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Abstract

Interscapular brown adipose tissue (iBAT) is formed during fetal development and stable for the life span of the mouse. In
addition, brown adipocytes also appear in white fat depots (wBAT) between 10 and 21 days of age in mice maintained at a
room temperature of 23uC. However, this expression is transient. By 60 days of age the brown adipocytes have disappeared,
but they can re-emerge if the adult mouse is exposed to the cold (5uC) or treated with b3-adrenergic agonists. Since the
number of brown adipocytes that can be induced in white fat influences the capacity of the mouse to resist the obese state,
we determined the effects of the nutritional conditions on post-natal development (birth to 21 days) of wBAT and its long-
term effects on diet-induced obesity (DIO). Under-nutrition caused essentially complete suppression of wBAT in inguinal fat
at 21 days of age, as indicated by expression of Ucp1 and genes of mitochondrial structure and function based upon
microarray and qRT-PCR analysis, whereas over-nutrition had no discernible effects on wBAT induction. Surprisingly, the
suppression of wBAT at 21 days of age did not affect DIO in adult mice maintained at 23uC, nor did it affect the reduction in
obesity or cold tolerance when DIO mice were exposed to the cold at 5uC for one week. Gene expression analysis indicated
that mice raised under conditions that suppressed wBAT at 21 days of age were able to normally induce wBAT as adults.
Therefore, neither severe hypoleptinemia nor hypoinsulinemia during suckling permanently impaired brown adipogenesis
in white fat. In addition, energy balance studies of DIO mice exposed to cold indicates that mice with reduced adipose
stores preferentially increased food intake, whereas those with larger adipose tissue depots preferred to utilize energy from
their adipose stores.
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Introduction

Interscapular brown adipose tissue (iBAT) in mice first appears

during the last days of gestation, matures during the sucking

period and remains at a relatively stable level throughout the life of

the animal [1,2,3]. In contrast, brown adipocytes, which are

induced in white fat depots by cold exposure or treatment with b3-

adrenergic agonists in adults (wBAT), first appear transiently in the

both subcutaneous and visceral fat depots at approximately 21

days of age [3]. Since the mice are maintained at normal room

temperature (23uC) at 21 days of age, this induction seems to be

independent of enhanced adrenergic signaling that normally

mediates cold-induced thermogenesis in adult mice [4,5]. Whereas

the differentiation of iBAT occurs during fetal development,

consistent with a function in maintenance of body temperature in

the newborn, the physiological function of wBAT in white fat

depots at weaning suggests that wBAT has a role in body weight

regulation; but, this is mere speculation. Increases in wBAT,

induced in several transgenic mice, generally cause resistance to

diet-induced obesity [6,7]. While providing proof of principle that

increases in wBAT can reduce obesity; nevertheless, these models

do not clarify the normal physiological function of wBAT. In a

genetic model based upon allelic variation in the induction of

wBAT in recombinant inbred strains (RI; AXB, BXA) of mice

upon adrenergic stimulation, the diet-induced obesity in mice fed a

high fat diet at a room temperature of 23uC does not correlate

with the potential induction of wBAT. However, when RI mice

with induced DIO are stimulated adrenergically by b3-adrenergic

agonists, RI mice with a greater capacity for induction of wBAT

lose more adipose tissue [8].

In an experiment aimed at determining the developmental basis

for non-genetic variation in diet-induced obesity in C57BL/6J

mice, we adapted published protocols to raise mice from birth to

weaning under-conditions of over- and under-nutrition [9,10,11].

We showed that restricted feeding (50% of the food consumed by

nursing dams fed ad libitum) of the nursing dam from birth to 21
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days of age (LUN group) led to a severe restriction of adipose tissue

mass development that strongly affects the capacity for diet-

induced obesity in adult mice [11]. Of particular interest was that

the under-nutritional protocol (LUN) reduced the expression of a

set of genes, associated with the cytoskeleton and caveolae

structures, in the inguinal fat of 10 day old mice in proportion

to their capacity for adipose tissue expansion.

Since the adipocytes or resident progenitors of the inguinal fat

in a the suckling mouse will also give rise to the brown adipocytes

that appear at 21 days of age [3], we used K-means cluster analysis

of the microarray data to determine whether the differentiation of

the wBAT would be affected by under-nutrition during early post-

natal development. Having observed that under-nutrition causes a

profound suppression of wBAT differentiation at 21 days of age,

we assessed the consequences of suppression of the brown

adipocyte differentiation program at 21 days on the capacity for

diet-induced obesity in mice fed a high fat diet from 8 to 16 weeks

of age. If the brown adipocytes in the white fat depots are involved

in the regulation of body weight, then suppression of brown

adipocyte differentiation by under-nutrition during early post-

natal development, that is, at 21 days of age, may reduce the

capacity for diet-induced thermogenesis and result in increased

diet-induced obesity in those adult mice that were under-

nourished during the lactation period. The results suggest that

DIO was not enhanced in adult mice with a history of under-

nutrition compared to control mice and that the induction of

brown adipocytes in white fat depots of adult mice by exposure to

an ambient temperature of 4uC for one week was not impaired by

under-nutrition during early post-natal development.

Results

Suppression of gene expression during wBAT
differentiation by under-nutrition during early
development

To identify the regulatory pathways associated with environ-

mentally-dependent and genetically-independent modulation of

adipose tissue expansion during early development, microarray

analyses were performed on RNA from inguinal fat of C57BL/6J

mice in the Control, LUN and LON groups at 5,10, 21, 56 and

112 days of age (for nutritional protocol see [11] ). K-means cluster

and Venn analysis revealed a set of genes that were expressed in

parallel with the rate of fat mass accumulation, that is, expression

reach their highest levels at 5 and 10 days of age and then again at

112 days of age following 8 weeks on a high fat diet, whereas the

lowest levels of expression were at 21 and 56 days of age [11]. The

major genes present in this set encoded components of the

caveolae and cytoskeleton, which have previously been implicated

in fat mass expansion [12,13,14].

