
results showed that the risk score positively correlated with the
CD4+ T cell infiltration level, given that the high-risk group had
more Th2 and Tregs. We speculate that necroptosis may promote
increased CD4+ T cells in the TME. Moreover, the risk score
positively correlated with macrophage levels, and the high-risk
group had more macrophages, which may have been caused by

FIGURE 12 | Different molecular subtypes identified by risk signature. (A,B) Establish the optimal cluster number k value in the TCGA (A) and ICGC (B) cohorts.
(C,D) Patients in the TCGA (C) and ICGC (D) cohorts were divided into three clusters using the NMF clustering algorithm. (E) The PCA of clusters. (F,G) Kaplan–Meier
survival curves of OS in three clusters.
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increased activation of RIPK3 in the inflammatory environment
formed by necrotizing apoptosis (Hao et al., 2021). There were
fewer NK cells and mast cells in the high-risk group, and the
mechanism is unknown, which needs further exploration.
Immune cells and stromal cells are two major non-tumor
components of TME that can modulate the sensitivity of
immunotherapy by affecting tumor purity. Low purity may be

linked to increased immune evasion and poor prognosis (Gong
et al., 2020). We found that the high-risk group had higher
immune, stromal, and lower tumor purity, which indicates that
patients in the high-risk group may benefit more from
immunotherapy. HLA-I is plays an essential role in the
cytotoxic T-lymphocyte–mediated response, presenting
antigens to CD8+ T cells (Durgeau et al., 2018). The ability of

FIGURE 13 | Expression of NRLs in HCC patients and different drug-sensitive cell lines. (A–C)Cell viability in the four HCC cell lines after cisplatin, doxorubicin, and
sorafenib treatment for 48 h. Data are presented as themean ± standard deviation (n = 5). (D–J)Relative expression of seven NRLs in HCC patients. (K–N) Expression of
BACE1-AS, SNHG3, SNHG4, and HCG11 in cell lines. (ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; student t-test).

TABLE 2 | IC50 values for cisplatin, doxorubicin, and sorafenib treatment in HCC cell lines.

Cell line IC50 values of drugs (μM)a

Cisplatin Doxorubicin Sorafenib

SNU-387 17.047 (15.25–18.844) 1.055 (0.941–1.17) 21.496 (19.884–23.108)
Huh7 13.409 (11.857–14.962) 0.547 (0.488–0.606) 7.571 (6.577–8.566)
Hep3B 6.7 (5.631–7.768) 0.241 (0.197–0.284) 10.878 (9.846–11.909)
HepG2 12.174 (10.89–13.457) 0.326 (0.309–0.343) 11.971 (10.959–12.984)

aIC50 values indicate the cisplatin, doxorubicin, and sorafenib concentration [μM; mean (95% CI)].
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HLA-I class molecules to present antigens is related to the degree
of heterozygosity of HLA alleles (Chowell et al., 2019). We found
an interesting phenomenon where HLA-DPB2, HLA-DQB2,
HLA-DOA, and HLA-DQA2, which belong to HLA-II,
showed increased expression in the high-risk group, while
HLA-C, which belongs to HLA-I, showed decreased
expression. In this study, we only found that HLA-C
expression was decreased in high-risk patients; we cannot
speculate whether high-risk patients have a decrease in ICB
treatment sensitivity, and this topic needs further research.
However, most of the immune checkpoint proteins, including
PDCD1 and CTLA4, were highly expressed in the high-risk
group, which may suggest that the high-risk group may have
better ICB treatment effects.

