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Abstract

Background

The World Health Organization (WHO) and Foundation for Innovative New Diagnostics

(FIND) have published target product profiles (TPPs) calling for non-sputum-based diagnos-

tic tests for the diagnosis of active tuberculosis (ATB) disease and for predicting the progres-

sion from latent tuberculosis infection (LTBI) to ATB. A large number of host-derived blood-

based gene-expression biomarkers for diagnosis of patients with ATB have been proposed

to date, but none have been implemented in clinical settings. The focus of this study is to

directly compare published gene signatures for diagnosis of patients with ATB across a

large, diverse list of publicly available gene expression datasets, and evaluate their perfor-

mance against the WHO/FIND TPPs.

Methods and findings

We searched PubMed, Gene Expression Omnibus (GEO), and ArrayExpress in June 2018.

We included all studies irrespective of study design and enrollment criteria. We found 16

gene signatures for the diagnosis of ATB compared to other clinical conditions in PubMed.

For each signature, we implemented a classification model as described in the correspond-

ing original publication of the signature. We identified 24 datasets containing 3,083 tran-

scriptome profiles from whole blood or peripheral blood mononuclear cell samples of

healthy controls or patients with ATB, LTBI, or other diseases from 14 countries in GEO.

Using these datasets, we calculated weighted mean area under the receiver operating char-

acteristic curve (AUROC), specificity at 90% sensitivity, and negative predictive value

(NPV) for each gene signature across all datasets. We also compared the diagnostic odds

ratio (DOR), heterogeneity in DOR, and false positive rate (FPR) for each signature using

bivariate meta-analysis. Across 9 datasets of patients with culture-confirmed diagnosis of

ATB, 11 signatures had weighted mean AUROC > 0.8, and 2 signatures had weighted

mean AUROC� 0.6. All but 2 signatures had high NPV (>98% at 2% prevalence). Two

gene signatures achieved the minimal WHO TPP for a non-sputum-based triage test. When

including datasets with clinical diagnosis of ATB, there was minimal reduction in the
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weighted mean AUROC and specificity of all but 3 signatures compared to when using only

culture-confirmed ATB data. Only 4 signatures had homogeneous DOR and lower FPR

when datasets with clinical diagnosis of ATB were included; other signatures either had het-

erogeneous DOR or higher FPR or both. Finally, 7 of 16 gene signatures predicted progres-

sion from LTBI to ATB 6 months prior to sputum conversion with positive predictive value >
6% at 2% prevalence. Our analyses may have under- or overestimated the performance of

certain ATB diagnostic signatures because our implementation may be different from the

published models for those signatures. We re-implemented published models because the

exact models were not publicly available.

Conclusions

We found that host-response-based diagnostics could accurately identify patients with ATB

and predict individuals with high risk of progression from LTBI to ATB prior to sputum con-

version. We found that a higher number of genes in a signature did not increase the accu-

racy of the signature. Overall, the Sweeney3 signature performed robustly across all

comparisons. Our results provide strong evidence for the potential of host-response-based

diagnostics in achieving the WHO goal of ending tuberculosis by 2035, and host-response-

based diagnostics should be pursued for clinical implementation.

Author summary

Why was this study done?

• There is an urgent need for a non-sputum-based triage test for diagnosis of active tuber-

culosis (ATB).

• The World Health Organization (WHO) has specified criteria for such a test that could

be used to end tuberculosis by 2035.

• Several gene signatures measuring host immune response to Mycobacterium tuberculo-
sis in blood samples have been proposed, but none has translated in clinical practice.

What did the researchers do and find?

• Researchers compared 16 such gene signatures to investigate whether 1 or more of them

could identify patients with ATB with the desired accuracy.

• The analysis found that 2 of the proposed gene signatures satisfied the WHO criteria for

a non-sputum-based triage test across heterogeneous culture-confirmed datasets.

• Importantly, only 1 of these 2 signatures had a low false positive rate and no heterogene-

ity in its diagnostic accuracy, suggesting that it is generalizable across diverse patient

populations.
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What do these findings mean?

• The findings strongly suggest that host-response-based diagnostics for ATB have the

potential to aid in achieving the WHO goal of ending TB by 2035 and should be consid-

ered for clinical implementation.

Introduction

The World Health Organization (WHO) has identified the need for a non-sputum-based triage

test to rule out active tuberculosis (ATB) disease [1]. The WHO consensus meeting report

describes that such a triage test should have 90% sensitivity and 70% specificity at minimum to

end tuberculosis (TB) by 2035 [1]. In clinical practice, a triage test to rule out ATB requires high

negative predictive value (NPV). WHO has also described the need for a test to predict progres-

sion from latent TB infection (LTBI) to ATB with>75% specificity and>75% sensitivity [2].

Further, the Foundation for Innovative New Diagnostics (FIND) and the New Diagnostics

Working Group of the Stop TB Partnership have proposed a need for a prognostic test for TB

risk that requires a positive predictive value (PPV)> 5.8% at a 2-year cumulative incidence of

ATB of 2% (http://www.finddx.org/wp-content/uploads/2016/05/TPP-LTBIprogression.pdf).

Sputum culture is considered the gold standard for ATB diagnosis but takes 6–7 days for a

positive diagnosis and up to 42 days for a confirmed negative diagnosis. Current sputum-based

tests in clinical practice (e.g., smear microscopy, culture, and PCR-based assays) do not meet

the desired target product profiles (TPPs), lack the sensitivity to reliably distinguish ATB from

LTBI, and are prone to producing false negative results because sufficient bacilli-containing

sputum samples can be difficult to obtain, especially from children and from individuals co-

infected with HIV [3–12]. Sputum-bacilli tests cannot be used to identify patients with a high

risk of progression because diagnosis with ATB is defined by the presence of bacilli in sputum

[12]. A stool-based diagnostic test for ATB in children was shown to have 31.9% sensitivity at

99.7% specificity. These performance statistics are well suited for a diagnostic test for ruling in a

patient with ATB, but not for a triage test to rule out ATB or for a progression test [13].

Recently, diagnostic gene signatures based on host immune response have been repeatedly

demonstrated to accurately distinguish infection from other non-pathogenic inflammatory

conditions [14], and to distinguish bacterial and viral infections [15,16]. Particularly for ATB,

several host-response-based gene signatures have been proposed over the last decade for dis-

tinguishing patients with ATB from healthy controls and patients with LTBI and other diseases

(ODs), and to predict progression from LTBI to ATB [17–29]. Collectively, these studies pro-

filed whole blood or peripheral blood mononuclear cells (PBMCs) from samples that span a

broad range of clinical conditions, including different age groups (children, adolescents, and

adults), infection types (LTBI and ATB), and control (noninfectious) conditions. The number

of genes in these signatures varies dramatically [17,20,23]. Notably, a variety of computational

techniques—including support vector machine, random forest, linear discriminant analysis,

logistic regression, and difference of means—have been applied to identify these signatures.

