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Abstract
Multi-electrode arrays (MEAs) are being more widely used by researchers as an instrument platform for monitoring
prolonged, non-destructive recordings of spontaneously firing neurons in vitro for applications in modeling
Alzheimer’s, Parkinson’s, schizophrenia, and many other diseases of the human CNS. With the more widespread
use of these instruments, there is a need to examine the prior art of studies utilizing MEAs and delineate best
practices for data acquisition and analysis to avoid errors in interpretation of the resultant data. Using a dataset
of recordings from primary rat (Rattus norvegicus) cortical cultures, methods and statistical power for discerning
changes in neuronal activity on the array level are examined. Further, a method for unsupervised spike sorting is
implemented, allowing for the resolution of action potential incidents down to the single neuron level. Following
implementation of spike sorting, the dynamics of firing frequency across populations of individual neurons and
networks are examined longitudinally. Finally, the ability to detect a frequency independent phenotype, the
change in action potential amplitude, is demonstrated through the use of pore-forming neurotoxin treatments.
Taken together, this study provides guidance and tools for users wishing to incorporate multi-well MEA usage into
their studies.
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Introduction
Among the conditions posing the greatest unmet med-

ical need are diseases of the CNS. Confounding efforts

toward the development of therapies, these conditions
occur within an organ system that is largely inaccessible
to direct experimentation and thus studies must be per-
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Significance Statement

Multi-electrode arrays (MEA) are an instrument platform being used by an increasing number of neurosci-
entists for the purpose of monitoring spontaneous firing of neurons in vitro over extended periods of time.
Through an analysis of existing literature and empirically generated datasets, this study seeks to establish
best practices for the use of these instruments for applications employing neuronal cultures. Elements of
experimental design and analysis for assaying firing frequencies across arrays are discussed, with a focus
on the use of multi-well MEAs. Additionally, methods for (1) resolving signal to individual neurons through
unsupervised spike-sorting, (2) assessing network dynamics, and (3) quantifying changing in action poten-
tial amplitudes are reported.

Methods/New Tools

January/February 2020, 7(1) ENEURO.0080-19.2019 1–27

https://orcid.org/0000-0001-7846-1542
https://doi.org/10.1523/ENEURO.0080-19.2019


formed using experimental models. Attempting to study
any disease or biological process in model systems al-
ways comes with inherent compromises. The system
must be sufficiently complex to mimic the multiple facets
of the in vivo physiology. Yet the system must be suffi-
ciently reductionist to: (1) have clearly defined end-points,
(2) be executable within reasonable timeframes, and (3)
allow for parallel testing of multiple perturbations. At-
tempts to model these complex systems has motivated
the field of therapeutic discovery to increasingly adopt
representative phenotypic assays that: (1) use the most
relevant cell type, (2) employ a disease relevant perturba-
tion, (3) and rely on an assay metric that is representative
of the disease symptomology (Vincent et al., 2015).

An assay platform for the study of the CNS and asso-
ciated disorders must fulfill several criteria. It must be
capable of capturing neuronal activity and do so within
dense, mixed cultures of neurons and glia. The method
should generate a rich dataset to allow for the detection of
modest changes in phenotypes, particularly when per-
turbed at physiologically relevant magnitudes which may
result in only small yet meaningful responses. Moreover,
the method should be amenable to incorporate human
cellular models, drawing on advancements in differentia-
tion efficiency of human induced pluripotent stem cell
(iPS) derived neurons and glia. While numerous assay
platforms are employed in the field of neuroscience for
assaying neuronal behavior, one which is capable of ful-
filling all of these criteria are multi-electrode arrays
(MEAs).

MEAs are instruments that provide a means of moni-
toring spontaneous electrophysiological activity within in
vitro neuronal cultures. MEA consist of a large number
(dozens to hundreds) of planar electrodes embedded in
the base of a tissue culture chamber that allow for the
parallel detection of local field potentials generated by the
spontaneous or evoked firing of neurons. MEAs sample
the potential difference across recording and reference
electrodes at high rates (10–60 kHz), and action poten-
tials (spikes) are detected when the sampled values de-
viate substantially from the background potential. Activity
within cultures is quantified by the frequency of spiking
events, and in some applications the occurrence of syn-
chronized spiking events, or “bursts” (Spira and Hai,
2013; Obien et al., 2014).

By monitoring endogenously generated voltage poten-
tials of firing neurons, these instruments do not rely on
fluorescent dyes or proteins and microscopy apparatus

required of calcium-imaging techniques. Additionally,
MEAs are able to record simultaneously across upwards
of hundreds of channels in a much less labor-intensive
manner than conventional single-channel electrophysio-
logical techniques such as patch-clamping or sharp-
electrode recording, albeit with a lower degree of spatial
resolution. As MEA recordings are non-destructive to the
cultures, repeated recordings may be performed for as
long as culture integrity can be maintained. For these
reasons, MEA use is becoming more common in neuro-
science and biomedical research.

Despite the long history and increased use of MEAs,
methodologies are still being developed across the field.
To date, the most comprehensive methodological review
of in vitro MEA techniques was performed by Novellino
et al. (2011). Published in 2011, that study assessed the
use of single-well MEAs, single chamber vessels typically
with �60 recording electrodes. Over the last decade,
several multi-well MEAs systems have become commer-
cially available, including those from Axion Biosystems,
Alpha Med Scientific, Multichannel Systems, and MaxWell
Biosystems. These multi-well MEAs adhere to the form
factors of tissue culture plates, with a separate array
occupying each well (we will subsequently equate a single
well of electrodes as an array). The availability of multi-
well MEAs has allowed for changes in experimental de-
sign and analysis, with the capability to test more
conditions in parallel and use array-level (as opposed to
electrode-level) activity metrics.