GSEA analysis showed that the high-risk group was mainly
enriched in pathways such as cell cycle and ECM receptor
interaction. Necroptosis is a specialized form of cell death,
which interacts with the cell cycle via interferons (Frank et al.,
2019). The ECM–receptor interaction pathway regulates the
processes of tumor shedding, adhesion, movement, and
hyperplasia (Bao et al., 2019). Through specific key mediators
(Gong et al., 2019), necroptosis has been identified to promote
tumor metastasis and progression (Gong et al., 2019). These
findings demonstrate the credibility of GSEA analysis.
Significant enrichment in cellular metabolic pathways, including
fatty acid metabolism, steroid metabolism, and drug metabolism,
was found in the GO and KEGG analyses. It has been reported that
ceramides and very long-chain fatty acids accumulate during
necroptosis (Parisi et al., 2017), which is consistent with our
pathway analysis results. Cisplatin belongs to platinum, which
can covalently bind with DNA, inhibit DNA replication, and
promote cell cycle arrest. Both cisplatin and doxorubicin
upregulate RIPK3, which binds and phosphorylates calmodulin
kinase II (CaMKII), thereby regulating the opening of the
mitochondrial permeability transition pore (mPTP) and leading
to necroptosis (Christidi and Brunham, 2021; Sazonova et al.,
2021). Combined with our results, patients in the high-risk
group may be more sensitive to cisplatin and doxorubicin.
Sorafenib is a protein kinase inhibitor with activity inhibition of
many protein kinases, including vascular endothelial growth factor
receptor (VEGFR), platelet-derived growth factor receptor
(PDGFR), and Raf protein kinase. Heat shock protein 90α
(HSP90α) promotes sorafenib resistance in HCC by inhibiting
necroptosis under hypoxia (Liao et al., 2021). Finally, we detected
NRLs in 12 pairs of tissues. Contrary to our results and TCGA
analysis, some studies have reported higher expression of HCG11
in HCC than in adjacent tissues (Xu et al., 2017; Li et al., 2019),
which may be caused by differences between different regions and
ethnic groups. The expression levels of three high-risk lncRNAs,
BACE1-AS, SNHG3, and SNHG4, were significantly higher in
SNU-387 than in other cell lines, including normal hepatocytes. It
was confirmed from the cellular and tissue levels that the lncRNAs
included in the signature may be related to the occurrence,
development, and drug resistance of HCC.

This study analyzed the model’s predictive performance from
various perspectives, including immunotherapy sensitivity,
chemotherapy drug sensitivity, and OS. lncRNA was for the

first time combined with necroptosis in HCC, with consensus
clustering being used for HCC with the assistance of the NMF
algorithm. Compared with other necroptosis-related prediction
models (Wang and Liu, 2021; Zhao et al., 2021), we used ICGC
data for external validation. HCC cells with different drug
sensitivity were used for in vitro validation. We compared the
C-index values of several latest prediction signatures in HCC with
ours (Lin et al., 2022; Miao et al., 2022; Ye et al., 2022; Zhao et al.,
2022; Zhou et al., 2022) (Supplementary Figure S2). Genes in the
prediction signature are listed in Supplementary File S4. Our
signature has the highest C-index of the five signatures included,
indicating that it performs better in terms of prediction.

There are still several limitations in our study. The primary
datasets were obtained from public databases, and more real-
world data are needed to validate the clinical value of the
signature. Moreover, we only compared the IC50 between the
high-risk and low-risk groups on several commonly used drugs
due to insufficient data on GDSC. This study has not yet
elucidated how lncRNA regulates necroptosis in HCC, which
requires further research.

CONCLUSION

We constructed a necroptosis-related prognostic signature that
can be used to assess the prognosis and TME status of HCC
patients. Combined with preliminary validation at the tissue and
cellular levels, the signature could provide an option for
individualized patient treatment and prognostic assessment.
The potential relationship between necroptosis and lncRNA
may be a key to immunotherapy for HCC, but the
mechanisms deserve further investigation.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of the Nantong Tumor
Hospital. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

CC and YW contributed equally to this study. CC and YW
contributed to the conceptualization; KC and ZX performed the
data analyses; CC wrote the manuscript; XL and CZ reviewed and
edited the manuscript; HZ and AS contributed to the project
administration and funding acquisition. All authors have read
and agreed to the published version of the manuscript.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 89850716

Chen et al. Necroptosis and LncRNA in HCC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FUNDING

This study was supported by the Scientific Research Project of
“333 Project” in Jiangsu Province (BRA2019030) and Nantong
Science and Technology Foundation grant (MS22019008).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.898507/
full#supplementary-material

REFERENCES

Anwanwan, D., Singh, S. K., Singh, S., Saikam, V., and Singh, R. (2020). Challenges
in Liver Cancer and Possible Treatment Approaches. Biochimica Biophysica
Acta (BBA) - Rev. Cancer 1873 (1), 188314. doi:10.1016/j.bbcan.2019.188314

Bao, Y., Wang, L., Shi, L., Yun, F., Liu, X., Chen, Y., et al. (2019). Transcriptome
Profiling Revealed Multiple Genes and ECM-Receptor Interaction Pathways
that May Be Associated with Breast Cancer. Cell Mol. Biol. Lett. 24, 38. doi:10.
1186/s11658-019-0162-0