Despite extensive efforts, none of these TB gene signatures has been translated into a point

of care (POC) diagnostic for several reasons. First, none of these signatures except 1 has been

validated in prospective independent cohorts. As more gene signatures have been described,

there has been a dearth of studies comparing these signatures with each other to verify if host-

response-based signatures are appropriate for translation to clinical practice. Second, a
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majority of these gene signatures are composed of a large number of genes. Although a higher

number of genes in a signature tends to increase accuracy [24], implementation of such a sig-

nature as a simple and cost-effective POC test is very difficult using current technology for

measuring gene expression. Virtually all commercially available platforms for measuring tran-

scriptional host response are limited by the number of genes they can measure. For instance,

the Cepheid GeneXpert system, arguably the most widely used platform in TB diagnostics, can

measure only up to 10 genes. Also, 1 or 2 of these genes need to be control genes, which further

reduces the number of genes that can be used in a diagnostic signature to 8 or 9. Third, and

most importantly, the generalizability of these transcriptional signatures to real-world patient

populations in various clinical contexts is questionable. For instance, a 16-gene signature for

predicting progression from LTBI to ATB developed using a single cohort from a single coun-

try was shown to lack generalizability to cohorts from other countries on the same continent

[29]. In contrast, a 3-gene signature developed using heterogeneous cohorts from multiple

countries has been shown to be more generalizable to other countries in retrospective [17] and

prospective validation [11,30]. Another factor with substantial impact on the generalizability

of these signatures is that the different statistical models used for creating these signatures are

difficult to generalize across different populations and different measurement technologies.

For instance, models based on K-nearest-neighbors clustering are difficult to generalize due to

high sensitivity to batch effects and scaling within data [31].

The proliferation of host-response-based gene signatures despite the challenges described

above raises several questions. First, do these signatures perform similarly to each other in dif-

ferent clinical contexts in different patient populations? If yes, the second question is, do 1 or

more of these signatures have the potential to move towards translation into clinical practice

cost-effectively? Third, an overarching question is, does host response to Mycobacterium tuber-
culosis (Mtb) have the potential to achieve the generalizability required to be used as a non-

sputum-based triage test that meets the TPPs described by the WHO and other groups for end-

ing TB by 2035?

We sought to answer these questions through a systematic comprehensive analysis of gene

signatures for diagnosis of TB. To estimate the diagnostic accuracy of each of the published

signatures, we reconstructed the classification model associated with each gene signature using

the same discovery cohort as the original publication to the best of our ability. We then evalu-

ated the accuracy of each signature in distinguishing patients with ATB from those with LTBI

or ODs and healthy controls using publicly available gene expression datasets. We also evalu-

ated whether these signatures could predict progression from LTBI to ATB prior to sputum

conversion. We used specificity, sensitivity, comparison with various TPPs for ending TB by

2035, weighted mean area under the receiver operating characteristic curve (AUROC), PPV,

NPV, false positive rate (FPR), heterogeneity across datasets, and diagnostic odds ratio (DOR)

to evaluate the accuracy of various gene signatures.

Methods

Prospective analysis plan

We did not have a prospective analysis plan. Our goal from the beginning was broadly divided

into the following steps that were modeled after a similar benchmarking analysis of biomarkers

for sepsis [32]:

Step 1: Identify a set of gene signatures for diagnosis of ATB from literature. We define a

“gene signature” as a set of genes derived from an analysis of whole transcriptome profiles that

distinguishes patients with ATB from healthy controls or patients with LTBI or ODs.

A systematic comparison of host response-based transcriptome signatures for diagnosis of tuberculosis
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Step 2: Identify a set of appropriate transcriptome datasets from PBMC or whole blood

samples. A “transcriptome dataset” is a collection of “transcriptome profiles,” such that expres-

sion of a large number of genes is measured in each sample (typically >10,000 genes).

Step 3: Implement the corresponding diagnostic model for a gene signature identified in

Step 1 by following the Methods section in the paper describing the gene signature.

Step 3A: If needed, retrain a diagnostic model. We found that some signatures were miss-

ing required information in the corresponding paper for us to evaluate those signatures as

“locked” models in independent cohorts. For example, when coefficients for a signature based

on logistic regression or linear discriminant analysis were missing, we used the discovery

cohort to learn the coefficients.

Step 3B: If needed, identify a comparable dataset for retraining. This step was required for

a subset of signatures because the data on which they were originally trained were not

available.

Step 4: “Lock” each diagnostic model and apply it to the transcriptome datasets identified

in Step 2.

Step 5: Aggregate AUROC, specificity at 90% sensitivity, and NPV for each signature across

independent datasets, while excluding the corresponding discovery datasets for each signature.

Step 5A: Aggregate AUROC, specificity at 90% sensitivity, and NPV using only datasets

where diagnosis of ATB is culture-confirmed.

Step 5B: Aggregate AUROC, specificity at 90% sensitivity, and NPV using all datasets irre-

spective of how ATB is diagnosed (culture-confirmed or clinical diagnosis).

Step 6: Identify gene signatures that meet the WHO TPP of 70% specificity at 90% sensitiv-

ity for a non-sputum-based triage test.

Step 7: Aggregate PPV and NPV at 2% prevalence for each signature across independent

datasets, while excluding the corresponding discovery datasets for each signature.

Step 7A: Aggregate PPV and NPV using only datasets where diagnosis of ATB is culture-

confirmed.

Step 7B: Aggregate PPV and NPV using all datasets irrespective of how ATB is diagnosed

(culture-confirmed or clinical diagnosis).

Step 8: Identify gene signatures that meet the FIND TPP of 5.8% PPV at 2% prevalence for

a test for predicting progression from LTBI to ATB.

Step 9: Identify gene signatures that meet the WHO TPP of>75% specificity and>75%

sensitivity for a test for predicting progression from LTBI to ATB.

In response to the comments by the reviewers, we performed bivariate meta-analysis to

assess DOR and its heterogeneity for each gene signature, along with FPR.