Accounting for these developments, this study sought
to extend best practices for multi-well MEA experiments.
Following a review of the literature, commonly reported
experimental conditions and spike frequency analysis
methods where evaluated through an empirically gener-
ated dataset. These data were leveraged to develop a
method of cohort assignment for multi-well MEA experi-
ments that accounts for inherent variability in firing fre-
quencies. Further, implementation of unsupervised spike
sorting to resolve activity to the level individual neurons
(single-units) demonstrates how MEA recording data may
be extended for examination of wave form amplitude and
functional network phenotypes.

Materials and Methods
Tissue culture
Preparation of MEA plates

We prepared 96-well multi-electrode plates (Axion Bio-
systems) before the addition of cells by coating with
poly-Ornithine (poly-O), laminin (both Sigma-Aldrich), and
Matrigel (Corning Life Sciences). Briefly, 1 d before estab-
lishment of cultures, a solution of 20 �g/ml poly-O: 5
�g/ml laminin in 1� PBS was added to the MEA plates in
a volume of 60 �l per well, and incubated overnight at
37°C. The day of culture plating, the poly-O:laminin solu-
tion was aspirated and the plates were washed once with
1� PBS. Matrigel was reconstituted 1:20 in ice-cold
DMEM culture media (Gibco; ThermoFisher) without
added serum or antibiotics and passed through a 40-�m
strainer (BD Falcon). The Matrigel solution was added to
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the MEA plates in a volume of 60 �l per well, and incu-
bated for a minimum of 1 h at 37°C.

Preparation of cortical cultures
Primary cortical cultures were established from E18

Sprague Dawley rats (Rattus norvegicus) using individuals
of either sex (Charles River Laboratories, Crl:SD, RRID:
RGD_737891). Dams were killed by CO2 euthanasia under
a protocol approved by IACUC of Brigham and Women’s
Hospital. Dissection of complete cortex from pups was
performed in ice-cold HBSS (Gibco) under a dissecting
microscope (Zeiss). The dissected cortices were sus-
pended in 0.25% trypsin-EDTA (Gibco) for 10 min at 37°C,
the excess trypsin-EDTA solution was then aspirated. The
tissue was then triturated in Complete DMEM [DMEM
culture media (Gibco) supplement with 5% fetal calf se-
rum (Lonza) and 1� penicillin/streptomycin/L-glutamine
(Gibco)] with a 10-ml serological pipette before being
passed through a 100-�m strainer (BD Falcon). Counts of
the cell suspension were taken in triplicate, and the cell
suspension was back diluted to 1.5 � 106 cells/ml in
Complete DMEM. The cell suspension was added to the
MEA plates in a volume of 50 �l for a plating concentration
of 7.5 � 104 cells/well or 2.4 � 105 cells/cm2. Plates were
then placed in a tissue culture incubator (37°C, 95%
humidity, 5% CO2) for 4 h to allow for cells to attach to the
culture surface. After the 4-h incubation, 150 �l of Brain-
Phys Media (1� BrainPhys culture media containing
SM-1 neuronal supplement; StemCell Technologies) was
added to each well. The cultures were maintained in a
tissue culture incubator in BrainPhys Media, with semi-
weekly half-volume media changes.

Cell viability assay
Cell viability was assessed using the Pierce LDH Cyto-

toxicity assay kit (ThermoFisher Scientific) according to
manufacturer’s protocol. Briefly, 50 �l of treated culture
media along with 50 �l of detection reagent were com-
bined in a clear 96-well microtitre plate, and incubated at
room temperature for 30 min. Following incubation, the
stop reagent was added, and optical density (OD) was
measure at 490 and 680 nm using a Synergy HT plate
reader (BioTek). Percentage viability was calculated by
first subtracting the OD680 from the OD490nm, then normal-
izing each observation to the median values of the cell
lysis positive control (PC) and the untreated negative
control (NC) using the equation:

N(x) � (1 �
ODx � ODNC

�

ODPC

�
� ODNC

� ) � 100

MEA recording and analysis
All MEA recordings were performed using a Maestro

multi-well MEA recorder (Axion Biosystems). During re-
cordings, plates were kept on a heated stage maintained
at 37°C and ventilated with a mixture of 5% CO2:95% air
(AirGas) at a rate of 1 cubic-foot/h. to prevent evaporation
of liquid within wells by convection and condensation on
the underside of the plate lid, the MEA plate was covered
with an air-activated oxidizing iron heater (HotHands, Ko-

bayashi) placed on top of an aluminum plate cut to size,
for even dispersal of heat. Voltage potentials within wells
were simultaneously recorded across 768 channels (eight
electrodes per well, 96-well plate) at a sampling frequency
of 12.5 kHz using AxIS acquisition software version 2.4
(Axion Biosystems). This sampling rate of 12.5 kHz was
chosen as it represents the maximum rate of the Axion
Maestro instrument used. Note that sampling rates up-
wards of 20–50 kHZ are achievable with other commer-
cially available multi-well MEA systems. The raw voltage
recordings were subjected to a Butterworth filter of 200
Hz to 2.5 kHz, and neuronal firing events (spikes) were
detected when the voltage exceeded a “crossing thresh-
old” set at 5.5 SD away from the root mean square (RMS)
of the background potential calculated over a 10-ms mov-
ing window. All recordings were performed for 30 min
unless otherwise specified.

