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Whether in meta-analysis or single experiments, selecting results based on statistical
significance leads to overestimated effect sizes, impeding falsification. We critique a
quantitative synthesis that used significance to score and select previously published
effects for situation awareness-performance associations (Endsley, 2019). How much
does selection using statistical significance quantitatively impact results in a meta-
analytic context? We evaluate and compare results using significance-filtered effects
versus analyses with all effects as-reported. Endsley reported high predictiveness scores
and large positive mean correlations but used atypical methods: the hypothesis was
used to select papers and effects. Papers were assigned the maximum predictiveness
scores if they contained at-least-one significant effect, yet most papers reported multiple
effects, and the number of non-significant effects did not impact the score. Thus, the
predictiveness score was rarely less than the maximum. In addition, only significant
effects were included in Endsley’s quantitative synthesis. Filtering excluded half of all
reported effects, with guaranteed minimum effect sizes based on sample size. Results
for filtered compared to as-reported effects clearly diverged. Compared to the mean of
as-reported effects, the filtered mean was overestimated by 56%. Furthermore, 92% (or
222 out of 241) of the as-reported effects were below the mean of filtered effects. We
conclude that outcome-dependent selection of effects is circular, predetermining results
and running contrary to the purpose of meta-analysis. Instead of using significance to
score and filter effects, meta-analyses should follow established research practices.

Keywords: significance filter, selection bias, p-hacking, meta-analysis, confirmation bias, situation awareness,
performance, falsification
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INTRODUCTION

The goal of meta-analysis is the objective quantitative synthesis of
effect sizes from the relevant literature (Mulrow, 1994; Borenstein
et al., 2009; Cooper et al., 2009, 2019; Goldacre, 2010; Gurevitch
et al., 2018; Corker, 2019). Individual experiments vary in sample
size, methodology, measures, and quality, and their results may
conflict. Meta-analysis summarizes the magnitude, direction,
and variation of effects with potentially greater generalizability
than separate studies, and with less bias than the qualitative
interpretations in narrative reviews. Glass (2015) recounts that
his original motivation for inventing meta-analysis was to
provide a more objective alternative to biased narrative reviews in
psychology. In particular, Glass was concerned about reviews that
used arbitrary criteria such as statistical significance to cherry-
pick desired results and exclude undesired results.

In general, selecting results based on statistical significance
(i.e., including only results reaching a specified p-value) leads
to overestimated effect sizes (Lane and Dunlap, 1978; Hedges,
1984; Gelman and Carlin, 2014; Vasishth et al., 2018). Filtering
effects using statistical significance1 distorts results and impedes
falsification (Kriegeskorte et al., 2009; Vul et al., 2009; Ioannidis
et al., 2014; Wasserstein and Lazar, 2016; Nelson et al., 2018).
Significance filtering in meta-analysis is even more problematic
than in single experiments because meta-analysis is used for
drawing overarching conclusions across relevant literature.
Vosgerau et al. (2019) warn that, “. . .if a meta-analysis is infused
with even a modicum of selective reporting, it becomes an invalid
and dangerously misleading tool” (p. 1630).

Here, we critique Endsley’s (2019) use of statistical
significance to score and filter “relevant” results from previously
published papers in a meta-analytic context. Endsley’s work
synthesized multiple aspects (e.g., sensitivity, intrusiveness, and
predictiveness for performance) of a cognitive construct called
situation awareness (SA; Endsley, 1995a,b, 2015a; Tenney and
Pew, 2006). In this critique, we focus on “predictiveness,” which
was assessed through SA-performance associations.

Situation awareness can be generally summarized as “knowing
what is going on” (Endsley, 1995b, p. 36). More formally, SA
is often operationalized with three levels: “. . . the perception of
elements in the environment within a volume of time and space,
the comprehension of their meaning, and the projection of their
status in the near future” (Endsley, 1995b, p. 36). One widely
used theory specifies that SA is probabilistically linked (Endsley,
2000) and even critical to performance (Endsley, 2015a). Thus
improving SA is posited to also improve performance (Endsley
and Jones, 2011), and SA is often used on its own to assess
the effectiveness of different types of training and systems
designs (e.g., automation, displays, and interfaces; Endsley,
2019). However, some researchers have raised concerns that
SA may be circular and perhaps too vague (Flach, 1995), and

1Selection using statistical significance, which we also refer to as significance
filtering and filtering, has many other terms. It is also called the significance filter,
data dredging, fishing, double dipping, cherry-picking, and p-hacking (Nuzzo,
2014; Aschwanden, 2019). Use of the term p-hacking has been criticized and is
controversial, but the term is now widely used inside and even outside of science
(Aschwanden, 2019).

that SA’s theoretical relationship to performance may even be
unfalsifiable (Dekker and Hollnagel, 2004); for responses see
Endsley (2015a,b).

A clear way to quantitatively test these diverging perspectives
of SA’s validity, or associations with performance, would be
an objective meta-analysis of the relevant empirical literature
based on a systematic review. While Endsley (2019) does
provide a synthesis of papers reporting SA-performance
associations, clear inclusion/exclusion criteria were not specified
(see Supplementary Material 1.1), and the analyses were
conducted using highly unconventional methods that relied upon
significance filtering to score and select the SA-performance
associations reported in the literature. Endsley explains the
methods as follows:

“Not all SA is relevant to all performance measures.
Furthermore, most studies are limited in the number of
performance measures assessed, increasing the likelihood that
some SA metrics may not have the relevant performance metrics
for comparison. Therefore, this meta-analysis assesses whether
any SA measure was predictive of any performance measure in
each study [emphasis added].” (p. 7)

These methods produced the following two metrics:

(1) Predictiveness score. This was an overall score assigned to
each paper based on the reporting of at-least-one significant
(or marginal) effect reported in the paper using one-tailed
p-values for positive correlations:

(a) Score of +1: There was at least one significant effect
(p < 0.05; directional r > 0) reported in the paper.