Gene signatures for comparison

In June 2018 we performed an extensive search of published gene signatures for distinguishing

patients with ATB from healthy controls or patients with LTBI or ODs. We searched the

National Center for Biotechnology Information (NCBI) repository of publications (PubMed)

for all publications describing a gene signature for the diagnosis of ATB. We included all

blood-based gene signatures that were specifically designed to diagnose ATB. We did not

exclude any studies because of study criteria or date. Search terms included the following: TB

(tuberculosis) gene signature, TB (tuberculosis) transcriptional signature, and TB (tuberculo-

sis) diagnostic. We identified 11 publications describing 16 gene signatures for the diagnosis of

ATB (Table 1) [17–27]. We note that we only considered gene signatures that were described

for diagnosis of ATB compared to healthy controls or patients with LTBI or ODs. For instance,

we did not include the 4-gene RISK4 signature by Suliman et al. [29] or the 16-gene correlates
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PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002786 April 23, 2019 5 / 19

https://doi.org/10.1371/journal.pmed.1002786


of risk signature by Zak et al. [28] as both signatures are designed to predict progression from

LTBI to ATB, not to diagnose ATB as a triage test.

Recreating corresponding classification models for each gene signature

For each of the 16 published signatures, we constructed a classification model as described in

the original paper to the best of our ability. We created and trained each classification model to

be as accurate a replica of the model in the original publication as possible, using the same data-

sets used in the original publication except where we were unable to access the original training

data (Table 1). In those instances, we trained the model on a different, suitable dataset as indi-

cated in Table 1. We confirmed that the classification models were successfully reconstructed

by comparing the performance of each model to the performance of the model as described in

the original publication (S1 Table). S1 Text provides a detailed description of each model.

Transcriptome datasets used for comparing signatures

We searched NCBI GEO and European Bioinformatics Institute (EBI) ArrayExpress in June

2018 using the following search terms: TB (tuberculosis) gene expression, TB (tuberculosis)

microarray, TB (tuberculosis) blood microarray, TB (tuberculosis) RNAseq, TB (tuberculosis)

blood RNAseq, TB (tuberculosis) peripheral blood mononuclear cells gene expression, TB

(tuberculosis) peripheral blood mononuclear cells microarray, and TB (tuberculosis) periph-

eral blood mononuclear cells RNAseq. We included all datasets that measured transcriptomes

from the blood of patients with ATB and at least 1 other group of individuals. We did not

Table 1. Gene expression signatures compared within this study.

Citation PubMed

PMID

GEO discovery dataset Signature

name

Indication Number of

genes

Statistical model Retraining

required

Anderson et al.

[19]

24785206 GSE39940 Anderson42 ATB vs LTBI 42 Difference of sums No

Anderson51 ATB vs ODs 51 Difference of sums No

Berry et al. [20] 20725040 GSE19491 Berry393 ATB vs (LTBI & HCs) 393 K-nearest neighbors Yes

Berry86 ATB vs ODs 86 K-nearest neighbors Yes

Bloom et al. [21] 23940611 GSE42834 Bloom144 ATB vs (ODs & HCs) 144 Support vector machine Yes

Laux da Costa et al.

[22]

26025597 GSE42834� daCosta3 ATB vs ODs 3 Random forest Yes

Jacobsen et al. [23] 17318616 GSE6112� Jacobsen3 ATB vs LTBI 3 Linear discriminant

analysis

Yes

Kaforou et al. [18] 24167453 GSE37250 Kaforou27 ATB vs LTBI 27 Difference of means No

Kaforou44 ATB vs ODs 44 Difference of means No

Kaforou52 ATB vs (LTBI & ODs) 52 Difference of means No

Leong et al. [24] 29559120 GSE101705 Leong24 ATB vs LTBI 24 Rigid logistic regression Yes

Maertzdorf et al.

[25]

26682570 GSE74092 Maertzdorf15 ATB vs (LTBI & HCs) 15 Random forest Yes

Maertzdorf4 ATB vs (LTBI & HCs) 4 Random forest Yes

Sambarey et al.

[26]

28065665 GSE37250� Sambarey10 ATB vs (LTBI & HCs

& ODs)

10 Linear discriminant

analysis

Yes

Sweeney et al. [17] 26907218 GSE19491, GSE37250,

GSE42834

Sweeney3 ATB vs (LTBI & ODs

& HCs)

3 Difference of geometric

means

No

Verhagen et al.

[27]

23375113 GSE41055 Verhagen10 ATB vs (LTBI & HCs) 10 Random forest Yes

Gene signatures are named by combining the last name of the first author followed by the number of genes in the signature.

�The diagnostic model for the signature was created using this dataset as the original training dataset was not available.

ATB, active tuberculosis; GEO, Gene Expression Omnibus; HC, healthy control; LTBI, latent tuberculosis infection; OD, other disease.

https://doi.org/10.1371/journal.pmed.1002786.t001
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exclude datasets based on collection date or sample number. We excluded datasets profiled

using quantitative PCR because they did not have enough coverage to capture all genes across

the 16 signatures included in our analysis. We identified 24 datasets containing 3,083 tran-

scriptome profiles from whole blood or PBMCs of patients with ATB and healthy controls or

patients with LTBI or ODs from 14 countries through an extensive search of 2 public data

repositories (NCBI GEO and EBI ArrayExpress) (Table 2). These datasets also include the 8

datasets that were used to derive the 16 gene signatures. We used these 24 datasets to compare

each of the 16 gene signatures for their ability to distinguish ATB from all other groups

(healthy controls, LTBI, and ODs). In most instances the method of diagnosis of patients with

ATB could be confirmed (as indicated under “diagnosis method” in Table 2); in some cases

the method of diagnosis could not be identified from the information available publicly. The

datasets included in this analysis were collected in 14 different countries and measures on 18

different platforms. In total these datasets include 3,083 individuals, of whom 944 were

patients with ATB at the time of sample collection.

Evaluation of model performance

We assessed the performance of each signature in each dataset using AUROC statistics that

were calculated for each model across all datasets not used in the discovery or training of the

model, as well as across only culture-confirmed cases not used in the discovery or training of

the model. In an effort to avoid bias against any model, the AUROC was calculated at the opti-

mal cut-point for each dataset/model combination. We used the R package OptimalCutpoints

to determine the AUROC and Youden index for each signature in each dataset. The optimal

cut-point was identified using the Youden method [33]. A weighted mean AUROC was then

calculated for each model. No universal cutoffs were used, but rather the most favorable cutoff

for each model under each condition.