Raw voltage, timestamp, value of crossing threshold for
each spike event were extracted from the.spk files of MEA
recordings produced AxIS acquisition software, using
custom MATLAB scripts (MathWorks) using extractor
functions provided with AxIS version 2.4. Following ex-
traction of the raw recording data, all analyses and
simulations were performed using the R statistical pro-
gramming language (R Core Team, 2017).

Mean firing rate (MFR) calculation
To remove spurious spike events arising from by “high-

noise” electrodes, an upper limit to the crossing threshold
was established by examining the crossing threshold (�V)
for all spike events detected and calculated the value
corresponding to 3 SD greater than the mean crossing
threshold, all events detected at a crossing threshold
greater than this upper limit were excluded from the anal-
ysis. The MFR (Hz) was calculated as the ratio of the total
number of spikes recorded (n), and the duration of record-
ing in seconds, MFR � n / s . The log transform of the
MFR was calculated as log10�n � 1 / s�, to account for
instances of n � 0, the log of which is undefined.

Treatment group assignment
A pool of active arrays from a multi-well MEAs was

established by selecting those arrays that are no �2 SD
below the median firing frequency (log10Hz) of the sample
set. A panel of i possible treatment assignments is gen-
erated by randomly assigning arrays to treatment groups
g, each with n members. For the purposes of this study, i
� 104. For each instance of i, a one-way ANOVA was
performed, assessing log10Hz as a function of g. The
instance of i resulting in the lowest value of the F-statistic,
was used as the treatment group assignment.

Neurotoxin treatments
�-Hemolysin (�HL) and tetrodotoxin (TTX) were pur-

chased from Sigma-Aldrich. Both reagents were reconsti-
tuted in sterile water, and diluted to the specified
concentration in BrainPhys culture media containing
SM-1 neuronal supplement (StemCell Technologies); 30-
min baseline recordings of mature [more than day in vitro
(DIV)21] rat primary cortical cultures were performed, and
arrays were assigned to cohorts with comparable activity
(six to eight replicates per group) using the technique
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described above. Cultures were treated with a titration of
TTX (0.001–1 �M), and recorded again for 30 min both
immediately following treatment and 24 h following treat-
ment. For array-level spike frequency analysis the magni-
tude of effect of each condition was determined from the
coefficients of a linear mix-effect model, while for cluster-
level spike frequency analysis, the magnitude of effect of
each condition was determined from the coefficients of
�-distributed generalized linear model (GLM).

Spike sorting
For each spike event, the following metrics were calcu-

lated based on the vector of 38 momentary voltage mea-
surements within each instance: maximum voltage (peak),
minimum voltage (valley), wave form amplitude (peak-
valley range), time interval between peak and valley, area
under the curve (AUC), and non-linear energy (NLE). AUC
was calculated using the auc function within the R MESS
library (Ekstrøm, 2018), NLE was calculated using the
equation provided by Kim and Kim (2000):

�(xn) � xn
2 � (xn�1 � xn�1).

The data were aggregated across all recordings in a
given experiment, and segmented based on individual
electrode. Principal components analysis was performed
using the prcomp function within the base R stats library,
following log transformation of the metrics as recom-
mended by Venables and Ripley (2002). Mean-shift clus-
tering of spike events was performed based on the values
of the first two principal components using the msClus-
tering function within the R MeanShift library (Ciollaro and
Wang, 2016), using a Gaussian kernel and bandwidth
value of h � 1.5.

Network analysis
Spike clusters identified by unsupervised spike sorting

analysis were deemed to represent individual neurons.
Functional connections between neurons were estab-
lished based on the spike time tiling coefficient (STTC)
calculated between the spike trains of events attributed to
each individual. STTC was calculated by the method re-
ported by Cutts and Eglen (2014). Where between two
spike trains A and B,

STTC �
1
2� PA � TB

1 � PATB
�

PB � TA

1 � PBTA
�,

with a � t value of 100 ms. Observed STTC values were
taken to represent functional connections if they below
the 0.05% or above the 99.5% quantile of a null distribu-
tion STTC values derived from 1000 permutations of ran-
dom spike trains with comparable numbers of events as A
and B. The network cluster coefficient (C� ) as reported by
Watts and Strogatz (1998) was calculated within each
array and recording using the using the graph from data
frame and transitivity functions within the R igraph library
(Csardi and Nepusz, 2006), with isolates treated as zeros.

All spike sorting, permutation, and simulation analyses
were performed on the O2 high performance computing
cluster (Research Computing Group, Harvard Medical

School). All scripts for performing these analyses are avail-
able at https://github.com/SubstantiaNegri/meaAnalysis.