Chen, X., Cheng, B., Dai, D., Wu, Y., Feng, Z., Tong, C., et al. (2021). Heparanase
Induces Necroptosis of Microvascular Endothelial Cells to Promote the
Metastasis of Hepatocellular Carcinoma. Cell Death Discov. 7 (1), 33. doi:10.
1038/s41420-021-00411-5

Chowell, D., Krishna, C., Pierini, F., Makarov, V., Rizvi, N. A., Kuo, F., et al. (2019).
Evolutionary Divergence of HLA Class I Genotype Impacts Efficacy of Cancer
Immunotherapy. Nat. Med. 25 (11), 1715–1720. doi:10.1038/s41591-019-
0639-4

Chowell, D., Morris, L. G. T., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov,
V., et al. (2018). Patient HLA Class I Genotype Influences Cancer Response to
Checkpoint Blockade Immunotherapy. Science 359 (6375), 582–587. doi:10.
1126/science.aao4572

Christidi, E., and Brunham, L. R. (2021). Regulated Cell Death Pathways in
Doxorubicin-Induced Cardiotoxicity. Cell Death Dis. 12 (4), 339. doi:10.
1038/s41419-021-03614-x

Degterev, A., Hitomi, J., Germscheid, M., Ch’en, I. L., Korkina, O., Teng, X., et al.
(2008). Identification of RIP1 Kinase as a Specific Cellular Target of
Necrostatins. Nat. Chem. Biol. 4 (5), 313–321. doi:10.1038/nchembio.83

Durgeau, A., Virk, Y., Corgnac, S., andMami-Chouaib, F. (2018). Recent Advances
in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy.
Front. Immunol. 9, 14. doi:10.3389/fimmu.2018.00014

El-Khoueiry, A. B., Sangro, B., Yau, T., Crocenzi, T. S., Kudo, M., Hsu, C., et al.
(2017). Nivolumab in Patients with Advanced Hepatocellular Carcinoma
(CheckMate 040): an Open-Label, Non-comparative, Phase 1/2 Dose
Escalation and Expansion Trial. Lancet 389 (10088), 2492–2502. doi:10.
1016/s0140-6736(17)31046-2

Frank, T., Tuppi, M., Hugle, M., Dötsch, V., van Wijk, S. J. L., and Fulda, S. (2019).
Cell Cycle Arrest in Mitosis Promotes Interferon-Induced Necroptosis. Cell
Death Differ. 26 (10), 2046–2060. doi:10.1038/s41418-019-0298-5

Fu, Y., Liu, S., Zeng, S., and Shen, H. (2019). From Bench to Bed: the Tumor
Immune Microenvironment and Current Immunotherapeutic Strategies for
Hepatocellular Carcinoma. J. Exp. Clin. Cancer Res. 38 (1), 396. doi:10.1186/
s13046-019-1396-4

Geeleher, P., Cox, N. J., and Huang, R. (2014). Clinical Drug Response Can Be
Predicted Using Baseline Gene Expression Levels and In Vitro Drug Sensitivity
in Cell Lines. Genome Biol. 15 (3), R47. doi:10.1186/gb-2014-15-3-r47

Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., et al. (2019). The Role of
Necroptosis in Cancer Biology and Therapy. Mol. Cancer 18 (1), 100. doi:10.
1186/s12943-019-1029-8

Gong, Z., Zhang, J., and Guo, W. (2020). Tumor Purity as a Prognosis and
Immunotherapy Relevant Feature in Gastric Cancer. Cancer Med. 9 (23),
9052–9063. doi:10.1002/cam4.3505

Green, D. R. (2019). The Coming Decade of Cell Death Research: Five Riddles. Cell
177 (5), 1094–1107. doi:10.1016/j.cell.2019.04.024

Hao, Q., Idell, S., and Tang, H. (2021). M1 Macrophages Are More Susceptible to
Necroptosis. J. Cell Immunol. 3 (2), 97–102. doi:10.33696/immunology.3.084

Harari-Steinfeld, R., Gefen, M., Simerzin, A., Zorde-Khvalevsky, E., Rivkin, M.,
Ella, E., et al. (2021). The lncRNAH19-DerivedMicroRNA-675 Promotes Liver
Necroptosis by Targeting FADD. Cancers (Basel) 13 (3). doi:10.3390/
cancers13030411