Weighted mean statistics

The weighted mean AUROC was calculated as shown below in Eq 1, where d is the number of

datasets analyzed, AUROCi is the AUROC for a given dataset i, and ni is the number of sam-

ples within dataset i [34]:

weighted mean AUROC ¼

Xd

i¼1
AUROCi � ni
Xd

i¼1
ni

ð1Þ

The 95% confidence interval for the weighted mean AUROC was calculated by adding and

subtracting 1.96 times the standard deviation (SD) of the mean from the weighted mean

AUROC according to Eqs 2 and 3 below, where ω refers to the weighted sum of observations

squared, σ refers to the sum of observations squared, and δ refers to the degrees of freedom:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo � sÞ

ðdÞ

2

s

ð2Þ

95% CI ¼ weighted mean AUROC� ð1:96 � SDÞ ð3Þ
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Table 2. Transcriptome datasets used for comparison of 16 gene signatures for diagnosis of ATB.

GEO

accession

GEO

platform

Country Tissue Age

(years)

HIV

status

Diagnosis method HCs LTBI ATB ODs Total Notes

GSE19491 GPL6947 UK, South

Africa

Whole

blood

>17 Negative Sputum culture 117 69 61 193 440 ODs included staph, strep,

Still disease, systemic lupus

erythematosus, and pediatric

systemic lupus

erythematosus

GSE28623 GPL4133 The

Gambia

Whole

blood

16–53 Negative Sputum microscopy, chest

X-ray

37 25 46 108

GSE29536 GPL6102 UK Whole

blood

11–88 Negative 6 9 15 Only the TB dataset within

this series was used

GSE34608 GPL6480 Germany Whole

blood

17–73 Negative 18 8 18 108 OD samples were

sarcoidosis samples; controls

may have included some

IGRA-positive individuals

GSE37250 GPL10558 Malawi Whole

blood

>17 Some

positive

Sputum culture 167 195 175 537

GSE39939 GPL10558 Kenya Whole

blood

<15 Some

positive

Sputum culture 14 79 64 157

GSE39940 GPL10558 Malawi Whole

blood

<15 Some

positive

Sputum culture 54 111 169 334

GSE41055 GPL5175 Venezuela Whole

blood

<15 Negative 9 9 9 27

GSE42834 GPL10558 Germany Whole

blood

>17 Negative Sputum culture 118 40 123 281 ODs included sarcoidosis,

pneumonia, and lung cancer

GSE50834 GPL10558 South

Africa

PBMCs 30–40 Positive 23 21 44

GSE56153 GPL6883 Indonesia Whole

blood

>15 Negative Sputum microscopy, chest

X-ray, clinical presentation

18 18 36 HIV status not measured in

controls, but HIV has very

low prevalence in Indonesia

GSE54992 GPL570 China PBMCs 18–68 Negative Sputum microscopy, chest

X-ray, clinical presentation,

sputum culture

6 6 9 21 Dataset also included 18

treated samples not used in

this analysis; samples

confirmed with sputum

culture were not identified

GSE62147 GPL6480 Germany Whole

blood

15–79 Negative Sputum culture 14 12 26 OD was Mycobacterium
africanum

GSE62525 GPL16951 Taiwan PBMCs Negative 14 14 14 42

GSE69581 GPL10558 South

Africa

Whole

blood

>17 Positive Microbiologically

confirmed (method not

specified)

25 15 40 Dataset also included

samples with subclinical TB

GSE73408 GPL11532 US Whole

blood

>17 Negative Sputum culture 39 35 35 109

GSE79362 GPL11154 South

Africa

Whole

blood

12–18 Negative Sputum smear, sputum

culture

101 19 120 Longitudinal samples were

collected

GSE81746 GPL17077 India Whole

blood

25–65 Unknown 2 4 6

GSE83456 GPL10558 UK Whole

blood

Negative Granuloma biopsy, clinical

presentation with response

to therapy, radiology with

response to treatment,

sputum culture

61 45 49 155 ODs included sarcoidosis;

there were also

extrapulmonary TB samples

available from this dataset.

(Continued)
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Results

Our systematic search of the literature for published transcriptional signatures diagnosing

ATB against other clinical conditions identified 16 transcriptional signatures (Table 1) that

distinguished patients with ATB from 1 or more of the following: healthy controls, patients

with LTBI, or patients with ODs. Next, we searched 2 public data repositories (NCBI GEO and

EBI ArrayExpress) for gene expression datasets that profiled whole blood or PBMC samples

comparing patients with ATB to healthy controls or patients with LTBI or ODs. We identified

24 independent datasets consisting of 3,083 transcriptome profiles from 14 countries

(Table 2). Note that 8 of these 24 datasets were used to derive 1 or more of the 16 gene signa-

tures. Therefore, in order to ensure that the discovery cohort(s) of each signature did not bias

its overall performance, we removed the corresponding discovery cohort(s) for each signature

when computing the overall performance of each signature across all datasets. For example,

for the Verhagen10 signature, we removed GSE41055 when estimating the overall AUROC

and PPV, whereas for Sweeney3 we removed GSE19491, GSE37250, and GSE42834.

Overall, 630 genes were described across the 16 signatures, with the number of genes in a

signature ranging from 3 [17,22,23] to 393 [20] (Fig 1). A majority of the genes (81%) were in

only 1 signature. Every gene signature partially overlapped with at least 1 other signature. One

gene signature (Maertzdorf4) did not include a unique gene as it was derived from another

gene signature (Maertzdorf15).

Comparison of accuracy across only datasets with culture-confirmed

diagnosis of ATB

For each of the 16 gene signatures, we built a classification model by following the methods

described in the corresponding paper to the best of our ability. We found that the classification

model we created for each signature closely reproduced the AUROC reported in the corre-

sponding paper, though not exactly (S1 Table). We applied these “locked” models “as is” to

Table 2. (Continued)

GEO

accession

GEO

platform

Country Tissue Age

(years)

HIV

status

Diagnosis method HCs LTBI ATB ODs Total Notes

GSE83892 GPL10559 UK Whole

blood

>17 Positive Cerebral spinal fluid smear,

cerebral spinal fluid culture,

conventional and real-time

PCR of cerebral spinal fluid

17 99 116 ATB patients in this cohort

included patients with

complications from immune

reconstitution inflammatory

syndrome and TB

meningitis

GSE84076 GPL16791 Brazil Whole

blood

>18 Negative Sputum microscopy,

clinical presentation,

sputum culture

6 6 9 21 This dataset also included

some samples taken from

individuals after treatment

GSE101705 GPL18573 India Whole

blood

>6 Negative Sputum culture 16 28 44

GSE107731 GPL15207 Mongolia Whole

blood

Unknown 3 3 6

GSE107994 GPL20301 UK Whole

blood

16–84 Negative Sputum culture, sputum

PCR

119 118 53 290 Dataset included samples

from latent TB progressors

24

Datasets

14

countries

573 699 944 803 3,083

ATB, active tuberculosis; GEO, Gene Expression Omnibus; HC, healthy control; IGRA, Interferon Gamma Release Assay; LTBI, latent tuberculosis infection; OD, other

disease; PBMC, peripheral blood mononuclear cell; TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1002786.t002
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other datasets to assess the generalizability of each model for accurately distinguishing patients

with culture-confirmed ATB across independent datasets.