Statistical analyses
Power calculation

A dataset of 30-min recordings of 1272 unique, un-
treated MEAs was taken to represent spontaneous firing
activity log10Hz at time (t0), this was defined as vector A.
The correlation coefficient between the firing frequencies
of a population MEAs recorded at separate times was
estimated to be 	 � 0.8, based on the repeated record-
ings of multiple culture preparations at DIV20 and DIV21.
To simulate the expected variance in firing frequencies
between recordings, a second vector B was calculated by
the formula:

B � 	A � A�� 1 � 	2,

where A� represents the residuals of a linear regression
between A and a sample of equal length drawn from a
random normal distribution. The resulting value of B was
examined to confirm that:

cor(
¡
A,

¡
B) � 	,

B is then taken to represent spontaneous firing activity
log10Hz at time (t1). For each simulated experiment, con-
trol and treatment groups were generated by drawing the
paired log10Hzt0 and log10Hzt1 values for random arrays
for sample sizes ranging 3–16. The log10Hzt1 values within
the treatment group were offset by effect sizes ranging
from 0.1 to 2.0 log10Hz. A total of 5000 iterations were
performed for each sample size:effect size pairing, for a
total of 1.4 � 106 total simulated treatments. For each
iteration, an analysis of covariance (ANCOVA) was per-
formed by fitting an ANOVA model to linear regression for
log10Hz as a function of group (control/treatment) and
time (pre/post) allowing for interaction between the group
and time variables. The coefficients for the model were
compared using Tukey’s test for honest significant differ-
ence, and the p value for the comparison of control versus
treatment at time t1 was extracted. The linear regression,
fitting of the ANOVA, and Tukey’s test were performed
using the lm, aov, and TukeyHSD functions within the
base R stats library. Power was calculated as the propor-
tion of iterations within each sample size:effect size pair-
ing for which the difference between control and
treatment was calculated to have a p � 0.05.

�-distributed GLMs (�-GLMs)
For the distribution of spike cluster frequencies,

�-GLMs were constructed using the glm function within
the base R stats library. Firing frequency, Hz, was mod-
eled as the dependent variable, while treatment and re-
cording were used as interacting categorical independent
variables. The inverse link function was applied for trans-
lating the model coefficients estimating 
, the rate term of
the � distribution, to the distribution average �.

Linear mixed effect models
For estimating changes in array-level spike frequency

and cluster-level wave form, amplitudes were constructed
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using the lme function within the R nlme library (Pinheiro
et al., 2018). In all cases, the magnitude of effect of each
condition was determined by aggregating the data from a
minimum of three separate experiments. For array-level
spike frequency, log10Hz was modeled as the dependent
variable; treatment and recording (pre-treatment, post-
treatment) were interacting categorical fix-effect vari-
ables; and each individual experiment as a random effect.
For cluster-level wave form amplitude, log10�V was mod-
eled as the dependent variable; treatment and recording
were interacting categorical fix-effect variables; and spike
cluster, electrode, and experiment were nested random-
effect variables.

General linear hypothesis tests
General linear hypothesis tests for comparing the pre-

dictions of the GLM and LMEs were performed using the
contrMat, glht summary.glht functions within the R mult-
comp library (Hothorn et al., 2008). Adjustments to p.val-
ues for multiple comparisons was done using the default
“single-step” method within summary.glht. All figures
were generated using the R ggplot2 and accompanying
ggpubr libraries (Wickham, 2016; Kassambara, 2018).

Results
Prior art of MEA methodologies

As with all bio-assays, there are several facets to con-
sider in experimental design and analysis. While many are
universal, some are specific to the particular mode of
detection. Those most relevant to the use of MEAs are
detailed in Table 1. to assess existing practices for these
elements of MEA experiments, the methods employed in
22 reported studies were reviewed. While not all of the
experimental design elements list in Table 1 were explic-
itly addressed among the reported methods of these
studies, the most commonly documented aspects of the
methodologies are shown in Table 2.

Calculation of MFR and spike detection threshold
Novellino et al. (2011) surveyed six toxicology labora-

tories employing MEAs; comparing methods of tissue
culture, recording, signal processing and assay metrics
across the different research groups. Additionally, the
study had each laboratory test clinically used neurophar-
macological agents in their assays to assess the repro-
ducibility of the results. Based on the parallel testing of
pharmacological agents, Novellino et al., found that MFR,
defined as the ratio of total spike events to recording
duration in seconds, was the most consistent metric of
activity. Concordant with this report, the use of MFR for
reporting spike frequency within MEA recordings was the
most common assay metric reported by the other studies
examined (Table 2).

Table 1. Considerations for MEA experimental design

Experimental conditions Analysis parameters
Array surface preparation Spike detection/event filtering
Culture media Assay metric
Age of cultures Array exclusion criteria
Recording duration Treatment group assignment
Environmental control Statistical analysis

Table 2. Comparison of MEA methodology

Reference
Instrument

format
Culture
model

Surface
preparation

Culture
media

Age
(DIV)

Duration
(min)

Detection
threshold

Assay
metric(s)

Statistical
analysis

Varghese et al. (2010) Single-well Primary rat (E18) DETA NB 12–16 - - MFR t test
Kuperstein et al. (2010) Single-well Primary mouse - - 8–10 45 5 SD MFR t test

McConnell et al. (2012) Multi-well Primary rat (P2) Laminin NB 12–22 33 8 SD MFR, active channels -

Frega et al. (2012) Single-well Primary rat (E18) PDL	laminin NB 21–28 20 - MFR, burst rate Kruskal–Wallis

Bateup et al. (2013a) Single-well Primary mouse PDL	laminin NB - 2 9 �V MFR t test, ANOVA

Biffi et al. (2013) Single-well Primary mouse PLL NB 4–35 10 5X baseline MFR, active channels Kruskal–Wallis