Jiao, Y., Li, Y., Jia, B., Chen, Q., Pan, G., Hua, F., et al. (2020). The Prognostic Value
of lncRNA SNHG4 and its Potential Mechanism in Liver Cancer. Biosci. Rep. 40
(1). doi:10.1042/BSR20190729

Krishnan, K. R. R., France, R. D., and Houpt, J. L. (1985). Chronic Low Back Pain
and Depression. Psychosomatics 26 (4), 299–302. doi:10.1016/s0033-3182(85)
72861-7

Kudo, M., Lim, H. Y., Cheng, A.-L., Chao, Y., Yau, T., Ogasawara, S., et al. (2021).
Pembrolizumab as Second-Line Therapy for Advanced Hepatocellular
Carcinoma: A Subgroup Analysis of Asian Patients in the Phase
3 KEYNOTE-240 Trial. Liver Cancer 10 (3), 275–284. doi:10.1159/000515553

Kwok, C., Pavlosky, A., Lian, D., Jiang, J., Huang, X., Yin, Z., et al. (2017).
Necroptosis Is Involved in CD4+ T Cell-Mediated Microvascular
Endothelial Cell Death and Chronic Cardiac Allograft Rejection.
Transplantation 101 (9), 2026–2037. doi:10.1097/tp.0000000000001578

Li,M. L., Zhang, Y., andMa, L. T. (2019). LncRNAHCG11Accelerates the Progression
of Hepatocellular Carcinoma via miR-26a-5p/ATG12 axis. Eur. Rev. Med.
Pharmacol. Sci. 23 (24), 10708–10720. doi:10.26355/eurrev_201912_19771

Liao, Y., Yang, Y., Pan, D., Ding, Y., Zhang, H., Ye, Y., et al. (2021). HSP90alpha
Mediates Sorafenib Resistance in Human Hepatocellular Carcinoma by
Necroptosis Inhibition under Hypoxia. Cancers (Basel) 13 (2). doi:10.3390/
cancers13020243

Lin, Z., Xu, Q., Song, X., Zeng, Y., Zeng, L., Zhao, L., et al. (2022). Comprehensive
Analysis Identified Mutation-Gene Signature Impacts the Prognosis through
Immune Function in Hepatocellular Carcinoma. Front. Oncol. 12, 748557.
doi:10.3389/fonc.2022.748557

Ma, L., Hernandez, M. O., Zhao, Y., Mehta, M., Tran, B., Kelly, M., et al. (2019).
Tumor Cell Biodiversity Drives Microenvironmental Reprogramming in Liver
Cancer. Cancer Cell 36 (4), 418–430. doi:10.1016/j.ccell.2019.08.007

Miao, D., Xu, Q., Zeng, Y., Zhao, R., Song, X., Chen, Z., et al. (2022). Establishment
and Validation of a Peroxisome-Related Gene Signature for Prognostic
Prediction and Immune Distinction in Hepatocellular Carcinoma. J. Cancer
13 (5), 1418–1435. doi:10.7150/jca.65080

Mizukoshi, E., and Kaneko, S. (2019). Immune Cell Therapy for Hepatocellular
Carcinoma. J. Hematol. Oncol. 12 (1), 52. doi:10.1186/s13045-019-0742-5

National Health Commission of the people’s Republic of China (2022). Standard
for Diagnosis and Treatment of Primary Liver Cancer (2022 Edition). J. Clin.
Hepatology 38 (2), 288–303.

Parisi, L. R., Li, N., and Atilla-Gokcumen, G. E. (2017). Very Long Chain Fatty
Acids Are Functionally Involved in Necroptosis. Cell Chem. Biol. 24 (12),
1445–1454. doi:10.1016/j.chembiol.2017.08.026

Raoul, J.-L., Forner, A., Bolondi, L., Cheung, T. T., Kloeckner, R., and de Baere, T.
(2019). Updated Use of TACE for Hepatocellular Carcinoma Treatment: How
and when to Use it Based on Clinical Evidence. Cancer Treat. Rev. 72, 28–36.
doi:10.1016/j.ctrv.2018.11.002

Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G., and Hacohen, N. (2015). Molecular
and Genetic Properties of Tumors Associated with Local Immune Cytolytic
Activity. Cell 160 (1-2), 48–61. doi:10.1016/j.cell.2014.12.033

