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Abstract: Schistosomiasis is serious parasitic disease with an estimated global prevalence of active
infections of more than 190 million. Accurate methods for the assessment of schistosomiasis risk
are crucial for schistosomiasis prevention and control in China. Traditional approaches to the
identification of epidemiological risk factors include pathogen biology, immunology, imaging, and
molecular biology techniques. Identification of schistosomiasis risk has been revolutionized by the
advent of computer network communication technologies, including 3S, mathematical modeling, big
data, and artificial intelligence (AI). In this review, we analyze the development of traditional and new
technologies for risk identification of schistosomiasis transmission in China. New technologies allow
for the integration of environmental and socio-economic factors for accurate prediction of the risk
population and regions. The combination of traditional and new techniques provides a foundation for
the development of more effective approaches to accelerate the process of schistosomiasis elimination.

Keywords: schistosomiasis; risk identification; pathogen biology; immunology; 3S technology;
mathematical modeling; molecular biology; big data; artificial intelligence; China

1. Introduction

Schistosomiasis is one of the 20 neglected tropical diseases listed by the World Health
Organization. It ranks second after malaria among the global human parasitic diseases
in terms of socio-economic and public health importance in tropical and subtropical ar-
eas [1]. The estimated global prevalence of active infections is more than 190 million [2].
The main schistosome species in China is Schistosoma japonicum, and its snail host is
Oncomelania hupensis. In the 1950s, China was among the countries with the heaviest
schistosomiasis burdens, with more than 10 million patients, and schistosomiasis was
endemic in 12 southern Chinese provinces. After nearly 70 years of arduous efforts, China’s
schistosomiasis control program has achieved remarkable success. Especially in recent
years, the number of schistosomiasis outbreaks has continued to decline in endemic areas,
reaching the lowest level in history [3]. Up to 2020, based on the latest control and elimi-
nation criteria [4], of the 12 provinces (municipalities and autonomous regions) endemic
for schistosomiasis in China, five provinces (Shanghai, Zhejiang, Fujian, Guangdong, and
Guangxi) had achieved the criteria for elimination, two provinces (Sichuan and Jiangsu)
had achieved the criteria for transmission interruption, and five provinces (Yunnan, Jiangxi,
Hubei, Anhui, and Hunan) had achieved the criteria for transmission control. Among the
450 endemic counties (cities and districts) in the country, 337 (74.89%) met schistosomiasis
elimination standards, 98 (21.78%) met transmission interruption standards, and 15 (3.33%)
met transmission control standards [5].
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Although China has made great advancements in the prevention and control of
schistosomiasis, due to the wide distribution of endemic areas and complex environmental
and socio-economic factors, schistosomiasis epidemic risk factors still exist: (i) international
travel has resulted in imported schistosomiasis cases occasionally entering the country,
a trend that is on the rise; (ii) many existing cases are found in patients with advanced
schistosomiasis, while chronic infections are generally insidious manifestations of low-level
infections [6]; (iii) control strategies for livestock sources of infection, such as sheep, dogs,
and pigs, are weak [7], and wild animals have been found to be an occasional source of
infection as well [8]; and (iv) O. hupensis is still widely distributed throughout the country
and is affected by environmental and socio-economic factors such as global economic
integration, climate change, frequent natural disasters, population movement, and wetland
construction and ecological restoration [9–17]. Therefore, the control and elimination of
schistosomiasis still faces many challenges.

Recently, risk assessment has become an important component of schistosomiasis
control. Since 2016, the National Health Administration has organized multiple risk as-
sessments using molecular biology techniques and other means to identify risk factors
and at-risk areas, with the acknowledgement that epidemics are likely to rebound once
schistosomiasis prevention and control strategies are relaxed [3]. As they advance from
transmission control to transmission interruption and even elimination, schistosomiasis
prevention and control strategies in China are changing their focus from extensiveness to
precision. Therefore, risk assessment programs require more sensitive and accurate risk
identification technologies [3,18]. Because complicated epidemiological, environmental,
and socio-economic factors affect schistosomiasis transmission [19,20], many different
technologies are used for schistosomiasis risk identification in different areas. Traditional
risk identification technologies include pathogen biology, immunology, molecular biol-
ogy, and imaging techniques. New risk identification technologies based on computer
and communication technologies, including 3S technologies, mathematical modeling, big
data, and artificial intelligence (AI), are also gradually being used in risk identification
research. This study summarizes the application of traditional and novel technologies for
risk identification and suggests priorities for technology development.