During the course of the analysis of microarray expression data

for adipose tissue expansion we uncovered a K-means cluster of

genes with patterns of expression similar to Ucp1 (Fig. 1A). These

genes could be associated with the developmental induction of

brown adipocytes in white fat depots. Under standard control diet

these genes showed a peak of expression at 21 days of age,

consistent with previous studies based upon qRNA, immunoblot

analysis of protein markers and immunohistology of brown fat

adipogenesis [3]. A striking feature of the expression pattern in the

Ucp1- gene cluster was the huge reduction in gene expression in

mice from the under-nourished group (LUN). BAT marker genes

especially suppressed by under-nutrition were Ucp1(7 fold),

Fabp3(7-fold) and Cidea (2-fold) (Fig. 1B). Although not so severely

suppressed as Ucp1, the major class of genes within this Ucp1-gene

cluster encoded components of mitochondrial structure and

metabolism, including those of electron transport and oxidative

phosphorylation, the TCA cycle, fatty acid oxidation and reactive

oxygen species (180 genes were in the K-means cluster of which

,30% encode proteins located in the mitochondria). A partial list

of the mitochondrial associated genes in the cluster is shown in

Table 1. One interpretation of the gene expression data is that the

transient induction of the brown fat differentiation program at 21

days of age is accompanied by a doubling of the mitochondria

content of inguinal fat, evident by the 2 fold increase in gene

expression, which normally occurs under control nutritional

conditions. The suppression of induction in mitochondrial gene

expression in the under-nutrition group essential results in a flat

profile for the virtually all of the genes associated with electron

transport and oxidative phosphorylation (Figure 2).

Evident also in Figure 2 is the remarkable coordinated

suppression in the isoforms of the complexes of mitochondrial

respiratory chain, suggesting that the overall brown adipocyte

differentiation program, which includes brown fat specific genes i.e

Ucp1, as well as the large repertoire of genes of the mitochondria,

fails to occur during lactation under-nutrition. The gene

expression data in Figure 2 is based upon the K-means cluster

illustrated in Figure 1A. This cluster analysis does not contain all of

the genes encoding components of the respiratory complexes for

analytical reasons. That is, inspection of the complete microarray

gene expression lists indicates that the other isoforms associated

with the respiratory complexes were similarly suppressed by

under-nutrition, but the Z-scores for these genes failed to include

them in the clusters. From the perspective of the relation of Ucp1

expression to limit the development of excess adiposity in state of

positive energy balance, it is noteworthy that over-nutrition by

feeding dams a high fat diet and reducing the number of pups to 4

per dam did not significantly increase expression of Ucp1 or any of

the genes of mitochondrial function compared to the control diet

(Table 1). Accordingly, a highly positive energy balance during

post-natal development does not enhance expression of genes of

brown fat structure and function. Finally, under-nutrition (LUN)

did not significantly affect the classical markers of white

adipogenesis, that is, expression of lipoprotein lipase, the

cytoplasmic NAD-linked glycerol-3-phosphate dehydrogenase,

stearoyl-CoA desaturase 1, FABP4, adiponectin, adiponectin

receptors 1 and 2 and resistin are not significantly suppressed at

post-natal day 21 or for that matter at other days of age (see data

in GEO repository, accession number GSE19809).

Under-nutrition suppresses selective putative regulatory
pathways associated with Ucp1 expression and wBAT
differentiation

In this study the wBAT differentiation program has been

submitted to a microarray analysis of gene expression involving the

interaction of developmental and nutritional variables that

generated 15 independent experimental groups. Each group was

composed of 12 mice from which RNA was isolated, pools were

constructed with the equal aliquots of RNA from each mouse and

then microarrays were performed on each RNA pool in triplicate.

Regression analysis of the quantification of RNA expression for 8

genes by qRT-PCR vs microarray data obtained from the ABI

1700 system showed that with one exception the correlation

coefficient R ranges between 0.82 and 1.00 with R for the

combined analyses equal to 0.92 [11]. Thus, a high degree of

confidence can be given to the quantitative microarray data. In the

preceding section we have shown how diet and development have

interacted to create highly coordinate expression patterns for

components of functional mitochondria and gene products unique

to the brown adipocyte, that is, Ucp1 and respiratory complexes.

Under-Nutrition & Development of Brown Adipocytes
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Figure 1. Genomic analysis of regulatory factors for wBAT induction during early development. A. Heat map of changes in gene
expression in a K-means cluster of 180 genes with an Ucp1-like profile in inguinal fat of mice at 5, 10, 21, 56 and 112 days of age under control (C),
under-nutrition (U) and over-nutrition (O) conditions from birth to 21 days of age. From 21 days of age until 56 days of age all mice were fed a low fat

Under-Nutrition & Development of Brown Adipocytes

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e30392



What can the variation in gene expression in this nutrition study

reveal about the regulatory factors of wBAT development?

The major research strategy towards the identification of

regulatory components, both transcriptional and signaling, for

induction of the brown fat differentiation program has been based

upon correlations of transgenic, over-expression of a putative

factor, for example FOXC2 and PRDM16 by the aP2 promoter,

or from the appearance of the brown fat phenotype in KO mice.

Approximately 20 genes have been shown to affect the wBAT

phenotype using these strategies [15]. Accordingly, a comparison

of changes in transcription factors implicated from gene targeting

and over-expression in transgenic mice as well as those from

genetic QTL studies will provide an independent test of the

significance of nutrition environment on the differentiation of

wBAT. As shown in Fig. 1B, the effects of under-nutrition on the

expression of marker genes of wBAT differentiation are striking.