Across the 9 independent datasets with culture-confirmed ATB, 11 gene signatures had

weighted mean AUROC > 0.8, which suggests that many of the host-response-based signa-

tures tended to have generalizability (Table 3). However, 2 gene signatures (Verhagen10

and Anderson51) had weighted mean AUROC � 0.6. All but 2 gene signatures (Berry86

and Berry393) had high NPV (>98% at 2% prevalence) in culture-confirmed datasets. Sig-

natures with low AUROC or NPV (Verhagen10, Leong24, Anderson51, Berry86, and

Berry393) suggest that several signatures did not generalize to independent cohorts with

culture-confirmed diagnosis of ATB. Arguably, the lack of generalizability in these signa-

tures may be expected for several reasons. First, some signatures were derived using samples

from children (Verhagen10 and Anderson51). Second, a signature may not have been

derived to be generalizable. For instance, Anderson et al. [19] described 2 gene signatures

(Anderson42 and Anderson51) from the same dataset of children under 5 years of age for

distinguishing patients with ATB from patients with LTBI (Anderson42) or with ODs

(Anderson51), which may not generalize to adults. In contrast, the Sweeney3 signature,

which was derived using 3 independent cohorts of adults, generalized to children (age � 5

years) and adolescents (age 12–18 years). Across all culture-confirmed datasets, the Swee-

ney3 and Sambarey10 signatures had the highest accuracy in distinguishing patients with

ATB from healthy controls and patients with LTBI or ODs (specificity 74% at 90% sensitiv-

ity). Both signatures were the only signatures to meet the minimal WHO TPP for a triage

test in cohorts of patients with culture-confirmed diagnosis of ATB.

Fig 1. Distribution of genes across the signatures included in this study. Each row represents a gene signature for active tuberculosis diagnosis. Each column

represents 1 gene. The number at the end of a signature name represents the number of genes in the given signature. Genes present in only 1 signature are red; those

in 2 or more signatures are blue.

https://doi.org/10.1371/journal.pmed.1002786.g001
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Comparison of accuracy across all datasets for diagnosis of ATB

Next, we compared accuracy of the 16 signatures across all datasets irrespective of how ATB

was diagnosed, which included sputum microscopy and clinical presentation (Table 3).

Weighted mean AUROC for all but 3 signatures was lower than when only considering cul-

ture-confirmed datasets, although these decreases were not meaningful (�4% decrease).

Importantly, 3 signatures (Sambarey10, daCosta3, and Bloom144) had a substantial reduction

in AUROC (7%, 8%, and 7%, respectively), which results in their specificity at 90% sensitivity

decreasing by greater than 15%. None of the gene signatures met the minimal WHO TPP for

the triage test when including all datasets. The AUROC for the Sweeney3 gene signature

decreased by 4%, resulting in an overall specificity of 66% at 90% sensitivity, which was the

highest among all signatures when datasets were included irrespective of how ATB was diag-

nosed. Another signature (Kaforou52) also had specificity 62% at 90% sensitivity, but included

52 genes, a substantially higher number of genes than the Sweeney3 signature. Notably, we

found no correlation between the number of genes in a signature and the weighted mean

AUROC (R = −0.04, p = 0.86). Finally, 5 gene signatures (daCosta3, Verhagen10, Anderson51,

Berry86, and Berry393) had NPV (<98%) too low to be clinically useful as a triage test.

Comparison of accuracy for diagnosis of ATB using bivariate meta-analysis

The comparison of the 16 signatures can also be performed as a bivariate meta-analysis by

combining sensitivity and specificity from diagnostic tests across different datasets. We used

the R package mada to compare the 16 signatures by computing their DOR, heterogeneity in

DOR, and overall FPR. A clinically useful generalizable triage test should have low FPR and

high DOR with no heterogeneity across characteristics of patient populations such as genetic

background of host, Mtb strain, age, HIV co-infection, and bacillus Calmette–Guérin

vaccination.

Table 3. Weighted mean AUROC, specificity at 90% sensitivity, and NPV at 2% prevalence for ATB versus all other conditions across all datasets and across only

culture-confirmed datasets for each of the 16 gene signatures.

Signature Culture-confirmed datasets All datasets

AUROC (95% CI) Specificity (95% CI) NPV AUROC (95% CI) Specificity (95% CI) NPV

Sweeney3 0.89 (0.82–0.96) 0.74 (0.40–0.89) 0.99 0.85 (0.72–0.99) 0.66 (0.23–0.93) 0.98

Jacobsen3 0.86 (0.72–1.00) 0.68 (0.37–0.93) 0.99 0.83 (0.69–0.98) 0.59 (0.21–0.92) 0.99

daCosta3 0.83 (0.60–1.00) 0.65 (0.31–0.88) 0.99 0.76 (0.45–1.00) 0.50 (0.00–0.95) 0.94

Maertzdorf4 0.83 (0.74–0.91) 0.58 (0.28–0.82) 0.99 0.79 (0.64–0.95) 0.54 (0.24–0.79) 0.99

Sambarey10 0.90 (0.83–0.97) 0.74 (0.36–0.94) 0.99 0.82 (0.57–1.00) 0.59 (0.18–0.94) 0.99

Verhagen10 0.53 (0.46–0.60) 0.13 (0.11–0.19) 0.98 0.54 (0.41–0.68) 0.14 (0.00–0.32) 0.92

Maertzdorf15 0.82 (0.71–0.92) 0.58 (0.30–0.82) 0.99 0.79 (0.66–0.92) 0.54 (0.23–0.83) 0.99

Leong24 0.74 (0.53–0.95) 0.41 (0.12–0.63) 0.99 0.75 (0.54–0.95) 0.43 (0.04–0.77) 0.99

Kaforou27 0.86 (0.71–0.92) 0.66 (0.40–0.92) 0.99 0.83 (0.64–1.00) 0.62 (0.28–0.94) 0.99

Anderson42 0.84 (0.75–0.93) 0.61 (0.39–0.82) 0.99 0.82 (0.66–0.97) 0.58 (0.27–0.87) 1.00