(b) Score of +0.5: There were no significant effects, but
there was at least one marginally significant effect
(p < 0.10; directional r > 0) reported.

(c) Score of 0: Only assigned when all reported effects in the
paper were non-significant (p ≥ 0.10; directional null
for non-positive effects r ≤ 0).

The predictiveness score represents an unorthodox form of
a vote-counting procedure, which even in its standard form
is no longer recommended. It is particularly problematic
here because the majority of included papers reported
multiple effects. Traditional or typical vote-counting is for a
single effect size per paper: each predicted significant effect
receives +1, each non-significant effect receives 0, and
each significant effect opposite to the prediction receives
−1 (e.g., Bushman and Wang, 2009). In contrast, Endsley
(2019) uses an atypical at-least-one criteria vote-counting
method2. For example, a paper reporting 10 effects would

2Endsley (2019) states that this approach was used by Vidulich (2000), but this
does not seem to be the case. While Vidulich performed vote-counting on papers
with multiple effects, in each paper all effects were counted and then a single score
was assigned using a mini vote-count method (i.e., if the majority of effects in a
paper were significant, the entire paper [and/or specific measure in the paper]
was scored as +1, etc.). That is, Vidulich did not use an at-least-one, directional
vote-count. At the time Vidulich was published, the year 2000, vote-counting was
still widely used. In support of the predictiveness score, Endsley (2019) also cites
Wickens (1998). However, we contend that Wickens makes a compelling case for
interpreting p-values along a continuum rather than using statistical significance
as an (arbitrary) cut-off.
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receive the same score of +1 if all 10 out of 10 effects
were significant, or if only 1 out of the 10 was significant.
Furthermore, the choice to use p-values to score papers is
perplexing because actual effect sizes (not just significance)
were reported for SA-performance associations in nearly all
included papers.

(2) Aggregated filtered effect size: This was an overall effect size
calculated for each paper using the simple average of only
the significant and marginally significant effects within that
paper. Even when the paper reported non-significant effect
sizes in detail, they were filtered out and thus not included
in this average.

As described in the quote above, the primary justification
provided for filtering effects was “Not all SA is relevant
to all performance measures” (Endsley, 2019, p. 7). The
idea that a deterministic relationship cannot be expected for
probabilistic phenomena is reasonable; however, “relevance,” here
was outcome-dependent because it was determined entirely by
statistical significance3 This is an example of confirmation bias in
statistics, or only “looking for evidence consistent with theory”
(Bishop, 2020b, p. 4). Circular logic, using a specific hypothesis
for outcome dependent selection of effects, makes falsification
nearly impossible. For example, one might take the opposite
stance that only non-significant effects were “relevant,” perhaps
providing the (factually correct, but flawed) justification that the
majority of reported effects were non-significant. In this case all
directional significant effects would be incorrectly excluded.

The methodological issues with selection bias in Endsley
(2019) are concerning and raise the question: How much does
it matter? In other words, how much does selection based on
statistical significance quantitatively impact results in a meta-
analytic context? In this critique, we evaluate and compare results
using significance-filtered effects versus analyses with all effects
as-reported. First, we describe our dataset of previously published
papers included in Endsley (2019) and our inclusion/exclusion
criteria. Second, we use simulations to demonstrate non-trivial
predictiveness scores with a medium effect size and even with
a true effect size of zero. Third, we illustrate that selection
of effects using (marginal) significance imposes deterministic
boundaries: guaranteed minimum values for effect sizes bounded
by sample size. Fourth, we compare significance-filtered means
to meta-analytic means using all reported effects, regardless of
statistical significance. Fifth, we evaluate the proportion of all
effects below the significance filtered means. Last, we provide an
overall discussion and recommendations.

METHODS AND RESULTS

Dataset
The purpose of this paper is to directly compare significance
filtering to inclusion of all reported effects, which involves

3We focus here on filtering using statistical significance, but circular logic for
selection can be easily applied to other statistical methods and estimators (see
Gelman, 2016): such as filtering using effect size magnitude, cross-validation, Bayes
factors, etc.

re-examining the papers considered by Endsley (2019), rather
than conducting a systematic review of the literature. The
following minimal criteria were used for paper inclusion (for
details on excluded papers see Supplementary Material 1.1):

(1) The paper was one of the 46 previously published papers
included in Endsley, Appendix C: Predictiveness of SA
Metrics. Note that papers were eligible for inclusion even if
they were assigned a predictiveness score of “—” or “0” by
Endsley because our inclusion criteria were not dependent
on statistical significance.

(2) The paper reports association(s) between SA and task
performance (e.g., decision accuracy) as a correlation or an
effect size that could be converted to a correlation. Seven of
the 46 papers did not meet this inclusion criterion.

(3) Sufficient data: The paper was not unique in its use of
an SA measure. In other words, the specific SA measure
assessed in the included paper was also used in at least one
other paper. This criterion completely excluded the single
paper to assess SALSA (originally in German, translated
into English as “Measuring Situation Awareness of Area
Controllers within the Context of Automation” Hauss and
Eyferth, 2003, p. 442), and partially excluded the single
paper that assessed “real-time probe,” but its results for
other measures were retained. See Endsley for details about
all measures.