Vincent et al. (2013) Single-well Primary rat (E18) PEI - - 20 3 SD MFR Wilcoxon

Bateup et al. (2013b) Single-well Primary mouse PDL	laminin - 12–19 2 9 �V MFR t test, ANOVA

Wainger et al. (2015) Single-well Reprogram-fibroblast neurons PDL	laminin DMEM/F12 �28 - 10 �V MFR Mann–Whitney

Wainger et al. (2014) Both hIPS-derived neurons PDL	laminin - �24 - 10 �V, 5.5 SD MFR Kruskal–Wallis,
linear regression

Illes et al. (2014) Single-well Primary mouse PDL	laminin DMEM/F12 �21 - 6.2 SD of baseline MFR t test, ANOVA

Weir et al. (2014) Single-well Primary mouse (P1) - aCSF 7–21 - 7SD MFR, burst rate, etc. t test, ANOVA

Charkhkar et al. (2015) Single-well Primary mouse (E17) PDL	laminin DMEM 21 20 5 SD MFR t test, ANOVA

Vertkin et al. (2015) Single-well Primary mouse (P2) - - 14–21 - - MFR t test, ANOVA

Bardy et al. (2015) Multi-well hIPS-derived neurons Laminin BP 2–21 10 6 SD MFR -

Slomowitz et al. (2015) Single-well Primary mouse (P2) - - 15–22 60 4–5 SD MFR -

Liu et al. (2017) Single-well Primary mouse - - - 15 6 SD MFR t test

Alshawaf et al. (2018) Single-well hESC-derived neurons - NB 12–56 5 5 SD MFR, active channels Kruskal–Wallis

Feng et al. (2018) Multi-well Primary mouse (P1) PEI	laminin NB 7–28 30 - MFR, burst rate, etc. t test

García-León et al. (2018) Multi-well hIPS-derived neurons PEI	laminin DMEM/F12 70 5 - MFR, burst rate, etc. t test

Black et al. (2018) Multi-well Primary adult mouse DRG PEI	PDL	laminin DMEM/F12 3–21 30 5.5 SD MFR, active channels Mann–Whitney

Nehme et al. (2018) Multi-well hIPS-derived neurons - NB 7–42 - 5 SD MFR, burst rate, etc. Kruskal–Wallis

DeRosa et al. (2018) Multi-well hIPS-derived neurons PEI	laminin NB �30 10 5.25 SD MFR ANOVA

Sarkar et al. (2018) Multi-well hIPS-derived neurons PO	laminin DMEM/F12 �21 10 5.5–6 SD MFR t test, ANOVA

Russo et al. (2018) Multi-well hIPS-derived neurons PO	laminin NB �30 3 5.5 SD MFR Mann–Whitney

Blake et al. (2018) Single-well Primary adult mouse DRG PEI	laminin NB 7 - 5.5 SD MFR t test, ANOVA

Surface preparation: DETA, diethylenetriamine; PDL, poly-D-lysine; PLL, poly-L-lysine; PEI, polyethylenimine; PO; polyornithine.
Culture media: NB, neurobasal media; DMEM/F12, Dulbecco’s modified eagle medium: nutrient mixture F-12; aCSF, artifical CSF; BP, BrainPhys media.
Vacancies in the table indicate instances where the reagent or technique used was not reported or unclear in the study methods.
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The calculation of MFR is dependent on the detection
of spontaneously generated action potentials, spikes,
which occurs when the recorded voltage exceeds a des-
ignated threshold, as shown in Figure 1. Among the re-
ported studies, this threshold was either set as an
absolute potential value (Bateup et al., 2013a; Wainger
et al., 2014) or relative to a number of SDs above the root
mean square of the background voltage. In the latter case,
the threshold determined by n SD can be dictated by an
initial baseline recording (as in Illes et al., 2014). However,
a method of dynamic threshold calculation over a moving
window (in the range of �10 ms) was more common. The
crossing threshold employed by most studies were in the
range of 5–6 SD, although others have used crossing
thresholds as low as 3 SD (Vincent et al., 2013) or as high
as 8 SD (McConnell et al., 2012). While methods are
available to detect subthreshold potentials within MEA
recording (Henningson and Illes, 2017), the use of large
magnitude thresholds is done to insure that the majority of
the events recorded represent action potentials.

While any of these approaches for establishing a spike-
detection threshold are valid, the dynamically calculated
crossing threshold has the value of being extendable for
use in a post hoc analysis to eliminate spike calls arising
from spurious electrical noise. During recording, sporadic
electrical noise can cause the background potential to
increase several fold, resulting in the erroneous determi-
nation of these events as spiking events. This can occur

while using a fixed or dynamically calculated threshold,
since while the dynamic threshold will eventually adjust
there is latency in doing so. Further, due to the hundreds
of channels being recorded for tens of minutes or more,
the probability of this occurring is increased, and manual
supervision impractical. While this is not discussed in the
reviewed literature, to address this issue as part of record-
ings performed for this study, the values of the crossing
threshold at the time of the spike detection for all in-
stances within a recording were examined. Since the
background potential is expected to be random normal,
all spikes for which the value of the crossing threshold at
time of detection exceeded 3 SD of distribution across all
crossing thresholds were excluded from analysis. This
conservative threshold was chosen as to only exclude
events from those channels exhibiting highly deviate
background potentials. Following the removal of spike
events detected at these aberrantly high crossing thresh-
olds, the MFR was calculated as described above inte-
grating all spike events recorded across all electrodes on
an array during a recording session.