The expression profiles of 8 regulatory factors previously linked to

wBAT induction are shown in Fig. 1C and Fig. 1D. Only Ppara

and Ppargc1b showed strong correlations with Ucp1 expression as

evident from the changes in expression from both a developmental

and nutrition perspective. The strong similarities in profiles for

these factors to Ucp1 and the correlation analysis of expression

data (correlation coefficients of R = 0.967 and 0.925 for Ppara and

Ppargc1b, respectively) suggest the function of these 2 factors are

strongly linked to induction of wBAT at 21 days of age (Table 2).

Pparg and Ppargc1a, have expression profiles and the high levels of

expression indicating that they have other functions linked to

white fat development and the nutritional environment. Other

factors, such as Prdm16, Foxc2 and Rbl1 have RNA profiles and

expression levels that do not appear to relate to the profile of either

brown or white fat development. However, this study does not

address whether the genes in Fig. 1D may play critical roles in the

early stages of wBAT differentiation at the progenitor or precursor

stages.

Table 1 also has gene expression data on the mice that were in

the over-nutrition protocol (LON). One would predict that if a

high fat obesogenic environment, such as that in the LON

protocol, induced brown fat thermogenesis, then the Ucp1-K-

means cluster would have many genes with higher expression in

the LON mice than in mice under control dietary conditions.

Inspection of the ratio C21/LON21 of Table 1 does not indicate

that expression of BAT associated genes was higher in the LON21

group. Actually most genes have slightly lower expression in LON

mice.

Effects of under-nutrition on diet-induced obesity in
adult mice

If the suppression of wBAT at 21 days of age by under-nutrition

reduces overall thermogenesis, this may become evident in mice

during induction of diet-induced obesity (DIO). We evaluated

DIO in under-nourished mice under standard conditions at an

ambient temperature of 23uC and subsequently when the mice

were cold challenged by exposure to the cold (4uC) for 1 week

(Fig. 3A). DIO was determined on 16 week old mice fed a high fat

diet from 8 to 16 weeks of age and maintained at 23uC for the

duration of the high fat feeding (Figure 3) or, as indicated in

Figure 3A, a subgroup of mice were exposed to the cold (4uC) from

week 15 to 16 (day 105 to112) while also remaining on the high fat

diet. Body weight, fat mass, lean mass and food intake were

measured during the course of the dietary protocol. The changes

in body weight and adiposity at 23uC were very similar to those

observed in previous experiments, showing that the major

difference among the control, LON and LUN groups were in

the reductions in diet-induced obesity in the LUN group [11].

After 105 days in the protocol, the difference in body weight and

fat mass between the control and LUN group where highly

significant; however, differences in body weight changes from 98

to 105 days did not reach significance Fig. 3B and food intake per

g of lean mass was not different (Fig. 3C). When the ambient

temperature was reduced to 4uC for 7 days a rapid reduction in

body weight due to fat mass loss occurred in the 3 nutritional

groups of mice (Fig. 3A and Fig. 3D). The loss in body weight was

significantly less in the LUN group. Estimates of feeding efficiency

indicated that food intake per gm lean mass was significantly

greater in the 3 nutritional groups maintained in the cold and it

was significantly higher in the LUN group than in the control and

LON group (Fig. 3E). A summary of energy intake and

expenditure during the week in the cold showed that while total

energy expenditure was not significantly different for the 3

nutritional groups, the source of energy to maintain body

temperature differed, that is, the LUN group increased energy

reserves from food intake in order to consume less energy from

smaller body fat stores (Fig. 3F). This may reflect a mechanism to

defend a minimal fat mass.

Expression of genes of brown adipocytes in the inguinal
fat and interscapular brown fat of adult mice

The energy balance phenotypes in the 3 nutrition groups fed a

high fat diet and then exposed to the cold showed that the

suppression of brown adipocyte differentiation in 21 day old mice

did not have long term effects on thermogenesis and DIO. LUN

mice were capable of withstanding a week at 4uC indicating that

their capacity for thermogenesis to defend body temperature for

an extended time was not impaired. The higher level of food

intake in LUN mice with reduced fat mass to lean mass, during

cold exposure for 1week suggests that mice in environmental

conditions that demand high energy expenditure will modulate

food intake in an inverse proportion to their adiposity, rather than

deplete their fat depots. The obesity and cold tolerance

phenotypes suggested that brown fat thermogenesis was not

impaired in adult LUN mice. We quantified the expression levels

of key genes of BAT function at 21 days of age in inguinal fat and

iBAT of control, LUN and LON mice. The data shows that

under-nutrition suppressed expression of each of these genes in

LUN mice (Fig. 4), but expression levels in control and LON mice

were indistinguishable. In the iBAT modest suppression by under-

nutrition was observed for Ucp1, PPARa and Prdm16, but several

other genes were not affected (Fig. 4).With respect to the inguinal

fat (Fig. 4), except for the Lep and Mest genes which showed

expression that was reduced by cold exposure (data not shown),

each of the BAT marker genes have similar very low levels of

expression in the both Control and LUN groups at 23uC and all

showed equivalent levels of induced expression following cold

exposure (Fig. 4). An exception was the absence of induction by

cold for Prdm16 in inguinal fat of 112 day old mice. Thus, it

appears that inguinal fat, in which under-nutrition suppressed the

brown fat program at 21 days of age, was able to recover fully its

ability to induce brown adipocytes in adult animals to a level

chow diet and from 56 to 112 days of age they were fed a high fat diet as described [11]. B. Expression profiles of Ucp1/BAT marker genes; C. a set of
genes encoding regulatory factors with profiles similar to Ucp1; D. A set of putative regulatory factors for Ucp1 expression in BAT in which their
profiles do not correspond to that of Ucp1.
doi:10.1371/journal.pone.0030392.g001
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Table 1. Effects of malnutrition on genes expressed in mitochondria of inguinal fat.