The above criteria illustrate why it was not possible for us to
here analyze all of the same papers analyzed in Endsley (2019) in
a way that provided meaningful results.

Using the above criteria, we included 38 papers out of the
46 unique papers in Endsley, Appendix C, excluding 8 papers
completely and 1 partially (see Supplementary Material 1.1 for
details). Throughout this paper, we draw comparisons between
analyses using all reported effects from these 38 papers and what
we refer to as the filtered means from Endsley’s analysis; shown
in Table 14.

To enable more direct comparison with Endsley (2019),
here we included 12 papers in our set of 38 papers that
would be unlikely to meet inclusion in a systematic review:
See Supplementary Material 1.2 for details. Ten of these
published papers (with 79 total effects) reported statistical results
from repeated measures data that were incorrectly modeled as
independent observations/participants. We contend such overfit
results are generally uninterpretable. Overfit results tend to
yield specious results for effect sizes and their corresponding
p-values, typically underestimating standard error/confidence
intervals (Babyak, 2004; Aarts et al., 2014). Moreover, it is
also possible to have overestimated, instead of underestimated,

4Note that the means taken from Endsley’s Table 5 presumably use data from
Endsley, Appendix C. However, we were unable to use Endsley, Appendix C data
to reproduce most of the mean values in Endsley, Table 5 (see Supplementary
Material 1.8). Also, for 11 out of 46 papers, Endsley included predictiveness scores
but not the mean correlations; the reasons for this were generally unknown (see
Supplementary Material 1.9). Nevertheless, using only the subset of 38 papers
we included to select data from Endsley, Appendix C yields similar values to our
Table 1 (and Endsley, Table 5): End of Trial: r = 0.53, SAGAT: r = 0.46, SPAM:
r = 0.43, and Overall: r = 0.45.
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TABLE 1 | Results for aggregated effect sizes for each SA measure as reported in
Table 5, p. 13, Endsley (2019) and our calculations of overall effects
using that data.

Method (SA measure) Mean pearson’s r Confidence interval

End of trial 0.533 [0.522, 0.545]

SAGAT 0.459 [0.432, 0.487]

SPAM 0.411 [0.368, 0.454]

Overall simple average (our
calculation): Filtered overall mean

0.46

SAGAT, Situation Awareness Global Assessment Technique, SPAM, Situation
Present Assessment Method. We calculated the filtered overall mean using a
simple average of z-transformed values in Appendix C, Endsley, excluding the
previously mentioned two measures assessed only once. No confidence interval
was calculated for the filtered overall mean because we were unable to reproduce
the confidence intervals in Endsley, Table 5 using data from Endsley, Appendix C
(see Supplementary Material 1.8).

variance around parameters (Kenny and Judd, 1986), and even
different point-estimated effect sizes for regression on data
that are averaged versus overfit: See Figure 6 in Bakdash and
Marusich (2017) for a visualization of overfitting. In addition,
three papers (one paper also had overfit results) assessed SA
and performance at the team-level. Stanton et al. (2017) posited
that theories for individual and team SA have similarities and
differences, thus they are not necessarily interchangeable (also see
Supplementary Material 1.2).

In our 38-paper dataset, we used all 241 effects as they were
reported in the papers, regardless of statistical significance or
overfitting (see Supplementary Material 1.2). It is important
to note that in this work we only included non-significant
effects that were reported in detail in the papers (e.g., we
did not include any results generically described as p ≥ 0.05
or patterns of selective omission), see section “Limitations”
for more information. The top panel of Figure 1 shows all
241 reported effects, and the bottom panel shows significance-
filtered effects – the 117 filtered effects that met one-tailed
significance for r > 0.00. Note the limited range of filtered
effects, with an overall mean (r = 0.46)5 approaching a large
positive effect size. While the filtered effects and their means
are empirically derived, selection using significance discards
51.45% (124 out of 241) of all reported effects from our
38 paper dataset.

In comparison to the nearly large effect for the overall
filtered mean, the overall effect size from a meta-analytic model,
using all 241 reported effects and taking into account the
dependencies of multiple effects from each paper (described
in section “Comparison of Significance Filtered Means Versus
Means of As-Reported Effects”), was considerably less at r = 0.29
(a medium effect size for a correlation coefficient). The 38 papers
in our dataset had a median reported sample size of N = 24,
see Supplementary Material 1.4, Figure 1. Median values for

5Using the averaging method described in Endsley (2019), significance filtered
effects in our dataset had a slightly lower (r= 0.43) filtered overall mean. We found
evidence that results were not just significance filtered (see section “Limitations”),
but we were unable to address this beyond identifying reproducibility issues
(Supplementary Material 1.8) and a lack of clear inclusion/exclusion criteria
(Supplementary Material 1.9).

FIGURE 1 | Top Panel: Distribution of the 241 effects from the 38 papers
included in our dataset. Values of individual effect sizes are indicated by ticks
above the x-axis with a thick vertical line for overall mean estimated using a
meta-analytic model. Bottom panel: Distribution of significance filtered
effects from the above dataset, the overall mean from Table 1 (r = 0.46). Note
the restriction of range with significance filtering.

the number of effects per SA measure per paper was k = 3, see
Supplementary Material 1.4, Figure 2.