Saeed,W. K., and Jun, D.W. (2019). Viewpoint: Necroptosis Influences the Type of
Liver Cancer via Changes of Hepatic Microenvironment. Hepatobiliary Surg.
Nutr. 8 (5), 549–551. doi:10.21037/hbsn.2019.04.15

Sangro, B., Gomez-Martin, C., de la Mata, M., Iñarrairaegui, M., Garralda, E.,
Barrera, P., et al. (2013). A Clinical Trial of CTLA-4 Blockade with
Tremelimumab in Patients with Hepatocellular Carcinoma and Chronic
Hepatitis C. J. Hepatology 59 (1), 81–88. doi:10.1016/j.jhep.2013.02.022

Sazonova, E. V., Kopeina, G. S., Imyanitov, E. N., and Zhivotovsky, B. (2021).
Platinum Drugs and Taxanes: Can We Overcome Resistance? Cell Death
Discov. 7 (1), 155. doi:10.1038/s41420-021-00554-5

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization Paths
for Cox’s Proportional Hazards Model via Coordinate Descent. J. Stat. Softw. 39
(5), 1–13. doi:10.18637/jss.v039.i05

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 89850717

Chen et al. Necroptosis and LncRNA in HCC

https://www.frontiersin.org/articles/10.3389/fgene.2022.898507/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.898507/full#supplementary-material
https://doi.org/10.1016/j.bbcan.2019.188314
https://doi.org/10.1186/s11658-019-0162-0
https://doi.org/10.1186/s11658-019-0162-0
https://doi.org/10.1038/s41420-021-00411-5
https://doi.org/10.1038/s41420-021-00411-5
https://doi.org/10.1038/s41591-019-0639-4
https://doi.org/10.1038/s41591-019-0639-4
https://doi.org/10.1126/science.aao4572
https://doi.org/10.1126/science.aao4572
https://doi.org/10.1038/s41419-021-03614-x
https://doi.org/10.1038/s41419-021-03614-x
https://doi.org/10.1038/nchembio.83
https://doi.org/10.3389/fimmu.2018.00014
https://doi.org/10.1016/s0140-6736(17)31046-2
https://doi.org/10.1016/s0140-6736(17)31046-2
https://doi.org/10.1038/s41418-019-0298-5
https://doi.org/10.1186/s13046-019-1396-4
https://doi.org/10.1186/s13046-019-1396-4
https://doi.org/10.1186/gb-2014-15-3-r47
https://doi.org/10.1186/s12943-019-1029-8
https://doi.org/10.1186/s12943-019-1029-8
https://doi.org/10.1002/cam4.3505
https://doi.org/10.1016/j.cell.2019.04.024
https://doi.org/10.33696/immunology.3.084
https://doi.org/10.3390/cancers13030411
https://doi.org/10.3390/cancers13030411
https://doi.org/10.1042/BSR20190729
https://doi.org/10.1016/s0033-3182(85)72861-7
https://doi.org/10.1016/s0033-3182(85)72861-7
https://doi.org/10.1159/000515553
https://doi.org/10.1097/tp.0000000000001578
https://doi.org/10.26355/eurrev_201912_19771
https://doi.org/10.3390/cancers13020243
https://doi.org/10.3390/cancers13020243
https://doi.org/10.3389/fonc.2022.748557
https://doi.org/10.1016/j.ccell.2019.08.007
https://doi.org/10.7150/jca.65080
https://doi.org/10.1186/s13045-019-0742-5
https://doi.org/10.1016/j.chembiol.2017.08.026
https://doi.org/10.1016/j.ctrv.2018.11.002
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.21037/hbsn.2019.04.15
https://doi.org/10.1016/j.jhep.2013.02.022
https://doi.org/10.1038/s41420-021-00554-5
https://doi.org/10.18637/jss.v039.i05
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Snyder, A. G., Hubbard, N. W., Messmer, M. N., Kofman, S. B., Hagan, C. E.,
Orozco, S. L., et al. (2019). Intratumoral Activation of the Necroptotic Pathway
Components RIPK1 and RIPK3 Potentiates Antitumor Immunity. Sci.
Immunol. 4 (36). doi:10.1126/sciimmunol.aaw2004

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 71
(3), 209–249. doi:10.3322/caac.21660

Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P., and Kroemer, G. (2019). The
Molecular Machinery of Regulated Cell Death. Cell Res. 29 (5), 347–364. doi:10.
1038/s41422-019-0164-5