Gene_Symbol Gene_Name D21-CONT D21-LUN D21-LON C 21/LUN21 C21/LON21

Brown fat specific genes

Ucp1 uncoupling protein 1 (mitochondrial, proton carrier) 1.08E+06 1.58E+05 1.07E+06 6.84 1.01

Cidea cell death-inducing DNA fragmentation factor 1.48E+06 6.70E+05 1.07E+06 2.21 1.39

Mitochondrial ETC

Complex I Ndufa8 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8 4.09E+05 2.56E+05 3.13E+05 1.60 1.31

Ndufb6 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6 6.38E+05 2.75E+05 4.43E+05 2.32 1.44

Ndufs2 NADH dehydrogenase (ubiquinone) Fe-S protein 2 2.23E+05 1.35E+05 1.49E+05 1.65 1.50

Ndufs7 NADH dehydrogenase (ubiquinone) Fe-S protein 7 3.66E+05 2.17E+05 2.11E+05 1.68 1.73

Ndufs8 NADH dehydrogenase (ubiquinone) Fe-S protein 8 1.67E+05 1.03E+05 1.08E+05 1.63 1.55

Ndufv1 NADH dehydrogenase (ubiquinone) flavoprotein 1 3.18E+05 2.22E+05 3.05E+05 1.43 1.04

Ndufv2 NADH dehydrogenase (ubiquinone) flavoprotein 2 5.42E+05 3.18E+05 3.04E+05 1.70 1.78

Ndufs3 NADH dehydrogenase (ubiquinone) Fe-S protein 3 2.78E+05 1.70E+05 1.49E+05 1.64 1.86

Complex II Sdhb succinate dehydrogenase complex, subunit B 1.33E+06 6.47E+05 8.81E+05 2.06 1.51

Sdhc succinate dehydrogenase complex, subunit C 3.09E+05 1.63E+05 2.42E+05 1.90 1.28

Sdhd succinate dehydrogenase complex, subunit D 5.94E+05 2.71E+05 3.65E+05 2.19 1.63

Complex III Uqcrc1 ubiquinol-cytochrome c reductase core protein 1 2.06E+05 1.19E+05 1.37E+05 1.74 1.51

Uqcrc2 ubiquinol cytochrome c reductase core protein 2 7.59E+05 3.58E+05 5.79E+05 2.12 1.31

Complex IV Cox11 COX11 homolog, cytochrome c oxidase assembly protein 2.22E+04 1.40E+04 1.74E+04 1.58 1.28

Cox17 cytochrome c oxidase, subunit XVII assembly protein 2.90E+05 1.88E+05 2.55E+05 1.54 1.14

Cox5a cytochrome c oxidase, subunit Va 7.98E+05 3.95E+05 4.75E+05 2.02 1.68

Cox5b cytochrome c oxidase, subunit Vb 2.44E+05 1.81E+05 1.85E+05 1.35 1.32

Cox7a1 cytochrome c oxidase, subunit VIIa 1 4.12E+05 1.79E+05 4.59E+05 2.30 0.90

Cox7b cytochrome c oxidase subunit VIIb 1.31E+06 6.29E+05 8.77E+05 2.09 1.50

Cox8b cytochrome c oxidase, subunit VIIIb 1.83E+06 9.50E+05 1.35E+06 1.92 1.36

Complex V Atp5d ATP synthase, H+ transporting, mitochondrial F1 complex 3.86E+05 2.01E+05 3.01E+05 1.92 1.28

Atp5e ATP synthase, H+ transporting, mitochondrial F1 complex 3.32E+05 2.35E+05 3.71E+05 1.42 0.89

Atpaf2 ATP synthase mitochondrial F1 complex assembly factor 2 3.97E+04 1.92E+04 3.20E+04 2.07 1.24

Miscellaneous ET proteins

Etfb electron transferring flavoprotein, beta polypeptide 4.15E+05 2.57E+05 2.50E+05 1.61 1.66

Fatty acid metabolism

Acss1 acyl-CoA synthetase short-chain family member 1 1.81E+04 1.24E+04 1.61E+04 1.46 1.13

Dci dodecenoyl-Coenzyme A delta isomerase 4.51E+05 2.80E+05 2.71E+05 1.61 1.66

Fabp3 fatty acid binding protein 3, muscle and heart 3.27E+05 4.64E+04 2.22E+05 7.05 1.47

Gyk glycerol kinase 1.57E+04 7.19E+03 2.02E+04 2.19 0.78

Hadhb hydroxyacyl-Coenzyme A dehydrogenase 2.03E+05 1.01E+05 1.88E+05 2.01 1.08

Hadhsc L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain 3.56E+05 2.18E+05 2.45E+05 1.63 1.45

Acaa2 acetyl-Coenzyme A acyltransferase 2 3.30E+05 1.61E+05 3.21E+05 2.05 1.03

Acad8 acyl-Coenzyme A dehydrogenase family, member 8 2.34E+04 1.65E+04 1.80E+04 1.41 1.30

Acads acyl-Coenzyme A dehydrogenase, short chain 9.82E+04 5.80E+04 8.30E+04 1.69 1.18

Acadvl acyl-Coenzyme A dehydrogenase, very long chain 1.42E+06 7.50E+05 1.03E+06 1.90 1.38

Cpt1b carnitine palmitoyltransferase 1b, muscle 1.66E+04 7.74E+03 1.29E+04 2.14 1.28

Mlycd malonyl-CoA decarboxylase 4.25E+04 2.97E+04 3.30E+04 1.43 1.29

Slc25a20 mitochondrial carnitine/acylcarnitine translocase 7.81E+04 5.07E+04 9.68E+04 1.54 0.81

TCA cycle

Aco1 aconitase 1 2.16E+04 1.49E+04 1.82E+04 1.44 1.18

Aco2 aconitase 2, mitochondrial 8.56E+05 4.64E+05 5.52E+05 1.84 1.55

Idh3g isocitrate dehydrogenase 3 (NAD+), gamma 3.61E+05 2.40E+05 2.80E+05 1.51 1.29

Suclg1 succinate-CoA ligase, GDP-forming, alpha subunit 6.35E+04 4.00E+04 7.33E+04 1.59 0.87

Under-Nutrition & Development of Brown Adipocytes
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similar to mice raised under control conditions. These data at the

gene expression level are consistent with the adiposity phenotypes

described in Fig. 3, that is, the suppression of expression of brown

adipocyte genes in LUN mice at 21 days of age is not retained nor

reflected in thermogenic phenotypes of adult LUN mice exposed

to the cold. The lower adiposity in adult LUN mice during DIO is

due to a lower capacity for adipose tissue expansion, a trait that is

set between 5 and 10 days of age and which persists into adulthood

[11]. Cold exposure modestly induced Ucp1 and Ctp1b expression

in the iBAT of mice at112 days of age (Fig. 4), but it is

questionable whether this induction is biologically significant.