Kaforou44 0.82 (0.67–0.97) 0.61 (0.27–0.80) 0.99 0.78 (0.56–1.00) 0.54 (0.12–0.85) 0.99

Anderson51 0.60 (0.42–0.79) 0.22 (0.00–0.44) 0.99 0.58 (0.33–0.82) 0.21 (0.00–0.52) 0.96

Kaforou52 0.87 (0.77–0.97) 0.67 (0.45–0.87) 0.99 0.84 (0.70–0.99) 0.62 (0.29–0.92) 0.99

Berry86 0.67 (0.44–0.90) 0.21 (0.00–0.76) 0.47 0.69 (0.36–1.00) 0.29 (0.00–0.65) 0.47

Bloom144 0.81 (0.61–1.00) 0.50 (0.10–0.64) 0.99 0.74 (0.52–0.96) 0.33 (0.00–0.65) 0.98

Berry393 0.72 (0.43–1.00) 0.40 (0.00–1.00) 0.74 0.71 (0.43–0.99) 0.34 (0.00–0.98) 0.66

ATB, active tuberculosis; AUROC, area under the receiver operating characteristic curve; NPV, negative predictive value.

https://doi.org/10.1371/journal.pmed.1002786.t003
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Four signatures (Sweeney3, Kaforou52, Kaforou44, and Anderson51) had no heterogeneity

irrespective of what datasets were used for analysis (only culture-confirmed or all datasets); the

remaining 12 signatures showed heterogeneity (Table 4). Among the 4 signatures with no het-

erogeneity, the Sweeney3 signature had the highest DOR with the lowest FPR (Table 4) irre-

spective of what datasets were used, and was the only signature using fewer than 10 genes.

Interestingly, when only culture-confirmed datasets were used, the daCosta3 signature had the

highest DOR (32.44), with no heterogeneity and a 26% FPR. However, when datasets with clin-

ical diagnoses of ATB were included, the daCosta3 signature had increased heterogeneity

(13.63%) and a very high FPR (45%). On the other hand, the Maertzdorf15 signature had sub-

stantial heterogeneity (19.07%) when using only culture-confirmed datasets, which decreased

to no heterogeneity when datasets with clinical diagnoses were included, without substantial

changes in DOR or FPR. These changes in heterogeneity and FPR depending on which data-

sets are used in the analysis further suggest that certain signatures may not be generalizable to

broad patient populations.

Signature performance predicting progression 6 months prior to ATB

diagnosis

Predicting progression from LTBI to ATB prior to sputum conversion is an important step in

reducing overall incidence of ATB. Previously, a 16-gene (CoR [28]) and a 4-gene (RISK4

[29]) signature have been described to identify individuals with a high likelihood of progres-

sion. CoR was derived from and validated in the Adolescent Cohort Study (ACS; GSE79362)

with validation AUROC = 69% with 66% sensitivity and 81% specificity. However, this signa-

ture was shown to have poor generalizability in the GC6-74 cohort from other African coun-

tries in a follow-up study. Therefore, we excluded CoR from our comparison. The second

signature, RISK4, was derived from the GC6-74 cohort and was shown to have AUROC = 69%

in the ACS [29]. Using the ACS, we compared the 16 gene signatures for their ability to predict

Table 4. Comparison of 16 gene signatures for diagnosis of ATB using bivariate meta-analysis.

Signature Culture-confirmed datasets All datasets

DOR (95% CI) Heterogeneity FPR (95% CI) DOR (95% CI) Heterogeneity FPR (95% CI)

Sweeney3 30.50 (14.95–62.24) 0 0.18 (0.13–0.26) 16.66 (11.56–24.00) 0 0.20 (0.16–0.24)

Kaforou52 21.05 (12.20–36.34) 0 0.23 (0.16–0.33) 14.05 (10.10–19.54) 0 0.23 (0.18–0.28)

Kaforou44 12.22 (6.04–24.71) 0 0.22 (0.16–0.30) 9.05 (6.42–12.74) 0 0.22 (0.17–0.29)

Anderson51 4.96 (2.86–8.59) 0 0.26 (0.09–0.53) 3.91 (2.90–5.26) 0 0.32 (0.20–0.46)

Jacobsen3 19.89 (10.72–36.89) 4.03 0.22 (0.16–0.30) 13.04 (9.54–17.82) 0 0.21 (0.17–0.26)

Kaforou27 17.21 (11.08–26.74) 1.13 0.25 (0.17–0.34) 13.85 (10.32–18.59) 0 0.23 (0.18–0.29)

Maertzdorf15 14.38 (8.04–25.70) 19.07 0.27 (0.21–0.34) 11.65 (8.37–16.22) 0 0.26 (0.20–0.31)

Maertzdorf4 13.82 (8.75–21.83) 0.73 0.24 (0.18–0.31) 9.69 (7.39–12.71) 3.06 0.28 (0.23–0.33)

Anderson42 11.26 (7.50–16.92) 4.8 0.28 (0.24–0.33) 10.65 (7.87–14.42) 8.39 0.26 (0.21–0.31)

Sambarey10 19.13 (10.38–35.25) 16.87 0.19 (0.13–0.28) 12.18 (8.54–17.37) 11.61 0.20 (0.17–0.24)

daCosta3 32.44 (14.90–70.63) 0 0.26 (0.13–0.44) 13.89 (8.14–23.71) 13.63 0.45 (0.28–0.64)

Verhagen10 1.85 (1.30–2.63) 21.43 0.47 (0.28–0.67) 2.90 (2.03–4.15) 21.02 0.47 (0.31–0.65)

Bloom144 9.94 (5.49–17.99) 50.55 0.21 (0.13–0.32) 6.69 (4.71–9.49) 23.29 0.24 (0.16–0.34)

Leong24 8.20 (4.75–14.16) 46.33 0.27 (0.18–0.39) 8.48 (5.96–12.06) 23.93 0.26 (0.19–0.34)

Berry393 17.72 (7.41–42.35) 33.39 0.16 (0.09–0.27) 9.26 (5.90–14.53) 25.48 0.45 (0.25–0.66)

Berry86 12.62 (4.98–31.99) 42.89 0.19 (0.04–0.57) 6.72 (3.81–11.85) 27.48 0.66 (0.35–0.87)

ATB, active tuberculosis; DOR, diagnostic odds ratio; FPR, false positive rate.

https://doi.org/10.1371/journal.pmed.1002786.t004
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progression from LTBI to ATB 6 months prior to sputum conversion. Because CoR was

derived from the ACS cohort and shown to be not generalizable to cohorts from other African

countries, we excluded the CoR signature from the comparison. We also excluded the RISK4

signature from further comparison as its performance characteristics are previously described

in the ACS cohort [29].