2. Applications of Traditional Risk Identification Technologies

Traditional risk identification technologies provide information for identifying epi-
demiological factors (patients, sick animals, O. hupensis, or infected O. hupensis) and provide
a basis for predicting epidemics in large populations or assessing regional risk levels. Tra-
ditional risk identification technologies include pathogen biology, immunology, molecular
biology, and imaging technology (Table 1).

Table 1. Technologies applied to schistosomiasis risk identification.

Technology Applicable Risk Factors Common Methods Advantages Limitations

Pathogen biology
technologies

Epidemiological factors
(patients, sick animals,

live O. hupensis
or cercariae)

Kato–Katz (KK), thick
smear, egg hatch assay,

tissue biopsy, etc.

Widely used in the field
and considered the gold

standard for the diagnosis
of schistosomiasis

Time-consuming and
laborious, and manual
identification leads to

errors due
to subjectivity

Immunological
technologies

Epidemiological factors
(patients, sick animals,

live O. hupensis
or cercariae)

Hemagglutination test
(IHA), enzyme-linked
immunosorbent assay

(ELISA), colloidal dye test
strip method (DDIA), etc.

Low cost, convenient
operation, convenient

sampling, and
quantitative identification
of epidemics in different

epidemic areas

Performs poorly in early
diagnosis and specificity

and ineffective for
detection of low

intensity infections
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Table 1. Cont.

Technology Applicable Risk Factors Common Methods Advantages Limitations

Imaging
technologies

Epidemiological factors
(schistosomiasis patients)

Computed tomography
(CT), ultrasonography (US),
magnetic resonance imaging

(MRI), etc.

Auxiliary recognition of
schistosomiasis is applied

for the recognition of
patients with

schistosomiasis and
liver disease

Accuracy is affected by
the skill level of staff,

and results of different
observers often disagree

Molecular biology
technologies

Epidemiological factors
(patients, sick animals,

live O. hupensis
or cercariae)

Polymerase chain reaction
(PCR), loop-mediated

isothermal amplification
(LAMP), recombinase

polymerase amplification
(RPA),

recombinase-mediated
isothermal amplification

(RAA), etc.

Highly specific and
sensitive, basis for early

risk screening in endemic
areas with low

schistosomiasis infection
rates or low infectious

snail densities

Cost and technical
requirements are high,
detection time is long,

and applications
are limited

3S technologies Environmental factors

Geographic information
system (GIS), remote

sensing (RS), and global
positioning system (GPS)

Provides multiple
methods for data

collection, sorting, and
analysis of

schistosomiasis. Spatial
data update speeds are

fast, and study periods are
short. Results are easily

visualized, and
schistosomiasis epidemic
characteristics are directly

expressed. Provides a
wealth of geographical
and environmental data

for accurate mathematical
modeling of populations

and areas at risk
for schistosomiasis.

Technical operations
requires skilled
professionals

Mathematical
modeling

Epidemiological,
environmental, and

socio-economic factors

Hierarchical structure
modeling, regression

modeling, spatial
autocorrelation modeling,
spatial scanning modeling,

geographic weighted
regression modeling,
geographically and

temporally weighted
regression modeling,

Bayesian modeling, niche
modeling, etc.

Used to study
relationships between
disease occurrence and

other factors and to
predict at-risk populations

and areas

Difficulties in data
collection for different

risk factors

Big data and AI
Epidemiological,

environmental, and
socio-economic factors

Machine learning, image
identification, deep

learning, etc.

Accurately and quickly
identifies risk factors and

reduces labor costs,
technical difficulties, and
human judgment errors
caused by subjectivity

Data demands are large,
and identification

reliability and accuracy
need to be improved

2.1. Pathogen Biology Technologies

Pathogen biology technologies are used to detect schistosome eggs by microscopic
examination of the stool or rectal tissues. Occasionally, they are used to detect schistosomi-
asis by observing hatching miracidia. A variety of convenient and cost-effective techniques
have been developed, such as Kato–Katz (KK), thick smear, egg-hatch assays, and tissue
biopsies [21–23].