Tao, H., Liu, X., Liu, X., Liu, W., Wu, D., Wang, R., et al. (2019). LncRNA MEG3
Inhibits Trophoblast Invasion and Trophoblast-mediated VSMC Loss in
Uterine Spiral Artery Remodeling. Mol. Reprod. Dev. 86 (6), 686–695.
doi:10.1002/mrd.23147

Tian, Q., Yan, X., Yang, L., Liu, Z., Yuan, Z., and Zhang, Y. (2021). Long Non-
coding RNA BACE1-AS Plays an Oncogenic Role in Hepatocellular Carcinoma
Cells through miR-214-3p/APLN axis. Acta Biochim. Biophys. Sin. (Shanghai).
53 (11), 1538–1546. doi:10.1093/abbs/gmab134

Tibshirani, R. (1997). The Lasso Method for Variable Selection in the Cox Model.
Stat. Med. 16 (4), 385–395. doi:10.1002/(sici)1097-0258(19970228)16:4<385:
aid-sim380>3.0.co;2-3

Wang, C., Ke, S., Li, M., Lin, C., Liu, X., and Pan, Q. (2020). Downregulation of
LncRNA GAS5 Promotes Liver Cancer Proliferation and Drug Resistance by
Decreasing PTEN Expression. Mol. Genet. Genomics 295 (1), 251–260. doi:10.
1007/s00438-019-01620-5

Wang, N., and Liu, D. (2021). Identification and Validation a Necroptosis-related
Prognostic Signature and Associated Regulatory Axis in Stomach
Adenocarcinoma. Ott Vol. 14, 5373–5383. doi:10.2147/ott.s342613

Werthmöller, N., Frey, B., Wunderlich, R., Fietkau, R., and Gaipl, U. S. (2015).
Modulation of Radiochemoimmunotherapy-Induced B16 Melanoma Cell
Death by the Pan-Caspase Inhibitor zVAD-Fmk Induces Anti-tumor
Immunity in a HMGB1-, Nucleotide- and T-cell-dependent Manner. Cell
Death Dis. 6, e1761. doi:10.1038/cddis.2015.129

Xia, X., Zhang, H., Xia, P., Zhu, Y., Liu, J., Xu, K., et al. (2021). Identification of
Glycolysis-Related lncRNAs and the Novel lncRNA WAC-AS1 Promotes
Glycolysis and Tumor Progression in Hepatocellular Carcinoma. Front.
Oncol. 11, 733595. doi:10.3389/fonc.2021.733595

Xu, Y., Zheng, Y., Liu, H., and Li, T. (2017). Modulation of IGF2BP1 by Long Non-
coding RNA HCG11 Suppresses Apoptosis of Hepatocellular Carcinoma Cells
via MAPK Signaling Transduction. Int. J. Oncol. 51 (3), 791–800. doi:10.3892/
ijo.2017.4066

Ye, W., Shi, Z., Zhou, Y., Zhang, Z., Zhou, Y., Chen, B., et al. (2022). Autophagy-
Related Signatures as Prognostic Indicators for Hepatocellular Carcinoma.
Front. Oncol. 12, 654449. doi:10.3389/fonc.2022.654449

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring Tumour Purity and Stromal and Immune
Cell Admixture from Expression Data. Nat. Commun. 4, 2612. doi:10.1038/
ncomms3612

Yu, S., Wang, Y., Hou, J., Li, W., Wang, X., Xiang, L., et al. (2020). Tumor-
infiltrating Immune Cells in Hepatocellular Carcinoma: Tregs Is Correlated
with Poor Overall Survival. PLoS One 15 (4), e0231003. doi:10.1371/journal.
pone.0231003

Yuan, W., Tao, R., Huang, D., Yan, W., Shen, G., and Ning, Q. (2021).
Transcriptomic Characterization Reveals Prognostic Molecular Signatures of
Sorafenib Resistance in Hepatocellular Carcinoma. Aging 13 (3), 3969–3993.
doi:10.18632/aging.202365

Zhang, P. F., Wang, F., Wu, J., Wu, Y., Huang, W., Liu, D., et al. (2019). LncRNA
SNHG3 Induces EMT and Sorafenib Resistance by Modulating the miR-128/
CD151 Pathway in Hepatocellular Carcinoma. J. Cell. Physiology 234 (3),
2788–2794. doi:10.1002/jcp.27095