Data Cleaning and Analyses
We performed data cleaning and analyses using the statistical
programming language R (R Core Team, 2020). Data cleaning
was primarily conducted using the tidyverse package (Wickham
et al., 2019) and effect sizes were converted using esc (Lüdecke,
2019). To calculate significance for different effects across various
sample sizes, we used the pwr package (Champely, 2020). We
primarily fit meta-analytic models using metafor (Viechtbauer,
2010). In addition, we used club Sandwich (Pustejovsky, 2020),
and robumeta (Fisher and Tipton, 2015; Fisher et al., 2017). We
modified the ggforestplot package to create Figure 4 (Scheinin
et al., 2020). The proportion of effects above and below filtered
means were estimated using the MetaUtility package (Mathur
et al., 2019) and the boot package (Canty and Ripley, 2020). For a
list of all R packages, see Supplementary Material 1.5.

This work uses a subset of data and code for analyses from
Bakdash et al. (2020a,b), a preprint of a meta-analysis of SA-
performance (Bakdash et al., 2020c). Data from the papers
included here were checked by multiple coders, see Bakdash
et al. (2020c) for details. Our results are reproducible using our
materials on the Open Science Framework (Bakdash et al., 2020d)
or with the Code Ocean platform (Clyburne-Sherin et al., 2019)
using our capsule (Bakdash et al., 2020e).
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FIGURE 2 | Top: The probability that at least one effect in a given paper is
significant or marginally significant as a function of the number of effects per
paper (k), defined by 1− (1− δ)k , where power δ is determined using the
significance level (α = 0.05, dark red, or α = 0.10, pink), the empirical sample
size (N = 24), and the empirical effect size (ρ = 0.29). The median (blue) and
mean (gray) number of effects per paper are shown as dotted lines. Individual
k values for the papers in our data set are indicated by ticks above the x-axis.
Bottom: The expected value of the predictiveness score as a function of k,
again using the empirical sample size (N = 24) and effect size (ρ = 0.29).

Predictiveness Score and Vote-Counting
As described earlier, the predictiveness score implemented
in Endsley (2019) was a single value of either 0, +0.5,
or +1 assigned to each SA measure assessed in a paper
(e.g., SPAM or SAGAT), based on the presence of at least
one significant (Score of +1) or marginal (Score of +0.5)
effect. This was one-tailed, for positive effects only. A score
of 0 could be assigned if and only if no effects reported
in the paper for a given SA measure reached marginal
significance. A paper reporting only non-significant effects
would be extraordinarily rare given publication bias and the
type I error rate with multiple uncontrolled comparisons, see
section “Predictiveness Score: Type I Error.” In this section we
review the reasons that even standard vote-counting procedures
are now widely discouraged, and subsequently describe the
concerning statistical implications of this unorthodox method of
vote-counting.

Traditional Vote-Counting
The predictiveness score implemented by Endsley (2019)
represents an atypical version of a vote-counting procedure.
Vote-counting has traditionally been used in cases where there
is a single effect size per paper: each predicted significant effect
receives +1, each non-significant effect receives 0, and each
significant effect opposite to the prediction receives −1 (e.g.,
Bushman and Wang, 2009). The votes for each paper are then

summed to create an overall score with the category containing
the majority of votes deemed the “winner.”

Even the traditional form of vote-counting, for a single
effect per paper, is now considered an antiquated methodology
(Mathur and VanderWeele, 2019). Borenstein et al. (2009)
declare that there is no reason to ever use it, especially when
the information is available from primary-level studies that
could be used to calculate meta-analytic effect sizes. Vote-
counting is problematic for a variety of reasons. First, it does
not consider sample sizes when yielding a vote; a small study
with a statistically significant result gets the same consideration
as a large study that fails to reach traditional significance
levels. Further, vote-counting does not quantify the magnitude
of difference between a result that wins a vote and one that
fails to do so; a study with an obtained p-value of 0.051
receives a 0 vote, whereas a study with an obtained p-value
of 0.049 receives a +1. Adding a vote of +0.5 for marginal
significance does not address this problem, rather it creates an
additional arbitrary category. Vote-counting uses arbitrary cut-
offs with p-values, thus it largely ignores uncertainty in parameter
estimates as well as the distinction between statistical (p-values)
and practical (effect sizes) significance (Borenstein et al., 2009;
Gurevitch et al., 2018).

Statistical power is another major concern with traditional
vote-counting; it is generally underpowered, assuming there is
selection bias in the reported results. As Friedman (2001) noted,
“. . . a vote-count review is likely to yield the wrong conclusion if
most studies in a particular area of research have power less than
0.5” (p. 161). Hedges and Olkin (1980) note yet another problem
with traditional vote-counting: counterintuitively, statistical
power decreases as the number of analyzed results increases.

For these reasons, traditional vote-counting and other quasi-
quantitative methods have poor validity. Widely used meta-
analytic guidelines caution against the use of quasi-quantitative
methods (PRISMA-P Group, Moher et al., 2015). Similarly, the
Cochrane handbook (Higgins et al., 2019), considered a gold
standard for meta-analysis in health science research, calls vote-
counting an “unacceptable synthesis method” (p. 329).

We show that Endsley’s (2019) variation of vote-counting is
even more problematic than traditional vote-counting because
the at-least-one method selects only the results deemed predictive
using directional significance. In the next section, we use
simulations for the predictiveness score to demonstrate how as
the number of effects per paper increases the score can only rise.
This shows that with multiple effects, the predictiveness score will
be near perfect even with a medium effect size.

Predictiveness Score: Type I Error
Despite the well-known issues with traditional vote-counting
methods described above, it may be difficult to intuit the
implications of using this scoring method to synthesize papers
with multiple effects. Here we simulate the expected probability
of obtaining a predictiveness score of +1 or +0.5, given
the median sample size and number of effects included in
this dataset. We perform this simulation using a population
effect size of ρ = 0.29: The overall effect obtained from a
multilevel meta-analytic model using all effects as-reported
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from the 38 papers included here (see section “Comparison of
Significance Filtered Means versus Means of As-Reported Effects”
for more details).