Schistosomiasis is closely associated with the distribution of O. hupensis. Therefore,
the identification of live O. hupensis or O. hupensis with cercariae is also an important risk
factor. Live O. hupensis are observed through pathogen biology technologies. For example,
O. hupensis can be observed with the naked eye to assess whether the soft body sticks
out or crawls from the snail after standing still, or the shell of O. hupensis can be gently
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cracked by tapping to see whether the soft body moves within the shell [24]. Cercariae
have often been observed in the liver tissue of crushed O. hupensis using a microscope.
The sentinel method can also be used, in which mice are placed in water that may contain
cercariae for a period of time. After 30–35 days, the mice are dissected to see if they are
infected with schistosomiasis [25]. The nylon silk cloth or capron cloth fishing net method
can be used to capture cercariae in water, and the principle of filtration has been used
to design mechanical devices that enrich cercariae [26–29]. Sichuan Province carried out
large-scale O. hupensis breeding site risk identification surveys every year from 2005 to
2015, with an average annual survey area of about 50,000 m2. Reservoirs and orchards
were identified as major new O. hupensis habitats where there was a risk of schistosomiasis
transmission [30]. During the flood disaster in 2020, Anhui Province and Wuhan City used
traditional methods to identify risk factors such as the presence of O. hupensis in key areas,
cercariae in bodies of water, and infections in free-range livestock and key personnel [31,32].

2.2. Immunological Technologies

Immunological technologies are based on the principles of immunity and identify
whether humans or animals are infected with schistosomiasis by detecting anti-schistosome
antibodies, schistosome antigens, or immune complexes. At present, the most com-
monly used immunological technologies in the field include indirect hemagglutination
(IHA) tests, enzyme-linked immunosorbent assays (ELISAs), and colloidal dye test strips
(DDIA) [31,33–35]. These methods are particularly useful when eggs cannot be identified in
patients with light infections and can be used to quantify epidemics in different areas [36].
Jiangsu Province used DDIA to screen 2.382 million people at risk for schistosomiasis from
2006 to 2010, which played a huge role in implementing the “Schistosomiasis Control
Strategy for Key Populations” and effectively controlling sources of schistosomiasis in
Jiangsu Province [37].

2.3. Molecular Biology Technologies

Molecular biology technologies are increasingly being used in the early identification
of schistosomiasis risk factors. These methods require only a small amount of nucleic acid,
and a large number of target nucleic acid fragments can be obtained through amplification
technologies, which can greatly improve detection sensitivity. Molecular biology tech-
niques, such as polymerase chain reaction (PCR), have been used for risk identification
and have a high sensitivity and specificity [38]. However, PCR requires residents to com-
ply with strict testing protocols, and it involves complex laboratory testing methods. In
recent years, constant temperature nucleic acid amplification technologies, such as loop-
mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA),
and recombinase-mediated isothermal amplification (RAA) have developed rapidly [39,40].
A highly sensitive and specific LAMP technology was established for the detection of
serum-specific DNA in rabbits infected with schistosomiasis. The detection sensitivity was
100 times that of regular PCR [41]. This technology has now been widely used to detect
schistosomiasis infections in live O. hupensis in the field [42–44]. The Jiangsu Institute
of Parasitic Diseases has established two novel RAA technologies for the detection of
schistosomiasis-specific gene fragments and O. hupensis infected with cercariae. Compared
with traditional microscopy and PCR, RAA technology has the advantages of being fast,
sensitive, and easy to operate [45,46].

2.4. Imaging Technology

The liver is the main parasitized and damaged target organ of schistosomes in humans.
Schistosome eggs are deposited in the liver, where they cause granulomas, secondary
liver fibers, and other changes. These lesions cause characteristic changes that can be
detected by observation using imaging technologies. Imaging techniques, such as computed
tomography (CT), ultrasonography (US), and magnetic resonance imaging (MRI), can also
support the identification of schistosomiasis. For example, in previous studies, US was
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used to identify patients with schistosomiasis-associated liver disease in non-lake areas, CT
was of great value in identifying patients with chronic hepatic schistosomiasis [47], and
MRI was effective in identifying patients with schistosomiasis and assessing the severity of
liver fibrosis [48].