Zhang, Y., Li, Z., Chen, M., Chen, H., Zhong, Q., Liang, L., et al. (2020). lncRNA
TCL6 Correlates with Immune Cell Infiltration and Indicates Worse Survival in
Breast Cancer. Breast Cancer 27 (4), 573–585. doi:10.1007/s12282-020-01048-5

Zhang, Y., Liu, Q., and Liao, Q. (2020). Long Noncoding RNA: a Dazzling Dancer
in Tumor Immune Microenvironment. J. Exp. Clin. Cancer Res. 39 (1), 231.
doi:10.1186/s13046-020-01727-3

Zhao, Q., Wu, C., Wang, J., Li, X., Fan, Y., Gao, S., et al. (2019). LncRNA SNHG3
Promotes Hepatocellular Tumorigenesis by Targeting miR-326. Tohoku J. Exp.
Med. 249 (1), 43–56. doi:10.1620/tjem.249.43

Zhao, Y., Song, Q., Xu, F., Zhou, Y., Zuo, X., and Zhang, Z. (2022). Pyroptosis-
Related Risk Signature Exhibits Distinct Prognostic, Immune, and Therapeutic
Landscapes in Hepatocellular Carcinoma. Front. Genet. 13, 823443. doi:10.
3389/fgene.2022.823443

Zhao, Z., Liu, H., Zhou, X., Fang, D., Ou, X., Ye, J., et al. (2021). Necroptosis-Related
lncRNAs: Predicting Prognosis and the Distinction between the Cold and Hot
Tumors in Gastric Cancer. J. Oncol. 2021, 6718443. doi:10.1155/2021/6718443

Zhou, Z., Wang, T., Du, Y., Deng, J., Gao, G., and Zhang, J. (2022). Identification of a
Novel Glycosyltransferase Prognostic Signature inHepatocellular Carcinoma Based
on LASSO Algorithm. Front. Genet. 13, 823728. doi:10.3389/fgene.2022.823728

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Chen, Wu, Chen, Xia, Liu, Zhang, Zhao and Shen. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 89850718

Chen et al. Necroptosis and LncRNA in HCC

https://doi.org/10.1126/sciimmunol.aaw2004
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1002/mrd.23147
https://doi.org/10.1093/abbs/gmab134
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385:aid-sim380>3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385:aid-sim380>3.0.co;2-3
https://doi.org/10.1007/s00438-019-01620-5
https://doi.org/10.1007/s00438-019-01620-5
https://doi.org/10.2147/ott.s342613
https://doi.org/10.1038/cddis.2015.129
https://doi.org/10.3389/fonc.2021.733595
https://doi.org/10.3892/ijo.2017.4066
https://doi.org/10.3892/ijo.2017.4066
https://doi.org/10.3389/fonc.2022.654449
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1371/journal.pone.0231003
https://doi.org/10.1371/journal.pone.0231003
https://doi.org/10.18632/aging.202365
https://doi.org/10.1002/jcp.27095
https://doi.org/10.1007/s12282-020-01048-5
https://doi.org/10.1186/s13046-020-01727-3
https://doi.org/10.1620/tjem.249.43
https://doi.org/10.3389/fgene.2022.823443
https://doi.org/10.3389/fgene.2022.823443
https://doi.org/10.1155/2021/6718443
https://doi.org/10.3389/fgene.2022.823728
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Identification and Validation of Necroptosis-Related LncRNA Signature in Hepatocellular Carcinoma for Prognosis Estimation  ...
	Introduction
	Materials and Methods
	Datasets and Preprocessing
	Construction and Validation of Prognostic Signature
	Immunology and Cluster Analysis
	Functional Enrichment Analysis
	Drug Sensitivity Analysis
	Cell Lines and Culture Conditions
	Cell Viability and Drug Sensitivity
	Quantitative Real-Time PCR

	Results
	The Landscape of Necroptosis-Related Genes in The Cancer Genome Atlas Cohort
	Identification and Validation of Necroptosis-Related Long Noncoding RNAs
	Construction of the Risk Signature
	Validation of the Risk Signature
	Construction of a Nomogram
	Immune Phenotype Landscape in the Tumor Microenvironment of Hepatocellular Carcinoma
	Functional Enrichment Analysis of Different Risk Groups
	Drug Effectiveness Analysis
	Construction of Molecular Subtypes
	Validation of the Necroptosis-Related Long Noncoding RNAs in Hepatocellular Carcinoma Tissues and Cell Lines

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