When there is only a single effect in a paper, the probability
of obtaining a statistically significant effect is a straightforward
power calculation6. Assuming a true effect size of ρ = 0.29
and a median sample size7 of N = 24, the calculated power
(probability of finding a one-tailed significant effect, p < 0.05)
for a single effect is 41.02%. This is to be expected with a
medium effect size.

However, most included papers reported multiple effects
(median of k = 3). If three correlations were performed in a
given paper, there are eight possible outcomes: all are significant,
only the first is significant, only the second is significant, only the
third is significant, only the first and second are significant, only
the first and third are significant, only the second and third are
significant, or none are significant. The probability of finding at
least one significant effect (a predictiveness score of 1 would be
equivalent to the probability that the eighth outcome does not
happen) is quite high:

(1) Probability of at least one significant effect:
1− (1− 41.02%)3

= 79.48%
(2) Probability of no significant effects: (1− 41.02%)3

=

20.52%

This may look familiar to some readers; the probability is
the same as the Type I error rate (also, called the familywise
error rate; both assume the null is true). The formula for Type
I error (Cohen et al., 2003), the probability of finding at least one
significant effect, is: 1− (1− δ)k, where δ is statistical power8

and k is the number of multiple comparisons (i.e., the number
of effects per paper here). The at-least-one predictiveness score
is simply a weighted version of Type I error, see equations in
Supplementary Material 1.6.

Figure 2 (top) shows this relationship between k and the
probability of finding at least one significant effect (as well as the
same relationship for marginal effects), still assuming ρ = 0.29
and N = 24. The median and mean number of effects for
papers in the current dataset are highlighted. Note that the
probability to detect at least one significant effect grows quickly:
41% to about 80% with the number of effects increasing from
1 to 3. With more effects in a given paper, the probability of
finding one instance of significance quickly approaches 100%.
In terms of the predictiveness score, increasing the number of
effects while using the at-least-one method can only increase the
probability of assigning a score of +1. Figure 2 (bottom) shows
the expected value of the predictiveness score, which is calculated

6We caution that a point estimate of post-hoc statistical power generally has
enormous uncertainty, see Yuan and Maxwell (2005). The calculation of statistical
power is only used as an example for a simulated predictiveness score, it should not
be interpreted as veridical estimate of power. Furthermore, this simplified power
calculation does not address effect size or meta-analytic heterogeneity (McShane
and Böckenholt, 2014), which was substantial here (see section “Comparison of
Significance Filtered Means versus Means of As-Reported Effects”).
7We use the median N instead of the mean N because it is a more conservative
estimate for power and because it is more representative of sample size for the
included papers given the high skew (see Supplementary Material 1.4, Figure 1).
8Typically, instead of power, α= 0.05 is used for the Type I error rate.

by multiplying vote values by their corresponding probabilities.
Because the predictiveness score uses probabilities as weights, the
expected value for the predictiveness score also rises sharply as
the number of effects increases.

The concerning aspects of the relationship between number
of effects and predictiveness score are perhaps made clearer
by assuming a true effect size less than or equal to 0 (see
Supplementary Material 1.6, Figure 3). Even in this boundary
condition, the predictiveness score will always monotonically
increase as a function of k, indicating that the predictiveness score
has no statistical value.

Guaranteed Minimum Effect Sizes
Significance filtering can be conceptualized as fishing, dredging,
or cherry picking by skimming the “desirable” effects off the
top. This provides guaranteed minimum effect sizes because it
discards “undesirable” non-significant effects below. Thus, the
aggregated effect size from each paper will always be at or above
a certain minimum depending on the sample size used in the
paper. Including marginal significance (p < 0.10), in addition to

FIGURE 3 | For a one-tailed, positive correlation: The shaded areas are the
possible range of effect sizes for significant (dark red), marginally significant
(pink), and non-significant results from papers using the sample size reported
in each paper/dataset. The lowest values of the red and pink shaded areas
depict the guaranteed minimum effect sizes. Dark gray dots show the actual
effect sizes (y-axis) and corresponding sample sizes (x-axis) as-reported for
results of the individual papers in our dataset. Red and pink dots indicate
overfit results (excessive degrees of freedom, see section “Dataset” and
Supplementary Material 1.2), that only reached two-tailed significance or
marginal significance, respectively, due to overfitting. For example, one paper
has a stated sample size of 10 participants but reports a result of
r(52) = 0.32, p < 0.02; a Pearson correlation has N – 2 degrees of freedom
so this should be r(8), see Supplementary Material 1.2 for more
information. Note with one-tailed tests, all non-positive effects will be
non-significant and thus filtered out based on Endsley’s described method.
One paper with N = 171 is not shown.
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FIGURE 4 | Forest plot depicting mean correlations between SA and
performance, both overall and for individual SA measures. Meta-analytic
means and prediction interval using all 241 reported effects are shown in
black; means of filtered effects (Table 1) are shown in red. For the reason
previously described in 2.1, no confidence interval could be calculated for the
overall filtered mean.

significance (p < 0.05), may seem to provide more precision than
dichotomizing (significance versus non-significance). However,
the difference is minute. The marginal significance filter simply
produces slightly lower bounds on the minimum effect sizes.