In practice, traditional risk identification techniques are often used in combination
and can be cross-referenced for improved accuracy. Researchers have used pathogen
biology, IHA, and ELISA techniques to investigate the prevalence of schistosomiasis in
local populations, migrant populations, and livestock in endemic areas in 10 counties (cities
and districts) and in five provinces (cities), including Hubei, Jiangsu, Anhui, Shandong,
and Chongqing. Schistosomiasis infections and the distribution of O. hupensis breeding
locations were assessed using observational methods. The results showed that sources
of infection and the risk of exogenous O. hupensis spread are increasing [49]. In Jiangxi,
Hubei, and Anhui Provinces, rapid risk identification and evaluation of schistosomiasis
transmission control standards using field observation, pathogen biology, and immunology
technologies identified the activities of and infections in the population and cattle as the
main risk factors [50–53].

3. Novel Risk Identification Technologies

With the development of computer technology, scholars are increasingly using 3S
technology, mathematical modeling, big data, and AI to collect and analyze schistosomiasis
epidemic data and environmental and socio-economic data to determine the relationship
between risk factors and to identify at-risk areas or populations based on these factors
(Table 1 and Figure 1).

Figure 1. Schistosomiasis risk identification technologies.

3.1. 3S Technology

3S technology refers to integrated geographic information system (GIS), remote sensing
(RS), and global positioning system (GPS) technologies. A large amount of accurate and
real-time geographic environmental data (water bodies, surface type, artist index, surface
temperature, soil, height and slope, etc.) can be obtained through RS, spatial information
can be added to disease data using GPS, and visual representations of disease data and
related environmental factors can be achieved using GIS. These tools allow for advanced
analysis and data processing to describe disease distributions with greater accuracy, grasp
the dynamics of disease development, identify risk areas, and develop disease control
strategies. It is widely acknowledged that the frequency and transmission dynamics
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of schistosomiasis are closely related to environmental and socio-economic factors. The
advantages of 3S technology have opened new avenues for risk identification research, such
as identifying environmental risk factors and mapping risk prevalence areas, O. hupensis
habitats, and transmission risks in relation to ecological transformations. For example, RS
is used to identify environmental factors such as temperature, digital elevation model data,
vegetation indices, distance from water, and other features of the study area. By combining
these environmental factors with the epidemiological data of schistosomiasis patients, the
distribution of snails can be further analyzed, and the distribution of schistosomiasis risk
areas can be determined [54,55]. The environmental factor indicators obtained based on RS
technology can be used to quantitatively explain the spatial variations in snail distribution
and further establish risk and snail distribution prediction models to evaluate the risk
of schistosomiasis transmission [56,57]. In recent years, with the rapid improvement of
high resolution RS images, 3S technology has been applied to the identification of smaller
spatial targets such as ditches in schistosomiasis endemic areas, the accurate analysis of
spatial distribution relationships of risk factors for schistosomiasis infection, and rapid
real-time identification of areas at risk for schistosomiasis transmission due to the spread
of O. hupensis resulting from flooding [58,59].

3.2. Mathematical Modeling

Mathematical modeling for schistosomiasis risk identification mainly uses traditional
identification and 3S identification technologies to identify various risk factors, deter-
mine the relationships between schistosomiasis and its influencing factors, and effectively
integrate these factors to accurately identify high-risk areas or populations.

Hierarchical structure modeling is a common practical mathematical modeling tech-
nique to identify risk factors for the transmission of schistosomiasis. For example, a study
in the Poyang Lake area using a hierarchical structure model found that schistosomiasis
infections in humans and animals were the most important factor affecting the transmission
of schistosomiasis [60]. In the South-to-North Water Diversion Project, a hierarchical model
was used to find that snail breeding location had the greatest impact on the spread of
schistosomiasis [61]. However, there are subjective differences when experts assign values
to the importance of influencing factors, resulting in low reliability of research results.
Regression models are also widely used to understand and identify risk factors, includ-
ing single/multiple-level logistic regression models [62] and generalized linear models.
Through regression analysis, weighted factors can be calculated to identify risk factors
for schistosomiasis infection [63–65], which can help screen schistosomiasis risk identi-
fication factors and interpret the results. However, it is difficult to systematically and
comprehensively understand the risk of schistosomiasis transmission. The transmission
dynamics mathematical model studies the internal connections between components of the
schistosomiasis transmission process, which assists in identifying the risk of schistosomia-
sis transmission. Based on schistosomiasis transmission studies in irrigated agricultural
environments in western China, a transmission dynamics mathematical model was used to
quantify environmental impacts on transmission intensity [66]. However, because trans-
mission dynamics model assumptions are too ideal, such as the assumption that the spread
of schistosomiasis is a closed system, the application of this model is restricted [67].