Seven out of 16 signatures had AUROC > 0.8 and PPV > 5.8% at 2% prevalence in the

ACS cohort (Table 5). Higher numbers of genes in a signature again did not correspond to a

substantial increase in the AUROC. Only 2 of these signatures (Sweeney3 and Jacobsen3) had

fewer than 10 genes. Interestingly, although the daCosta3 signature had the highest PPV

(14.60%) for predicting progression from LTBI to ATB, it had AUROC = 0.56. Sweeney3 had

the lowest number of genes with the highest AUROC (0.86, 95% CI 0.78–0.93) and PPV

(13.6%), which exceeded the FIND TPP for the progression test. Overall, these results demon-

strated that, in patients with LTBI, host response is able to identify those at high risk of pro-

gression to ATB prior to sputum conversion.

Discussion

In this study, we compared 16 gene signatures for distinguishing patients with ATB from

healthy controls or patients with LTBI or ODs using 24 independent datasets of>3,000 whole

blood or PBMC transcriptome profiles from 14 countries. Collectively, these datasets repre-

sented real-world heterogeneity observed in patients with TB. For instance, the samples col-

lected across 14 countries represented diversity in both host and pathogen genetics. Similarly,

some datasets profiled samples from children whereas others profiled samples from adults,

which represented heterogeneity in host response due to age. These data also represented het-

erogeneity in clinical practice as patients were diagnosed using different criteria (e.g., sputum

culture versus sputum microscopy).

Across these biologically and technologically heterogeneous data, our comparison found

that several gene signatures distinguished patients with ATB with moderate to high accuracy,

Table 5. AUROC, PPV, and NPV for progression from LTBI to ATB in the ACS cohort up to 180 days prior to diagnosis.

Signature AUROC (95% CI) PPV at 2% prevalence NPV at 2% prevalence

daCosta3 0.56 (0.50–0.62) 14.60 98.2

Sweeney3 0.86 (0.78–0.94) 13.60 99.4

Kaforou27 0.86 (0.78–0.94) 13.60 99.4

Kaforou52 0.87 (0.80–0.95) 13.20 100

Leong24 0.73 (0.62–0.83) 11.00 99.3

Jacobsen3 0.85 (0.76–0.93) 10.80 NC

Anderson42 0.85 (0.77–0.92) 8.80 99.5

Bloom144 0.68 (0.56–0.79) 8.30 98.9

Sambarey10 0.80 (0.72–0.89) 6.40 99.4

Kaforou44 0.83 (0.76–0.90) 6.20 99.4

Maertzdorf15 0.63 (0.56–0.69) 2.80 99.5

Anderson51 0.46 (0.34–0.58) 2.70 98.2

Maertzdorf4 0.51 (0.50–0.52) 2.00 99.5

Verhagen10 0.47 (0.45–0.49) 2.00 NC

Berry86 0.50 (0.50–0.50) 2.00 98.9

Berry393 0.50 (0.50–0.50) 2.00 NC

ACS, Adolescent Cohort Study; ATB, active tuberculosis; AUROC, area under the receiver operating characteristic curve; LTBI, latent tuberculosis infection; NC, not

calculated; NPV, negative predictive value; PPV, positive predictive value.

https://doi.org/10.1371/journal.pmed.1002786.t005
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although almost all signatures included a large number of genes, which severely restricts their

ability for cost-effective translation to clinical practice at the POC. Importantly, our analysis

found that a higher number of genes in a signature did not translate into higher accuracy

across biologically heterogeneous data. Only 2 gene signatures (Sweeney3 and Sambarey10)

satisfied the WHO TPP for a non-sputum-based triage test to identify which patients need fur-

ther testing for confirming ATB, when comparing the signatures using only datasets from

patients with culture-confirmed diagnosis of ATB.

When we included additional datasets that diagnosed ATB using other means (e.g., sputum

microscopy or clinical diagnosis), the accuracy of 13 signatures decreased such that no signa-

ture satisfied the WHO TPP for a non-sputum-based triage test. For the 2 signatures that satis-

fied the WHO TPP for a non-sputum-based triage test when using only culture-confirmed

datasets, the reduction in the AUROC and specificity of Sweeney3 was minimal

(AUROC = 0.85, specificity = 66%, and sensitivity = 90%), whereas Sambarey10 had a substan-

tial reduction of 15% in specificity. It is possible that inclusion of patients with ATB that was

not diagnosed using positive culture caused the reduction in accuracy and may underestimate

the accuracy of these signatures.

The inclusion of children in our analyses could have decreased the overall performance

regarding misclassification of cases because of the challenges in diagnosis of ATB in children.

GSE39939 and GSE39940, both of which were part of the same study [19], contained 157 and

334 samples (491 samples total), respectively, suggesting that the number of children in these

datasets was sufficient. Out of the 491 samples, 190 samples were from children with ATB, of

which 44 patients with ATB were sputum-negative; the remaining 146 children with ATB

were sputum-positive. When using children with sputum-positive ATB, we did not see a sub-

stantial decrease in overall performance compared to adults. However, when children with

clinically diagnosed or culture-negative ATB were included in our analysis, every gene signa-

ture had lower accuracy, similar to when including adults with clinically diagnosed or culture-

negative ATB. These results suggest that gene signatures for diagnosis of ATB based on host

response are not substantially affected by age, but by the possible inaccuracy of culture-nega-

tive clinical diagnosis of ATB.

We found that 7 signatures (Sweeney3, Kaforou27, Kaforou52, Jacobsen3, Anderson42,

Sambarey10, and Kaforou44) identified adolescents with LTBI who progressed to ATB up to 6

months prior to sputum conversion. Among these signatures, only Sweeney3 has been pro-

spectively validated in an active screening cohort to further demonstrate that host response to

Mtb is detectable in blood samples earlier [13]. These results further suggest that host-

response-based gene signatures could have substantial impact on the diagnosis of incipient

TB, which is defined as an asymptomatic phase with early disease [35]. Incipient TB may last

for up to 1 year approximately, during which a patient may be intermittently infectious by

shedding bacilli in the sputum. Although the exact definitions of LTBI and incipient TB may

be different, patients with LTBI progressing towards ATB in principle are similar to patients

with incipient TB. Our results suggest that host-response-based gene signatures should be fur-

ther explored for diagnosis of incipient TB in larger cohorts.