Discussion

As defined by Ucp1 mRNA levels, the magnitude of brown

adipocyte induction in white fat depots of mice by cold exposure

or treatment with adrenergic agonist maybe as low as 2 fold or as

high as 100 fold. This variation depends upon the specific fat

depot; the fold induction is higher in retroperitoneal fat and

epididymal fat compared to inguinal fat. The genetic background

is also a key factor, some mice such as A/J and the recombinant

inbred strains AXB8 and AXB15 are high inducers, whereas

others (i.e. C57BL/6J and AXB10) are low inducers [8]. Among

white fat depots there is a strong correlation between the number

of brown adipocytes induced and the level of Ucp1 expression [8].

It is unknown whether the level of Ucp1 expression/cell is higher in

some brown adipocytes than others. In contrast to this high

variability in the induction of wBAT, iBAT mass and its level of

Ucp1 expression is relatively stable. Under a variety of environ-

mental conditions a 2-fold increase in cell number through cell

proliferation and/or a doubling of Ucp1 mRNA levels in iBAT

occurs [16,17]. If the mice are maintained at thermoneutrality for

a period of time before cold exposure, then the overall fold

induction of Ucp1 from baseline will be a higher [18]. This

comparatively low variation in iBAT expression may reflect the

fact that iBAT is an indispensible thermogenic mechanism that

must be fully functional immediately upon birth to ensure the

survival of the newborn (note: Ucp12/2 mice on an inbred , as

opposed to a hybrid genetic background have difficulty surviving

the first few days of life at an ambient temperature of 23uC [19]).

Low levels of UCP1 in the mouse cannot be tolerated. On the

other hand, the physiological need for the transient developmental

appearance of brown adipocytes in white fat depots at weaning is

not immediately obvious, nor is its rapid induction in adult mice

by adrenergic stimulation. This high variability in wBAT offers an

opportunity to explore the relationship between variation in brown

adipocyte numbers and physiology as a consequence of nutritional

variation during the early developmental period.

In an experiment primarily designed to assess the effects of

malnutrition during early post-natal development on the capacity

for white adipose tissue expansion, our microarray analysis of gene

expression showed that under-nutrition caused a severe suppression

of Ucp1 and other genes of the brown fat differentiation program.

The obvious question arose as to the effects of this suppression of

brown adipocyte induction in white fat depots at weaning on the

long term expression of brown adipocytes and the effects on diet-

induced obesity. Surprisingly, while under-nutrition from birth to

weaning strongly suppressed the transient induction of wBAT

development at 21 days of age, this attenuation had no long-term

effects on either diet-induced obesity or cold-induced thermogenesis

in adult mice. Mice with a history of under-nutrition were able to

tolerate one week in the cold at 4uC. If wBAT is a source of diet-

induced thermogenesis that can reduce obesity in mice exposed to

an obesogenic environment [20], then mice with suppression of

Gene_Symbol Gene_Name D21-CONT D21-LUN D21-LON C 21/LUN21 C21/LON21

Suclg2 succinate-Coenzyme A ligase, GDP-forming, beta
subunit

5.85E+04 4.19E+04 4.82E+04 1.39 1.21

Mdh2 malate dehydrogenase 2, NAD (mitochondrial) 1.03E+06 6.74E+05 9.00E+05 1.53 1.14

Ogdh oxoglutarate dehydrogenase (lipoamide) 3.04E+05 1.19E+05 3.26E+05 2.56 0.93

Pcca propionyl-Coenzyme A carboxylase, alpha polypeptide 3.29E+05 1.66E+05 2.15E+05 1.98 1.53

Mcee methylmalonyl CoA epimerase 1.92E+05 1.01E+05 1.25E+05 1.91 1.53

Mitochondrial protein transporters

Timm17a translocase of inner mitochondrial membrane 17a 9.24E+04 5.39E+04 7.52E+04 1.71 1.23

Timm44 translocase of inner mitochondrial membrane 44 2.29E+04 1.87E+04 1.70E+04 1.22 1.34

Tomm40l translocase of outer mitochondrial membrane 40
homolog-like

3.67E+04 2.62E+04 3.08E+04 1.40 1.19

Reactive oxygen species

Prdx3 peroxiredoxin 3 4.18E+05 2.85E+05 4.19E+05 1.46 1.00

Sod2 superoxide dismutase 2, mitochondrial 3.62E+05 1.57E+05 2.48E+05 2.31 1.46

Txn2 thioredoxin 2 7.79E+04 4.73E+04 5.54E+04 1.65 1.40

Mitochondrial protein synthesis

Mrpl16 mitochondrial ribosomal protein L16 5.67E+04 3.20E+04 4.20E+04 1.78 1.35

Mrpl43 mitochondrial ribosomal protein L43 8.63E+04 4.73E+04 6.99E+04 1.82 1.23

Mrpl9 mitochondrial ribosomal protein L9 6.15E+04 3.60E+04 4.57E+04 1.71 1.34

Mrps36 mitochondrial ribosomal protein S36 3.25E+05 1.60E+05 2.96E+05 2.03 1.10

Values in the columns D21-CON, D21-LUN and D2-1LON are teg average for data from 3 microarrys for each nutrtional group at 21 days of age. In the 2 columns on the
right, C21 is control diet at day 21; LUN21 is under-nutrition at day 21 and LON21 is over-nurtion at day 21.
doi:10.1371/journal.pone.0030392.t001