According to Endsley’s (2019) methodology, any papers that
report no significant effects are discarded from the aggregation
of effect sizes because such results are not “relevant.” That
is, only papers with at least one significant or marginal effect
size meet inclusion. Further, to calculate the average effect size
for each paper, only the marginal and significant effects are
included. All non-significant effects, even those reported in detail,
were not included in the average. This artificially truncates
the variability in effect sizes and effectively means that the
“average” effect size for each paper in Endsley’s analysis can be
no lower than the threshold for significance (often called the
“critical” effect size value). This threshold is determined by the
combination of the alpha level and sample size. Any reported
non-significant effect sizes that are lower than these values were
simply filtered out.

Figure 3 shows the range of possible effects that can be
obtained from a paper, given the one-tailed significance filtering
described in Endsley’s methods. If non-significant results (the
gray region) are filtered out of analysis, the only possible values
are those in the colored regions, where the red region shows the
possible effects that meet significance (p < 0.05) and the narrow
pink area represents effects that only reach marginal significance
(p < 0.10). As sample size increases, the guaranteed minimum
effect size decreases. However, in this dataset, sample sizes tended
to be limited; the median was N = 24.

Researchers routinely consider Type I error (a false positive)
and Type II error (a false negative) when developing hypotheses
and conducting power analyses to set an alpha level and sample

size. However, because of the rarity of no true effect for non-
directional tests in social science research (Cohen, 1994), an
alternative conceptualization of errors focuses on estimation of
effect sizes: Type S (sign) error and Type M (magnitude) error
(Gelman and Carlin, 2014). A Type S error is the probability that
the direction of an estimated effect is inaccurate. For example,
researchers find a positive relationship between variables X and
Y but the two variables are in fact negatively related. A Type
M error is the extent to which an estimated effect size is
overestimated: the exaggeration ratio. For example, researchers
estimate a large effect (r = 0.60) but the true effect size is
small (r = 0.20), resulting in a Type M error of three. Type
S and M errors are common in small samples, which tend to
produce unstable, widely varying effects (Button et al., 2013;
Schönbrodt and Perugini, 2013; Gelman and Carlin, 2014;
Loken and Gelman, 2017).

At a general level, misestimation (typically overestimation)
of effects can also occur due to publication bias, which is
known as the file drawer problem (Rosenthal, 1979). Researchers,
reviewers, and journals favor publishing papers with mostly or
even all significant (i.e., typically p < 0.05) results, and rejecting
papers with non-significant results; hence, many published effect
sizes likely reflect overestimates (Kühberger et al., 2014; Luke,
2019). Publication bias is also a form of significance filtering,
obscuring judgments on the practical significance of an effect
and often hindering attempts to replicate and extend previous
work if published effect sizes do not reflect true effect sizes. The
methods employed in Endsley (2019) have a similar effect as
publication bias, except the filtering is universally applied to each
reported result in every included paper. Therefore, a Type M
error is essentially guaranteed here because significance filtering
truncates effect size variability and inflates the average effect size.

Another issue with this filtering approach is that non-
significant results are not only excluded, they are also
incorrectly equated with no effect (Cohen, 1994; Nickerson,
2000; Wasserstein and Lazar, 2016). As Figure 3 illustrates, non-
significance does not necessarily correspond to point estimated
effect sizes of zero. Moreover, not shown in the graph due to
clutter, there is high uncertainty in most effects due to small
sample sizes: for example, N = 24 and p= 0.11 produces a point-
estimated effect size in the medium range (r = 0.33) with a wide
confidence interval (95% CI [−0.08, 0.65]).

Comparison of Significance Filtered
Means Versus Means of As-Reported
Effects
In order to determine the impact of significance filtering on the
means reported in Endsley (2019), we compared these filtered
means (see section “Dataset” and Table 1) to means from a
meta-analytic model using all effects (see Figure 4). To make
the variance in effects more stable, we z-transformed correlations
and calculated their variance using Fisher’s Z (Cooper et al.,
2009; Hafdahl and Williams, 2009). Next, we used these values
in a multivariate multilevel meta-analytic model (e.g., Assink and
Wibbelink, 2016) to account for the multiple, repeated dependent
measures nested in papers (two papers contained data from
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multiple experiments, these were treated as separate studies).
In addition, meta-analytic models were fit using cluster robust
variance estimation to adjust for small sample sizes and the
unknown dependencies in sampling error among correlations
from the same paper (Pustejovsky and Tipton, 2018). The
z-values and confidence intervals were transformed back to
correlation coefficients in the reported results. We used this
more complex model because averaging effects requires making
assumptions that are unlikely to hold and will often remove
useful information (Borenstein et al., 2009; Scammacca et al.,
2014). For full details about the analyses with meta-analytic
models see Bakdash et al. (2020c).

The overall filtered mean (r = 0.46) was 56% higher (Type M
error = 1.56) than the overall meta-analytic mean for all effects
(r = 0.29). Likewise, we found similar patterns for the End of
Trial and SAGAT measure. For SPAM, the magnitudes of the
filtered and meta-analytic model means were closer with partially
overlapping confidence intervals.

To evaluate uncertainty across all as-reported effects, we
calculated the prediction interval9: the plausible distribution for
all individual effects (Borenstein et al., 2009). For all effects, the
95% prediction interval had an enormous range [−0.19, 0.66].
This interval includes non-random or systematic variation in
the (estimated) distribution of true effects commonly referred to
as meta-analytic heterogeneity, as opposed to only the random
variation in effects due to sampling error (Borenstein et al.,
2009). Here, variance among true effects approached a medium
effect size (τ̂ = 0.24; see Table 2), nearing the magnitude of
the mean overall effect from the correct meta-analytic model
(r = 0.29). This heterogeneity was non-trivial both between
and within papers, indicating the uncertainty in true effects
was not solely due to differences among papers/datasets (e.g.,
experiment design, domain, or task). It was not possible to assess
heterogeneity on significance filtered effects because they were
reported as averages in Endsley (2019).