The ability of gene signatures for diagnosis of ATB to predict progression from LTBI to

ATB prior to sputum conversion and to diagnose ATB in active screening is additional indi-

rect evidence that suggests our estimates of accuracy for each gene signature may be underesti-

mates. Many of the samples labeled as LTBI but classified as ATB may be progressors with

subclinical ATB. Collectively, these results highlight the need for assessing the host-response-

based TB diagnostics in larger prospective cohorts.

An important contributing factor to the lower generalizability of several signatures is likely

the choice of underlying classification model. For instance, signatures using K-nearest-
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neighbors clustering as a model had the overall worst performance because of the lack of co-

normalization of data across datasets and platforms. Models based on K-nearest-neighbors

clustering benefit from co-normalized data; however, it is impractical, and may be very diffi-

cult, if not nearly impossible, to co-normalize data from different clinics using different

technologies.

Overall, when considering the feasibility of translating a gene signature as a POC test (e.g.,

number of genes, required specificity at 90% sensitivity, and robustness across datasets from

different geographic regions and clinical contexts), the Sweeney3 signature consistently ranked

among the best signatures. The signature has also been prospectively validated in at least 2

independent cohorts using reverse transcription PCR [11,30]. Collectively, the Sweeney3 sig-

nature has been now shown to (1) predict progression to ATB 6 months prior to sputum con-

version, (2) distinguish ATB in active screen, (3) track treatment response, and (4) stratify

patients with ATB at the time of diagnosis with high likelihood of subclinical ATB after treat-

ment. This robustness of Sweeney3 may be due to the fact that it was derived using 3 indepen-

dent cohorts that represented broad biological and technical heterogeneity. This is in line with

the observation by Suliman et al. [29] that a gene signature derived using a homogeneous

cohort from 1 country was not broadly applicable to patients from other countries with similar

genetic background. It is important to note that Sweeney3 is the only prospectively validated

signature among the 16 signatures compared here. Importantly, the ability of the Sweeney3

gene signature to identify patients with ATB in different clinical contexts and achieve the

WHO TPP using only 3 genes provides strong evidence for the potential of host-response-

based diagnostics to impact clinical practice.

Our analysis has a few limitations. First, we did not have access to the exact published mod-

els, or any hyper-parameters used to build the models, for some of the gene signatures com-

pared here. Therefore, we re-implemented these models to the best of our ability by following

the details in the corresponding papers. Hence, in the process of trying to build models that

reproduced as closely as possible the results reported in the corresponding paper, the choices

we made and hyper-parameters we inferred may have been different from the those in the

original models. This could have resulted in overfitting, which in turn may have resulted in

reduced generalizability of models in independent cohorts and underestimation of their accu-

racy. We recommend that when diagnostic signatures are published, the corresponding mod-

els should be made available, along with a list of hyper-parameters and coefficients to enable

reproducibility and comparison between models. Second, for some studies we were not able to

use the original training data as they were not available. We chose another dataset that was

similar to the discovery cohort described in the corresponding paper. This choice again may

have resulted in underestimation of accuracy. Therefore, if a model was extremely sensitive to

training data, overfitting may have happened. This limitation points to the need for sharing

underlying data used for building a classification model. Third, none of the datasets used in

our analysis included patients with nontuberculous mycobacteria infections. Therefore, it is

not possible to evaluate whether the signatures compared here can differentiate patients with

nontuberculous mycobacteria infections or ATB. Fourth, LTBI was defined using either a

tuberculin skin test (TST) or IGRA, which could have different implications for progression to

ATB. It is possible that patients identified as having LTBI using different diagnostic criteria

could have different transcriptome profiles. Our results showed that a few gene signatures

demonstrated consistently high accuracy across datasets irrespective of how LTBI was defined,

suggesting that host response to ATB is sufficiently different and robust to overcome the het-

erogeneity in clinical practice of how LTBI is defined. Importantly, our work described here

points to future studies of how existing data could be used to identify differences in the tran-

scriptomes of patients with LTBI diagnosed with TST or IGRA.
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Despite the limitations in re-implementation of current ATB diagnostic models, our com-

parison of 16 blood-based gene signatures strongly suggests the potential of using host-

response-based gene signatures for diagnosis of ATB. The fact that a subset of signatures per-

form with clinically useful accuracy across multiple datasets with no heterogeneity further sug-

gests that they should be explored in larger prospective cohorts for estimating their impact on

clinical practice, instead of creating more gene signatures. Further studies should compare

these signatures to investigate whether they are correlated with each other (identify the same

patients or miss the same patients). If different signatures correctly diagnose different patient

populations, it may be advisable to integrate these signatures in a single diagnostic model.

However, before validating these signatures in prospective cohorts, they must be published

and “locked” for other researchers to investigate such as we have done here. It is highly

unlikely that any of these signatures will be measured using RNA sequencing or microarrays

in resource-poor areas where TB is prevalent. Therefore, the prospective studies for these sig-

natures should be performed using technologies that are cost-effective when used on a large

scale. When host-response-based ATB diagnostics are validated in prospective studies, they

should be designed to facilitate the identification of a threshold that can be used in clinical

practice. Future prospective trials will also have to understand whether 1 threshold is sufficient

across different clinical contexts (e.g., progression from LTBI to ATB, active screening for

ATB, and treatment response) or multiple, better-tuned thresholds for each clinical context

are needed.

Conclusion

With the increasing number of blood-based signatures for diagnosis of ATB being proposed, it

is important to investigate whether measuring host response is appropriate and, if it is,

whether any of the existing signatures are able to meet the WHO TPP and should be investi-

gated for translation to clinical practice. We found that when using datasets with only culture-

confirmed diagnosis of ATB, only 2 signatures met the minimal WHO TPP for a non-sputum-

based triage test. No signature met the minimal WHO TPP when datasets with clinical diagno-

sis of ATB were included, which may be due to the lower accuracy of clinical diagnoses. Bivari-

ate meta-analysis of these signatures further showed that only 4 out of the 16 gene signatures

had no heterogeneity irrespective of which datasets were included in the analysis. Further, we

found that 7 signatures met the TPP for a test for predicting progression from LTBI to ATB.

Overall, across all comparisons, only the Sweeney3 signature had fewer than 10 genes, met the

WHO and FIND TPPs for a non-sputum-based triage test for diagnosis of ATB and predicting

progression from LTBI to ATB, and performed robustly with high DOR without heterogeneity

and the lowest FPR. We found that higher numbers of genes in a signature did not increase the

accuracy of the signature. Our results provide strong evidence for the potential of host-

response-based diagnostics in achieving the WHO goal of ending TB by 2035, and should be

pursued for clinical implementation.
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