Table 1. Cont.
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Figure 2. Genomic analysis of genes of respiration and oxidative phosphorylation. Comparison of expression profiles of genes in the Ucp1
K-means cluster that encode components of the respiration, Complexes I to IV, and ATP synthase, Complex V, during control (graphs on the left) and
under-nutrition (graphs on the right) dietary conditions as described in the Legend to Figure 1 and EXPERIMENTAL PROCEDURES.
doi:10.1371/journal.pone.0030392.g002
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wBAT should be less able to activate diet-induced thermogenesis

and consequently be more obese. This clearly did not occur, since

mice from the under-nourished group had reduced diet-induced

obesity. Alternatively, under-nourished mice with suppressed

wBAT could be less susceptible to diet-induced obesity because

they would be required to use alternative thermogenic mechanisms

that are calorically more costly to regulate body temperature, as we

have postulated for UCP1-deficient mice [21]. Although the under-

nourished mice had reduced diet-induced obesity, the cause was not

from a deficiency in BAT, as shown by the similar levels of brown

adipocyte gene expression in iBAT and wBAT in adult mice,

irrespective of their nutrition during early development (Fig. 4). The

recovery of wBAT expression in adult mice exposed to under-

nutrition during early development suggests a plasticity in its

expression that is perhaps derived from its inherent variability. This

plasticity, that is, recovery of wBAT in adult mice, suggests that

neither the severe hypoleptinemia nor hypoinsulinemia from birth

to weaning have a long-term impact on the development of BAT in

inguinal fat depots [11]. Furthermore, although we have no data on

sympathetic nervous activity during early post-natal development, it

is well known that under-nutrition suppresses the sympathetic

nervous system [22]. While a reduction in sympathetic signaling

could have been involved in the suppression of the wBAT

phenotype at 21 days of age, it had no permanent effects on the

capacity of wBAT in under-nourished mice to recover a functional

BAT phenotype when subsequently fed a normal diet ad libitum. In

short, if leptin, insulin and adrenergic signalling have effects on

wBAT development and differentiation during early development,

they are transient and do not affect the permanent differentiated

state of the brown adipocyte in white fat depots.

A key finding of this study is that mice with suppression of wBAT

at 21 days of age had recovered their normal levels of brown fat

specific gene expression in the inguinal fat of the diet-induced mice

at 112 days of age. The observed energy balance phenotypes

discussed above are consistent with the recovery of wBAT, that is,

the mice tolerated the cold, they were not obese and although the

under-nourished mice were leaner than the controls and over-

nourished, this phenotype is not due to the effects of wBAT. This

leanness is a consequence of the fact that under-nutrition attenuates

the capacity for white adipose tissue expansion , which is already

well established in 10 day-old mice long before wBAT induction

occurs [3,11]. The recovery of brown fat expression in the inguinal

fat of adult mice with DIO underscores the plasticity of wBAT,

evident by an ability to restore normal patterns of expression

following severe suppression of a phenotype by under-nutrition.

This recovery of structure and function is another manifestation of

plasticity of wBAT, previously observed as fat pad specific variation

in wBAT [8], high inducibility by cold or b3-adrenergic agonists in

adult fat depots[4,5,8,23] and in the genetic variability in induction

found among inbred strains of mice [8]. In contrast iBAT shows

very little genetic variability [3,24,25,26]. The molecular basis of the

inherent instability/plasticity of wBAT, as shown by the transient

nature of its expression during development and its capacity to

recover completely from severe suppression by under-nutrition

during early post-natal development, is of great interest to studies

aimed at manipulation of wBAT thermogenic activity.

The regulatory mechanisms for induction of brown adipose

tissue during development and in response to diet, hormones and

ambient temperature are becoming increasingly complex.

Transgenic in vivo experiments and cell culture-based genetic

manipulation have implicated at least 20 transcription and signaling

factors as necessary for induction of the brown adipocyte

differentiation program (for reviews see [15,27]). The basic

underlying experimental rationale for these studies posits that if

over- or under expression of a candidate factor causes an induction

or suppression of Ucp1 and/or a multi-locular morphology in a cell

culture or animal tissue, then evidence for a function role for this

factor in BAT differentiation is in hand. Although this approach has

provided plausible candidates; nevertheless; many of these trans-

genic models are often difficult to evaluate because the effective

concentrations of transcription factors up-regulated by the powerful

aP2 promoter or completely ablated by gene targeting lie outside the

range of normal physiology. In some cases the quality of the

phenotyping of the targeted mice does not provide unequivocal

support for an increase in brown adipocyte differentiation in a tissue

[15]. Equally important, at this time no plausible regulatory model

has emerged that can integrate the assortment of factors revealed by

the transgenic and knockout models.

Table 2. Correlation analysis between Ucp1 expression and that of its putative regulatory factors.

Prdm16 Foxc2 RbI1 Rb1 Pparg Ppara
Ppargc
1a

Ppargc
1b Eif4ebp1 Vdr Prkar2b Dio2 Eif4ebp2 Ucp1

Prdm16 1.00

Foxc2 20.16 1.00

RbI1 20.13 0.39 1.00

Rb1 20.23 0.34 0.48 1.00

Pparg 0.085 0.062 20.096 0.49 1.00

Ppara 0.011 20.13 20.089 20.27 20.096 1.00

Ppargc1a 20.38 0.16 20.37 20.35 20.34 0.37 1.00

Ppargc1b 20.15 20.12 20.069 20.033 0.082 0.95 0.30 1.00

Eif4ebp1 20.22 20.025 0.18 0.60 0.56 20.18 20.27 0.019 1.00

Vdr 0.21 0.13 20.14 20.20 0.29 0.74 0.36 0.70 20.12 1.00

Prkar2b 20.064 20.31 0.051 0.49 0.55 0.26 20.32 0.44 0.73 0.077 1.00

Dio2 0.26 0.12 0.15 0.34 0.21 20.16 20.32 20.12 0.65 20.15 0.46 1.00

Eif4ebp2 20.15 20.022 0.62 0.59 0.26 0.11 20.51 0.25 0.59 20.074 0.62 0.54 1.00

Ucp1 20.006 20.13 0.061 20.18 20.15 0.97 0.24 0.93 20.19 0.64 0.25 20.12 0.27 1.00