Spatial interaction and connectivity are important factors in the spread of schistosomi-
asis. Some classic models, such as regression models, only analyze the impact of a single
factor or a few factors on the prevalence of schistosomiasis, require separate time or space
dynamic analyses, and are seldom used to carry out a space analysis to ensure the accuracy
of the model. Therefore, spatial and temporal dynamic analysis has become an important
direction in schistosomiasis risk factor identification. Spatial and temporal analysis models
analyze disease data from a spatial perspective by considering the relationship between
spatial position and its related factors and the disease. Spatial autocorrelation and spatial
scanning models are analysis methods for studying the spatial clustering of schistosomiasis
and identifying at-risk areas. Spatial autocorrelation, both global and local, refers to correla-



Pathogens 2022, 11, 224 7 of 14

tions between attribute values of the same variable in different geographical locations and is
used to measure whether attribute values of a given variable are spatially clustered [68]. For
instance, global Moran’s I and Global Geary’s C were used to explore the spatial patterns of
the distribution of snails on a small scale [69]. The spatial autocorrelation analysis revealed
the existence of spatial clusters of human schistosomiasis infections and growing tendencies
of spatial clustering over time. Spatial scanning technology is a method used to explore
the location, size, and possibility of spatial aggregation in a research area [70]. Based on
annual parasitological data recently collected at county and village levels, a multiscale
spatiotemporal analysis was used to identify the transmission risk of Schistosoma japonica in
Hunan Province from 2001 to 2015 in a GIS environment [71]. A spatial–temporal model of
S. japonica transmission also employed a spatial interaction matrix based on neighborhood
relationships and hydrologic connectivity to assess the effect of village parasite transport
on schistosomiasis transmission and control [72]. SaTScan software was used to analyze
time and space scanning statistics in Yunnan Province from 2004 to 2013 and revealed farm
cattle and snail infection risk areas [73].

In order to better understand the temporal and spatial characteristics of schistosomiasis
and to identify risk factors, spatial analysis models require more influencing factors to be
analyzed. Commonly used spatial analysis models include time series models, spatial panel
models, geographic weighted regression model (GWR), geographically and temporally
weighted regression model (GTWR), Bayesian models, and niche models. The GWR model
is a local spatial analysis method used mainly for non-stationary parameter estimation. It
uses a specific bandwidth and distance-related weight function to fit a regression model at
each geographic location [74].

The GTWR model is constructed by adding time effects to the GWR model to take
into account spatiotemporal changes of the disease [75]. Combined with RS technology
to obtain environmental factor data, GWR and GTWR models are used to identify the
factors affecting the distribution of O. hupensis [76]. Bayesian models can be used to
clarify temporal and spatial distribution patterns and changing trends in schistosomiasis
transmission in an area through the analysis of temporal and spatial aggregation. At
the same time, because the temporal and spatial effects of a particular region can be
estimated by those of adjacent regions or time periods, this method can eliminate the
influence of extreme values in some areas, making the curve of the risk distribution graph
smoother and helping to identify high-risk areas or populations [77]. Bayesian models
are increasingly being used to assess schistosomiasis risk, including identifying at-risk
populations, determining O. hupensis distributions and high-risk areas, analyzing the impact
of environmental factors [78–80], and developing schistosomiasis control strategies [81,82].
Niche models predict the distribution of a species by using its known distribution and
related variables to analyze data, build a model, and extrapolate the results to different
areas and time periods [54]. Hu et al. determined the risk of schistosomiasis transmission
in Yunnan Province based on a niche model [83]. Fine-tuned Maxent models are also
being used to anticipate distributions of O. hupensis in potential climate change scenarios.
Model results indicate increased suitability for and range expansion of O. hupensis in the
future [84].