Firing frequency from neuronal arrays exhibits log-
normal distribution

To assess the distribution of firing frequencies ob-
served across neuronal cultures on MEAs, the MFRs of
untreated rat primary cortical cultures were examined
(Fig. 2). In Figure 2A, the histogram shows firing frequen-

Figure 1. Example of MEA recording traces raw voltage recording of single well from a 96-well MEA containing eight electrodes. Each panel
depicts 500 ms of recording data. The crossing thresholds for spike detection representing 5.5 SD the root mean square (RMS) of background
voltage indicated by white bars above and below signal traces. Recording captured using AxIS acquistion software, Axion BioSystems.
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cies reveals that the distribution is highly skewed on linear
scale of Hz. Most studies reporting on MEA experiments
make no mention of this highly skewed distribution in firing
rates, with the noted exception of the report by Biffi and
colleagues that discusses it specifically (Biffi et al., 2013).
This observation may have gone unnoticed, due to studies
being performed in single-well MEAs having insufficient data
for this distribution to be apparent, however a similar highly
skewed distribution has been reported for firing frequencies
at individual recording electrodes within MEAs (Vincent
et al., 2013). This distribution shape is not surprising, given
that any frequency based metric is lower bound at zero, and

the only upper limit is the sampling rate at which the obser-
vations are being made.

A practical consequence of this pattern of behavior is
that the observed distribution array firing frequencies and
a theoretical random normal distribution deviate substan-
tially from each other as shown in Figure 2C. Despite this,
many studies reporting on spontaneous firing activity of
neuronal cultures recorded by MEAs use common para-
metric statistical tests such as Student’s t test and
ANOVA, which assume a normally distributed dependent
variable. Other researchers have presumably observed
the asymmetry in the data sets of MEA recordings, and

Figure 2. Distribution of MFRs observed in primary cortical cultures. Left, Distribution of firing frequencies (Hz) from 1272 unique arrays
across 35, 96-well MEA plates originating from 22 separate culture preparations. Cultures were between DIV19 and DIV35 and recorded
for 30 min. MFR shown on a linear (A, red) or log10-transformed (B, blue) scale. Arrays exhibiting low firing frequencies, MFR � 0.02 Hz
have been removed from this dataset. Quartile-quartile plots comparing firing frequencies on a linear (C), log scale (D) to a random normal
distribution (line).
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instead have used non-parametric tests such as Kruskal–
Wallis and Mann–Whitney U tests for reporting their re-
sults (Table 2).

The distribution of array firing frequencies does form a
symmetrical, approximately normal distribution following
transformation of the values by log10, as shown in Figure
2B. Other studies have used log10 transformation in the
reporting of MEA data, including Wainger et al. (2014) and
Black et al. (2018), who did so to compare firing frequen-
cies of individual electrodes, as well as Slomowitz et al.
(2015), to compare the activity of individual neurons fol-
lowing spike sorting. Given the log-normal behavior of the
observed frequencies, log10 Hz rather than Hz appears to
be a more appropriate metric to describe the spontane-
ous firing activity of neuronal cultures, especially to en-
able analysis using parametric methods.

Duration of recording for achieving intra-array
reproducibility

Given the broad range of firing activity observed across
arrays, extending more than two orders of magnitude, an
important consideration for MEA based experiments is
the duration of recording to perform. While the inter-array
variance is the accumulation of the implicit variability of
the biological system, and any variability introduced by
the construction of the experimental system, the goal is to
minimize sampling error by identifying a duration of re-
cording sufficient to accurately capture the activity across
the cultures. Most studies employing MEAs report using
recordings on the order of tens of minutes (Table 2),
although the duration can vary dramatically with some
studies performing recordings as short as 2 min (Bateup
et al., 2013a) and others up to 1 h (Slomowitz et al., 2015).

To formally address this question of what is a sufficient
duration of recording, the correlation of firing frequencies
was examined as a function of recording length in re-
peated recording sessions. Extended 3-h recordings were
taken of mature cortical cultures performed on consecu-
tive days (DIV20, DIV21). From these data, the Pearson’s
correlation (	) was calculated between the distribution of
MFRs of arrays on the first day versus the second day, for
accumulating 1-min intervals starting from the initiation of
recording out to the entirety of the recording. The corre-
lation of firing activity from recordings across sequential
days increases dramatically within the first 30 min of
recording with a value 	 � 0.8 observed in all experi-
ments, yet there are only modest increases in 	 seen
comparing longer intervals (Fig. 3). Fitting a linear regres-
sion to the data shows that the correlation between re-
cordings is approximated by the natural log of recording
duration 	 � ln�time�. This suggests that substantially
increasing the length of recording beyond 30 min will only
marginally improve the correlation, since � / �x ln�x� �
1 / x . Based on these observations, 30-min recordings
appear to be an adequate recording interval to measure
firing activity within MEAs for three-week rat cortical neu-
ronal cultures. This method of analysis can be employed
for any cellular system to determine the most appropriate
recording time for the culture conditions to be used in a
study using MEAs.