doi:10.1371/journal.pone.0030392.t002
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Using the same rationale as that used by transgenic approaches,

that is, the brown differentiation pathway is controlled by the

levels of mRNA for its associated regulatory factors, we employed

a QTL analysis and regression analysis of variation in mRNA

expression for Ucp1 and putative regulatory factors in the

retroperitoneal fat depot of adult backcross progeny and

recombinant inbred lines (RI) derived from the C57BL/6J and

A/J (for review see [15]). Under conditions of cold exposure the RI

lines vary as much as 100-fold in Ucp1 levels [8]. In these genetic

lines over 13 transcription factors were evaluated at the mRNA

level and another 12 regulatory proteins were evaluated by

immunoblots for changes in protein and/or phosphoprotein

expression. RNA levels for only two transcription factors, PPARa
and PGC1a, and one signaling molecule, type 2 deiodinase, were

highly correlated with Ucp1 levels (variation between the parental

strains was not significantly large for most other transcription

factors to be analyzed by backcross or intercross analysis) [24,28].

Although the variation in Ppara and Pgc1a mRNA between

parental B6 and A/J mice was a modest 4 to 6 fold, the variation

between A/J and B6 for Ucp1 mRNA was a robust 80 fold.

However, among recombinant inbred strains, or recombinant

progeny in a backcross population, the range of expression for

Ppara and Pgc1a mRNA is an order of magnitude greater than that

found between the progenitor strains, that is, it is similar to that

found for Ucp1 mRNA [8,24,28]. This genetic behavior reflects

transgressive variation in which interactions among variant alleles

for A/J and B6 mice generates phenotypes in recombinant

animals result in phenotypes that lie outside the range observed in

the parents. These genetic data indicate that synergistic interac-

tions among unidentified QTLs determine the quantitative

induction of Ucp1, Ppara, Pgc1a and Dio2 mRNA and consequently

the induction of brown adipocytes. The chromosomal location of

the putative transcription and signaling factors identified by

transgenic mice are known, however, only Ucp1 and Ppara map to

the locations of the QTLs that control the levels of mRNA

involved in UCP1/wBAT induction [15].

The results of this earlier genetic study strongly corroborate the

results in the present study on the developmental and nutritional

factors that cause variation in Ucp1 expression in wBAT. The key

finding in this study is that although up to 21 genes have been

associated the Ucp1 induction in brown adipocytes, only those genes

previously identified as variant in the genetic backcross analysis were

linked to wBAT induction as a function of development and diet,

that is, Ppara, Pgc1a and Pgc1b. Whereas, variation of Dio2 mRNA

was strongly associated with Ucp1 induction in the genetic studies

[28], inexplicably, in this diet/developmental study there was no

association. Prdm16 expression has not been analyzed in the

backcross or RI mice; however, given that the involvement of

Prdm16 in regulation of brown adipogenesis is restricted to iBAT and

inguinal wBAT [29,30], allelic variation of Prdm16 may not be found

in retroperitoneal wBAT, consistent with the fact that Prdm16 does

not map to the QTLs. Accordingly, in 2 unbiased in vivo studies of

Ucp1 induction in wBAT, one genetic and the other nutritional,

many of the transcription factors and signaling factors implicated in

Ucp1 and BAT induction by over- and under- expression in

transgenic animals failed to show any significant associations.

Possible explanations need to be considered. First, our in vivo

developmental studies measuring Ucp1 induction at 21 days of age

occurred at the peak of differentiation during post-natal develop-

ment. On the other hand, many of the transgenic gene KO

manipulations may be acting at a much earlier stage of wBAT

induction by mechanisms preceding those influenced by the

nutritional environment. In other words, we need to distinguish

between early developmental differentiation mechanisms and

modulations in differentiated tissues. Since several of the transgenic

models of brown fat induction are based upon over-expression from

the aP2 promoter, assuming that the transgene is faithful to its

normal in vivo expression, transgene expression will not occur until

white adipocyte differentiation occurs, which is at approximately 2

days of age for inguinal fat and 6–7 days of age for visceral fat.

Additionally, based upon the recent work by Seale et al. [30]

demonstrating that over expression of Prdm16 in inguinal fat led to

the differentiation of the brown adipocyte phenotype, whereas over-

expression of Prdm16 in epididymal fat did not lead to wBAT, one

might anticipate that iBAT and brown adipocytes in inguinal fat

might share regulatory mechanisms distinct from brown adipocytes

in visceral fat depots. This is consistent with the lack of genetic

differences in inguinal fat between A/J and B6 mice [8]; however,

the effects of developmental and nutritional variation in this study

suggests that at the post-differentiation stages inguinal and visceral

wBAT respond similarly to the nutritional environment. Certainly

wBAT in inguinal fat shows a robust induction by cold exposure

similar to wBAT in visceral fat depots. An important point to

emphasize regarding QTL studies of Ucp1 induction in RP fat by

cold exposure in adult mice is that induction of Pgc1a and even Ucp1

occurs within minutes of cold exposure [24]. Since Ucp1 mRNA

levels are scarcely detectable in white fat depots of adult mice at

23uC, apparently mature white adipocytes in the retroperitoneal

depot may be quiescent brown adipocytes that respond to adrenergic

stimulation within minutes of receiving a stimulus through epigenetic

mechanisms first established at 21 days of age [31]. In conclusion,

the data in this study, plus earlier QTL studies, clearly show that

Ppara, Pgc1a and Pgc1b are the most critical transcription factors for

regulation of Ucp1, mitochondrial biogenesis and the brown fat

differentiation program in wBAT in response to variation in the

nutritional and physical (i.e. temperature) environment.