3.3. Big Data and Artificial Intelligence Technology

The rapid advancement of computer and internet technologies is a driving force in
the development and transformation of big data in schistosomiasis research. Researchers
can analyze, evaluate, and address epidemic risks very quickly using big data collection,
analysis, and mining techniques [85–88]. This can also facilitate accurate and effective
health campaigns for the public in a timely manner and greatly improve early warning
systems and responses to public health emergencies. Through the integration of environ-
mental and socio-economic factor-related information systems and other public information
resources, big data technologies can be used to comprehensively obtain data on relevant
risk factors and, through deep mining and analysis, effectively evaluate the risk factors
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affecting schistosomiasis, allowing for the development of targeted prevention and control
interventions [89]. Machine learning is the main solution to problems associated with big
data analysis and mining. This can give computers the ability to discover potential patterns
and features in data through algorithms, a method that has been used in risk predictions
of schistosomiasis distribution weighted by spatial distance [90]. In addition, based on
epidemic factors and related environmental factors, information combined with machine
learning models (random forest, generalized boosted model) was used to identify and
predict the distribution of schistosomiasis. Results showed that at-risk areas were mainly
distributed in the coastal regions of the middle and lower reaches of the Yangtze River, the
Poyang Lake region, and the Dongting Lake region [91].

AI technology is an important branch of information technology and has received
increasing attention in medicine and public health [92–94]. As an important field of
AI, computer vision and image recognition has been gradually applied to solve many
problems caused by manual recognition in the prevention and control of schistosomiasis.
Observing a large number of samples over a long period can cause eyesight fatigue and
lead to misdetection. Image identification methods have been used to replace traditional
methods of observing Schistosome miracidia, and they have the advantages of being highly
sensitive and reproducible with a short detection time, high accuracy rate and low false
positive and false negative rates [95]. The effectiveness of deep learning was confirmed
in image identification tasks for the classification of Bulinus spp. and Biomphalaria pfeifferi
snails and their parasite counterparts from the Senegal River in West Africa. That model
achieved 99% and 91% accuracy for snail and parasite classifications, respectively [96]. An
O. hupensis visual intelligence recognition model based on deep learning (convolutional
neural network) was established to improve detection time and accuracy and reduce
the amount of labor required for traditional O. hupensis identification techniques. The
sensitivity, specificity, accuracy, Youden index, and F1 value of this model to identify
O. hupensis were 91.00%, 97.50%, 96.20%, 88.50%, and 90.51%, respectively [97].

4. Lessons Learned in Risk Identification

Schistosomiasis risk identification research using both traditional and new identifi-
cation technologies is growing. In order to achieve precise control of schistosomiasis, it is
very important to select appropriate risk identification technologies.

Traditional identification technologies are the basis for the identification of schisto-
somiasis epidemiological risk factors and at-risk areas and populations. Among these
technologies, pathogen biology methods are considered the “gold standard” for confir-
mation of schistosomiasis in China. However, these methods are time-consuming and
laborious, and manual identification is subject to subjectivity, missed detection, and mis-
judgment, especially in areas where transmission has been interrupted or eliminated or
where the infection rate and infectivity of people in endemic areas have been greatly re-
duced [98]. Immunological technologies are easy to operate and can be used for early
detection of risk factors and quantitative identification of epidemics, all of which makes
up for the shortcomings of pathogen testing to a certain extent. However, immunological
technologies perform poorly in early schistosomiasis diagnosis and specificity and are not
effective for the detection of low intensity infections, which challenges the accuracy and
reliability of the identification of epidemic factors in endemic areas [99–101]. Molecular
biology technologies have greatly improved the development of schistosomiasis risk factor
identification methods, owing to their high specificity and sensitivity, and have laid a
foundation for early risk screening in endemic areas with low schistosomiasis infection
rates or low infectious snail densities [102]. However, molecular biology methods have
high technical requirements and long detection times, which limits their application [103].
Imaging technology is widely used in hospitals to identify schistosomiasis and liver dis-
ease and is important for the identification of people at risk for advanced schistosomiasis.
However, accuracy is easily affected by the technical skill of personnel, and there is often
disagreement among observers [48].
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The process of schistosomiasis transmission is complicated. Environmental and socio-
economic factors, such as humidity, soil type, soil moisture, water flow, and health in-
terventions, all influence the spread of schistosomiasis to varying degrees, especially as
they impact the distribution of intermediate hosts [104–107]. Epidemiological factors alone
may underestimate the risk of schistosomiasis transmission, especially in transmission
interruption areas [3]. It is also difficult to quickly and accurately identify populations and
regions at risk for schistosomiasis in real time and over large areas after natural disasters,
climate change, and population movement, all of which affect the effective implementation
of schistosomiasis control strategies [108]. Therefore, the study of novel technologies is of
great importance to the accurate identification of factors affecting the prevalence of schisto-
somiasis and the precise identification of populations and areas at risk for schistosomiasis.