Proportion of Effects Below/Above Their Filtered
Means
To further evaluate the distribution of as-reported effects
compared to filtered means, we also quantified the proportion
of effects below meaningful thresholds using a recently
developed method (Mathur and VanderWeele, 2019, 2020); see
Supplementary Material 1.7 for details. This technique is not
a filtering or vote-counting method, but rather, it provides
quantitative insights into the distributions of effects by evaluating
the proportions below/above specified thresholds.

The proportion analysis showed the overall filtered mean
(r = 0.46) was a vast overestimate; 92% of effects were below
it. Expressed as a natural frequency (Gigerenzer et al., 2007),
about 222 out of the 241 individual effects were lower than the
overall filtered threshold. Similar amounts of overestimation were
found for each of the three SA measures (see Supplementary
Material 1.7, Figures 4, 5).

9“The confidence interval quantifies the accuracy of the mean, while the prediction
interval addresses the actual dispersion of [individual] effect sizes, and the two
measures are not interchangeable.” (Borenstein et al., 2009, p. 131).

DISCUSSION AND LIMITATIONS

We have shown that selection using significance in a meta-
analytic context produces a considerable distortion that is
unrepresentative of all as-reported results, exaggerating the
magnitude of meta-analytic mean effects. Using all effects as
reported for SA-performance associations, we found meta-
analytic effect sizes in approximately the medium range
compared to the large range for significance filtering: This
was a 1.56 times exaggeration or Type M error in the overall
mean effect size. Moreover, 92% of the as-reported effects were
below the overall significance filtered mean, indicating that it
is highly biased upward. In general, selection using p-values
impedes falsification (Kriegeskorte et al., 2009; Vul et al., 2009;
Yarkoni, 2009; Ioannidis et al., 2014; Wasserstein and Lazar,
2016; Nelson et al., 2018). Popper (1962) expresses “It is easy to
obtain confirmation, or verification, for nearly every theory—if
we look for confirmations . . .. Every genuine test of a theory is an
attempt to falsify it, or refute it.” (p. 36). Clever demonstrations
of obviously specious results, boundary conditions where the null
is actually true, supported using significance filtering, exemplify
why it is problematic for falsification (Bennett et al., 2011;
Simmons et al., 2011).

The fact that a high percentage of papers, most with multiple
comparisons, can achieve at-least-one statistically significant
result is insufficient evidence for drawing any broader meta-
analytic conclusions. In small samples, significant effects appear
especially impressive because they seem difficult to achieve due
to noise and have striking magnitudes; this leads to a widespread
but erroneous belief that such results are robust, common, and
hence likely to replicate (Gelman and Carlin, 2014; Loken and
Gelman, 2017). In general, significance filtered results are likely
to be exaggerated (e.g., Vul et al., 2009; Yarkoni, 2009; Simmons
et al., 2011; Button et al., 2013; Gelman and Carlin, 2014; Loken
and Gelman, 2017; Vasishth et al., 2018; Bishop, 2020a,b) and
hence are unlikely to replicate (Munafò et al., 2017).

In a meta-analytic context, the consequences of significance
filtering are especially severe because this practice will distort
the broader evidence provided with a quantitative synthesis
(Vosgerau et al., 2019). In fact, Glass (2015) noted that he
invented meta-analysis to counter this very issue and related
problems. Given that significance filtering contradicts the very
purpose of meta-analysis (Button et al., 2013; Glass, 2015;
Vosgerau et al., 2019), we assert that Endsley (2019) is not
a meta-analysis. Critically, even traditional vote-counting is
no longer considered an appropriate meta-analytic technique
for synthesizing average effect sizes (Borenstein et al., 2009;
Gurevitch et al., 2018; Higgins et al., 2019; Mathur and
VanderWeele, 2019). Rather than using p-values or other
outcome-dependent criteria to select results, the point of meta-
analysis is to use all available pertinent information from papers
and results based on a systematic review with specified a priori
inclusion/exclusion criteria.

Issues with significance filtering and other selective
inclusion/reporting of results have been attributed in part
to cognitive biases (Bishop, 2020b) and are widely recognized
as problematic in multiple fields (Bishop, 2019), including
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TABLE 2 | All reported effects: Meta-analytic model parameters.

Parameter Estimated value [95% CI]

τ̂ = Standard deviation of true effects (due to total heterogeneity), interpret as r value 0.24 [0.19, 0.30]

τ̂1 = Standard deviation of true effects (due to between-paper heterogeneity), interpret as r value 0.21 [0.16, 0.28]

τ̂2 = Standard deviation of true effects (due to within-paper heterogeneity), interpret as r value 0.11 [0.08, 0.14]

I2 = Index of dispersion: Variance due to heterogeneity relative to total variance 70.67% [56.83%, 81.26%]

psychology (Simmons et al., 2011), neuroscience (Kriegeskorte
et al., 2009; Vul et al., 2009), and health science research
(Goldacre, 2010, 2014). The American Statistical Association’s
statement on p-values unequivocally stipulates scientific
conclusions should not rely on bright-line thresholds for
p-values, nor should selective analyses be performed based
on p-values:

“Practices that reduce data analysis or scientific inference to
mechanical ‘bright-line’ rules (such as ‘p < 0.05’) for justifying
scientific claims or conclusions can lead to erroneous beliefs
and poor decision making. A conclusion does not immediately
become ‘true’ on one side of the divide and ‘false’ on the other. . .

A p-value, or statistical significance, does not measure the
size of an effect or the importance of a result [emphasis
added].”(Wasserstein and Lazar, 2016, pp. 131–132).