We have previously shown that B6 mice double their intake of

obesogenic high fat food when transferred from an ambient

temperature of 28uC to 4uC, while simultaneously avoiding the

normal increase in adiposity caused by the diet [34]. These

profound effects of ambient temperature on preventing DIO are

recapitulated in this study where a 50% reduction in fat mass was

observed in mice with DIO when they were exposed to an ambient

temperature of 5uC for one week. Although food intake was

increased in mice exposed to the cold, the absolute amount

consumed was inversely proportional to the level of adiposity at

the time they were transferred to the cold. This means that more

of the energy necessary to fuel thermogenesis is obtained by food

intake when body fat stores are low and conversely more energy

comes from body fat when fat stores are high. In any case,

Figure 3. Adiposity and energy balance profiles during over- and under-nutrition. A. Body weight profile of C57BL/6 J mice under control,
over and under-nutrition conditions. N = 19 for control, 23 for over-nutrition and 14 for the under-nutrition groups at 23uC. At 98 days, body weights
between groups were significantly different at p,0.01. B. Changes in body weight in the 3 nutritional groups during the 11th week on a high fat diet
at 23uC; C. Food intake in the 3 nutritional groups at on the 11th week of the high fat diet at 23uC; D. Changes in body weight in the 3 nutritional
groups when maintained at 4uC and 23uC during the 12th week. E. Food intake in the 3 nutritional groups during the 12th week when maintained at
4uC and 23uC; F. Tabulation of energy balance in the 3 nutritional groups during the 12th week of high diet when mice were maintained at 4uC. The
number of animals (N) for Control, LUN and LON groups were 10, 7 and 12 respectively. For Panel B through F data bars or numbers (Panel F) with
the same or no letter/symbol were not significantly different from each other at P,0.05. Data is presented as the mean 6 standard error.
doi:10.1371/journal.pone.0030392.g003
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irrespective of the source of the energy to fuel thermogenesis, the

net outcome will be the reduction of obesity, and individuals with

higher obesity will lose more fat. Since it is now accepted that adult

humans have measurable deposits of brown adipose tissue, there is

now wide spread interest in stimulating thermogenesis to reduce

obesity, mainly by drug discovery. The studies in this paper

indicate that cold exposure is a simple, natural environmental

strategy to prevent or reduce obesity in individuals, since humans

must also utilize fat stores to fuel thermogenesis. Furthermore,

physically handicapped obese individuals could be fitted with

cooling water jackets to significantly increase energy expenditure

in a highly controlled manner.

Materials and Methods

Ethics statement
The protocol #540 (Molecular Genetics of Thermogenesis) of

12/09/09 was approved by the Pennington Biomedical Research

Center’s Institutional Animal Care and Use Committee.

Animals
C57BL/6J breeders were obtained from the Jackson Laboratory

(Bar Harbor, Maine, USA) and maintained at Pennington

Biomedical Research Center as described [32]. Newborn mice

were raised from birth to weaning with one of three sets of

nutritional conditions as described previously [11] 1.) the control

condition had 8 pups per litter and the mother was fed the breeder

diet 5015 (22 kcal % fat) ad libitum. 2.) Lactation under-nutrition

condition (LUN) had 8 pups per litter, but the mother was only fed

50% of the food (LabDiet 5015) consumed by the control mice the

previous 24 hr. 3.) Lactation over-nutrition condition (LON) had

litter size reduced to 4 pups per litter and the mother was fed a

high fat 58 Kcal % fat diet (Research Diet 12331, New Brunswick,

New Jersey, United States) ad libitum. After weaning the offspring

from the 3 nutritional conditions were treated the same; from

weaning until 8 wk of age mice were fed a low fat chow diet

(LabDiets 5053 11 Kcal % fat) ad libitum. At 8 wk of age mice were

fed ad libitum a high saturated fat diet D12331 (Research Diets,) for

8 weeks. From weaning until 7 wk of age male mice were group

housed (3–5 mice per pen) until 7 wk of age, at which time they

were singly housed for the remainder of the experiment. All

protocols were approved by the Pennington Biomedical Research

Center’s Institutional Animal Care and Use Committee.

Phenotyping
Adiposity was determined from body weights and measure-

ments of body composition by nuclear magnetic resonance (NMR,

Bruker, The Woodlands, Texas, USA). RNA isolation and qRT-

PCR was determined as described [33,34]. Standard curves were

generated using pooled RNA from individual samples within each

experiment. Probe and primer sequences used to perform the

analyses are available upon request.

Microarray analysis
Gene expression profiles were generated using Applied

Biosystems Mouse Genome Survey Microarray as previously

described [11,32]. Each microarray contained approximately

34,000 features that included a set of about 1,000 controls. Each

microarray uses 32,996 probes to interrogate 32,381 curated genes

representing 44,498 transcripts. Signal intensities across micro-

arrays were normalized using the quantile-quantile method (www.

bioconductor.org). The quantitative accuracy of microarray gene

expression data was validated by direct comparison to the

expression data obtain by analyzing the same RNA samples by

qRT-PCR with TaqMan probes (see Supplemental Fig. 2 in [11]).

K-means cluster analysis was conducted with Spotfire Decision

Site Software (Spotfire Inc., Somerville, Massachusetts).

Microarray experiments, described according to MIAME

guidelines, have been deposited in the GEO repository with the

accession number GSE 19809.

Statistical Analysis
The data are expressed as the means 6 SEM. Unpaired t-test was

used to compare differences between groups. Analysis of variance with

Bonferroni post hoc test was used when more than two groups were

compared (Statview, version 5.0.1; SAS Institute Inc., Cary, NC).
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