3S technology is the basis for spatial analysis and integrates a variety of technologies,
including GIS, RS, and GPS, for the collection, sorting, and analysis of schistosomiasis data.
With these technologies, data is rapidly updated, increasing the speed at which research can
be done. The results are easily visualized, and schistosomiasis epidemic characteristics can
be directly expressed. 3S technology provides a wealth of geographical and environmental
data, which can be used for timely and appropriate identification of high-risk areas and to
greatly improve identification accuracy [109], especially in areas that require prevention
interventions but lack the means to monitor [110–114]. However, due to the wide variety
of technical software used in 3S technology, collaboration between researchers and profes-
sionals with expertise in geography and RS is necessary. Mathematical models can be used
to quantitatively screen multiple risk factors, reveal relationships between schistosomiasis
and other factors, and predict which areas and populations are at risk. However, due to a
lack of collaboration among various departments, it can be difficult for epidemiological
researchers to obtain this type of risk factor data.

Traditional risk identification techniques are costly and require significant human
and material resources. Factors such as reduced funding, rising labor costs, and aging
personnel are also barriers to the application of risk identification technologies in areas
where transmission has been interrupted [3]. The ideal technology should be more sensitive,
significantly less expensive, and require less effort than any of the presently available
technologies. Big data and AI technology provides new ideas for solving personnel-related
problems in schistosomiasis prevention and control and is of great significance to the
realization of accurate risk identification [115,116]. However, training of models requires
massive amounts of data, environments for application scenarios are complex, and model
stability and accuracy need to be further improved.

Table S1 summarizes studies that aimed to identify schistosomiasis risks using differ-
ent technologies in the last 3 years in China. These studies reveal gaps in the following
aspects: (i) less than half of the studies report risk identification research on environmental
or socio-economic factors. Most studies identify only epidemiological risk factors for schis-
tosomiasis, such as patients or O. hupensis. (ii) More than half of the studies identified risk
using traditional techniques, which may have reduced sensitivity and accuracy. Traditional
and new technologies each have their own advantages for risk identification, and the
combination of these technologies for the identification of epidemiological, environmental,
socio-economic, and other risk factors should be the focus of future research.

5. Conclusions

China has achieved schistosomiasis transmission control standards. The schistosomia-
sis infection rate in the most severely endemic areas has dropped from more than 10% at
the beginning of this century to below 1%, and prevalence rates remain low [117]. However,
risk factors affecting the spread of schistosomiasis still exist, and the risk of schistosomiasis
resurgence remains a constant threat and a major obstacle to accomplishing transmission
interruption in the country [118,119]. Thus, schistosomiasis risk identification is still a
challenge. Therefore, molecular biology technologies should be rapidly developed with
a focus on reducing costs, simplifying operations, shortening testing times, and further
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promoting the application of large-scale on-site testing. Large-scale schistosomiasis pre-
vention and control programs involve multiple inputs and outputs as well as nonlinear
and complex dynamic feedback systems, each of which is inter-related. It is necessary to
accelerate the research and application of 3S, mathematical modeling, big data, and AI
technologies and to combine traditional identification technologies to solve human-related
issues and achieve accurate risk identification. In the future, with the development of
computer network communication technology, these methods can be deployed on mobile
devices at low cost and may greatly improve assessment and monitoring capabilities for
schistosomiasis risk.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pathogens11020224/s1, Table S1: Schistosomiasis risk identification-
related papers within the last 3 years in China
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