Changes in spontaneous firing across arrays with
culture maturity

From the published literature, studies performing MEA
experiments using primary cultures of rodent cortical neu-
rons have a range of reported age of cultures: DIV post
plating from dissected brain, and the time of analysis
ranges from DIV7 to DIV35, although DIV14–DIV28 is
most common (Table 2). Conversely, studies that instead
used neuronal cultures derived from stem cells have a
range of culture ages differing to a greater degree, over 30
d (DeRosa et al., 2018; Russo et al., 2018), including up to
DIV70 (García-León et al., 2018). This broad range is
expected given the variety of differentiation protocols
used and increased interval until these cells become elec-
trically active.

To assess how firing activity changed with maturation,
four culture preparations were recorded every 2–3 d be-
tween ages of DIV3 and DIV22. As shown in Figure 4A, the
cultures are electrically active by the end of the first week,
and that activity remains generally consistent over the
next two weeks. Of course, as described above, the range
of activity observed across the population of arrays is
broad. Additionally, this depiction shows all arrays, in-
cluding the portion from which little electrical activity is
observed. These are apparent in the lower portion of the
figure where the data appears striated, where differences
in a single spike event are seen as step-wise changes.

To determine whether the distribution of firing frequen-
cies differs between cultures, further analysis was per-
formed to examine the variance of firing frequencies with
culture maturation (Fig. 4B). ANOVA indicates that the SD
of firing frequencies is significantly affected by culture
preparation and the age of the culture. Comparison of
models indicates that the variance is significantly affected
by culture age when controlling for the effect of culture
preparation (p � 0.013). Examining the effect of culture
preparation indicates that culture 3 (green data points)
does show significantly lower variance than that of cul-
tures 1, 2, and 4 (p � 0.001, p � 0.001, and p � 0.0014,
respectively). However, there is insufficient evidence to
conclude interaction between culture preparation and cul-
ture age. Put more simply, the rate of change in variance
across firing activity with respect to time appears consis-
tent across cultures. The implications these data have for
assay development using MEA platforms are that the
variance across arrays within a single preparation of pri-
mary cortical cultures appear to reach a minimum be-
tween DIV7 and DIV14. However, substantial variation
across array activity persists during this interval. Using
cultures at this age may help mitigate some of the array-
to-array variability, but other methods described in this
paper such as the bootstrapping simulations for experi-
mental group assignment will still be necessary to fully
account for the observed variance.

Assignment of treatment groups for MEA
experiments

The variability observed across MEAs presents a chal-
lenge for the assignment of treatment groups for experi-
ments. A common practice for biological assays within
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multi-well plates is to use the orientation of the wells in
rows and columns to spatially assign treatment groups.
However, this practice can be problematic for multi-well
MEAs where variability is large and non-uniform. This is
demonstrated for a typical multi-well MEA plate shown in
Figure 5. Relying on plate rows for the designation of
treatment groups can result in significant differences in
the firing activity between cohorts even before the initia-
tion of treatment, as shown in Figure 5B, where eight
treatment groups (n � 12) were designated using the eight
rows of the 96-well plate.

While plate-based variability does occur in conven-
tional, colorimetric, fluorescence, or luminescence-based
plate assays; in these instances, the cause is usually an
external factor, such as liquid handling or excess evapo-
ration along exterior wells, and are typically uniform plate-
to-plate. Therefore, these can be addressed by changes
to the assay protocol, or post hoc application of statistical
regression techniques (Clemons et al., 2009). However,
unlike in many bioassays data acquisition of MEAs is
non-destructive to the cultures, so the varying levels of

activity between arrays can be assessed before initiation
of experimental treatments.

The first step in remediating the issue posed by vari-
ability across MEAs is to exclude those arrays that exhibit
substantially lower levels of firing activity than the popu-
lation as a whole. These wells are clearly distinguishable
as deviating from the otherwise normally distributed pop-
ulation (Fig. 5C). In practice, these low-activity wells are
excluded by setting a threshold at 2 SD below the median
value of firing frequency across all arrays in the experi-
ment. In this case, seven arrays of 96 are excluded with
the remainder closely following a normal distribution (Fig.
5D). Having eliminated these arrays, this now invalidates
the approach of using plate rows or columns for the
assignment of treatment groups, since the number of
available replicates in each group would differ.

While aligning treatment groups to the rows and col-
umns is convenient, it imposes an unnecessary constraint
on the positioning of replicates within cohorts. For the
original configuration of assigning 96 arrays to eight treat-
ment groups with 12 members each, there are 6.25 �

Figure 3. Correlation of firing frequencies in repeated recording as a function of time. Pearson’s correlation 	 between firing
frequencies of arrays on consecutive days (DIV20 and DIV21) as function of recording time for four culture preparations. Line indicates
fit of 	 � ln(time). Initial 2- of 3-h recording shown. Inset, Distribution of array firing frequencies log10Hz for 30 min during each
recording.
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1014 potential combinations, of which the option that
aligns with the plate rows is only one. When the assay
signal is uniform across the plate, one combination of
wells is effectively as good as another, so opting for the
most convenient makes the most sense. However, with
the convenient option removed due to the exclusion of
inactive arrays, and adding to it the non-uniform variability
across the plate, there is reason to explore the other
options to achieve a comparable level of pre-treatment
activity between groups.