Limitations
Although the analyses conducted and results reported here
provide a compelling case about the negative consequences of
significance filtering in a meta-analytic context, there are a
number of limitations in our critique that should be noted.
This work does not comprehensively evaluate Endsley (2019);
instead we focus on SA-performance associations, which Endsley
refers to as SA predictiveness. Endsley (2019) also evaluated SA
sensitivity (differences in SA attributed to training, participant
expertise) and SA intrusiveness (whether the method for
assessing SA impacted performance or workload). While we
did not examine sensitivity and intrusiveness in detail, we posit
there are issues that are similar to our detailed evaluation of
predictiveness. SA sensitivity also relied on the atypical at-least-
one methodology that produced the predictiveness score. SA
intrusiveness consisted of a narrative form of vote-counting
using p-values, with non-significance also incorrectly equated
with no effect. For both sensitivity and intrusiveness, it is
possible that effect sizes were unavailable and could not
be calculated from the information provided in papers. If
exact p-values are available there are many techniques for
synthesizing p-values that are superior to vote-counting (see
Becker, 1994; Cinar and Viechtbauer, 2020). Nevertheless, if
only significance or non-significance is reported in papers
(rather than exact p-values) vote-counting will likely be the
only option. Another limitation was that the papers and results
we included here may have differed from Endsley (2019) for
reasons other than significance filtering. In Endsley’s work, we
identified issues with internal reproducibility of results using
data directly from Endsley (Supplementary Material 1.8) as well
as other inconsistencies that may be due to lack of specified
inclusion/exclusion criteria (Supplementary Material 1.9). The

main purpose of this work was a direct comparison of all
effects as-reported to results in Endsley, not to reproduce
significance filtering. Therefore, we used the filtered mean values
as-reported or calculated from Endsley (see section “Dataset”
and Table 1).

A clear limitation of our work is that it is not a meta-
analysis; literature inclusion was based on papers in Appendix C,
Endsley (2019) using our previously described minimal criteria
(see section “Dataset”), rather than a systematic review. This
work is a direct comparison between all as-reported effects versus
significance filtered effects. Consequently, we do not address
issues such as the file drawer problem (also known as publication
bias; Rosenthal, 1979).

Similarly, some papers, included both here and by Endsley
(2019), selectively reported only significant results; this is not a
new issue (Hedges, 1984). Bishop and Thompson (2016) called
omission of undesirable results ghost p-hacking; borrowing from
their terminology, we use the term “ghost results” to describe
SA-performance associations that ware clearly assessed but either
not reported due to not meeting significance, or only reported as
not meeting significance without details (p-value or effect size).
By definition and for direct comparison, we only used (detailed)
effects as-reported in the analyses here. Nevertheless, we coded
ghost results (see the data dictionary in Bakdash et al., 2020d for
details) and found they were pervasive: 139 ghost results in 14
papers. For an actual meta-analysis, we caution that not including
ghost results (and publication bias) may lead to overestimates of
effect sizes and underestimates of variance.

CONCLUSION

We have shown there is a substantial difference between
analyses with as-reported effects compared to analyses using
significance filtered effects. With the considerable caveat our
meta-analytic means were not based on a systematic review
and did not take into account any ghost results, our results
indicate a limited validity for SA and performance (medium
mean effects, high systematic variance in true effects, and the
majority of effects below their filtered means). This is in contrast
to results using significance filtering, which indicate strong
validity (approximately large [filtered] mean effects with minimal
variance in confidence intervals). Our interpretation of limited
validity is not consistent with most current SA theories. In
addition, prior work has raised concerns about the potential
unfalsifiability for testing SA theories (Dekker and Hollnagel,
2004); significance filtering amplifies concerns about falsifiability.
If a particular theory can only be quantitatively tested by
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selecting supporting results while excluding less desirable
or undesirable results, then the theory itself is unfalsifiable
(Ferguson and Heene, 2012).

Evidence of limited validity has practical implications
for associations among SA-performance effects. For example,
using training and system design to increase SA is posited
to also improve performance (Endsley and Jones, 2011).
While the theorized causal relationship between SA and
performance is debatable (Flach, 1995; Dekker and Hollnagel,
2004), improving SA is often a goal, SA is sometimes used
as a proxy for performance, and SA is even occasionally
operationalized as task performance. SA and performance are
often assessed in real-world, safety-critical work environments
such as aviation, driving, health care, and the military. Thus,
using established meta-analytic methods to accurately quantify
the magnitude, uncertainty, and distribution of SA-performance
effects is essential.

The scientific methods for meta-analysis are well-established
(Borenstein et al., 2009; Koricheva et al., 2013; Glass, 2015;
Cooper et al., 2019). Other recommended practices go further,
also recommending sharing data and code for quality control,
reproducibility of results, and updating earlier meta-analyses
(Button et al., 2013; Lakens et al., 2016; Gurevitch et al., 2018;
Maassen et al., 2020; Polanin et al., 2020). However, even the well-
established methods for research synthesis are not universally
followed. Outdated methods such as traditional vote-counting
and unweighted models are still commonly used in some fields;
this has been attributed to a lack of training and knowledge
(Koricheva et al., 2013). We have shown here that the unusual at-
least one significance filtering method is even more problematic
than outdated methods, because results are exaggerated by
predetermined minimum effect sizes. In contrast, when research
synthesis is conducted using modern, established methods, it
provides: “a more objective, informative and powerful means of
summarizing the results . . . compared to narrative/qualitative
reviews and vote counting” (Koricheva et al., 2013, p. 13).
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