With the inactive arrays removed, the goal is to find an
alternative assignment using the 88 most active of the
remaining 89 arrays to generate 8 treatment groups with

11 members each. To do so, we have applied a boot-
strapping simulation approach where 104 possible treat-
ment assignments are generated, then a one-way ANOVA
is applied to each iteration assessing firing frequency
(log10Hz) as a function of group assignment. From these
ANOVA results, the iteration that results in the lowest
F-statistic, which represents the ratio between group and
within group variance, is selected for the assignment of
the treatment groups. The results of this approach are
shown in Figure 5E,F, where the alternative assignment
results have near equal levels of activity across all eight
cohorts. Using the described method of removing inactive
arrays and determining the optimal assignment through

Figure 4. Changes in firing frequency with culture maturation. A, Firing frequencies of arrays observed during repeated 30-min
recordings over a three-week period (DIV3–DIV22) across four culture preparations. Each point represents an individual array per day;
384 replicate arrays, cultures: 1, 3, and 4; 288 culture: 2. Line indicates mean logHz per recording for each culture. B, SD in firing
frequencies of arrays observed during repeated 30-min recordings shown in panel A. Each line represents the prediction of a linear
model for the change in variance as a function of time.
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simulation results in a 78.7% decrease in the variance in
firing frequency associated with treatment group assign-
ment (TotalSSsim � 17.64 vs TotalSSrow � 82.6).

Additionally, this method can be extended to generate
treatment groups with comparable activity levels across
multiple plates for large experiments, which exceed the
capacity of a single plate. It also can be used to generate
treatment groups with comparable activity but uneven
numbers of replicates for instances where the experiment

incorporates a finite resource, like primary patient mate-
rial, necessitating an unbalanced design.

Adding it all up: power to detect changes in
neuronal firing using MEAs

Ultimately, for a researcher seeking to model changes
in spontaneous firing activity within neuronal cultures us-
ing MEAs, one of the most practical considerations of
experimental design comes down to the decision of the

Figure 5. Assignment of treatment groups across multi-well MEAs. A, Firing frequencies observed across a single recording of a 96-well
MEA. B, Firing frequencies across eight cohorts with 12 members (96 total), arising from cohort assignment based on plate row. QQ plots
comparing firing frequencies to normal distribution, for all wells (C), or following exclusion of wells �2 SD below median (D). E, Alternative
assignment for eight cohorts with 11 members (88 total), with minimal between group variance, following simulation of 10,000 possible
assignments. F, Firing frequencies within groups from alternative group assignment. Data presented as mean 
 SEM.
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number of replicates per condition. Having characterized
the distribution of firing frequencies observed across a
large number of MEAs (Fig. 2) and having established the
correlation of activity between repeated recordings (Fig.
3), it is possible to use these factors to estimate the
statistical power of MEA experiments.

For demonstration purposes, a two condition (control,
treatment), repeated measures (pre, post), experiment is
modeled. A bootstrapping approach is applied to simulate
experiments using sample sizes ranging from three to 16
replicates per condition, and scenarios in which the treat-
ment resulted in effect sizes of a difference in log10Hz
ranging from 0.1 to 2.0. The dataset used for the simula-
tion is generated from the firing frequencies of 1272
unique MEAs. The pre-treatment time point log10Hzt0, is
taken from the existing data, while the post-treatment
time point log10Hzt1 is randomly generated as to be re-
lated to log10Hzt0 by a correlation coefficient 	 � 0.8,
estimated from repeated recordings of MEAs (Fig. 3). The
firing frequencies of experimental replicates are pairs of
log10Hzt0 and log10Hzt01 with values drawn from random
arrays in the population. The log10Hzt01 values within the

treatment condition are offset by the specified effect size.
to estimate the difference between control and treatment
at the post time point, and an ANCOVA is performed
assigning time as a co-variate and determining the effect
of treatment. This method has been shown to provide
higher power than other used approaches, such as per-
centage of baseline or absolute change (Vickers, 2001).

Applying the conventional standard of statistical power

80% for a robust assay, the results of this simulation
show that it is difficult to reliably detect changes below 0.7
� log10Hz, �5 spikes / sec , even with large numbers of
replicates. Based on the results of addition simulations,
detecting changes on the order of 0.5 � log10Hz would
require treatment groups with �40 replicates, and a
change of 0.1 would require �600 replicates. to confi-
dently detect changes of 1.0 � log10Hz (i.e., a 10-fold
difference in spikes / sec ), requires treatment groups with
eight to nine replicates. Only with large changes in in firing
frequency of � log10Hz 2.0 or greater (i.e., a 100-fold or
more difference in spikes / sec ) would it be reasonable to
use treatment groups as small as an n � 3 (Figure 6). To
illustrate the magnitude of these proposed effects, re-

Figure 6. Calculation of statistical power for MEA experiments. Estimates of percentage power(1-
) based on simulation for a
two-condition (control, treatment) repeated measures (pre, post) experiment across sample sizes 3–16 arrays and effect sizes of
0.1–2.0 � log10Hz. Simulated experiments analyzed by ANCOVA, p value extracted from comparison between control and treatment
at post measure, 5000 iterations per sample size:effect size pairing. Upper, Distributions of observed p values from simulated
treatments per sample size for effect size of 0.5, 1.0, and 2.0 � log10Hz, green line indicates p � 0.05.
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peated experiments with TTX, showed that treating cul-
tures with 10 nM induced decreases of –1.14 log10Hz and
with 100 nM induced decreases of –2.24 log10Hz (data not
shown). The reported IC50 of TTX-sensitive Nav channels
in rats is 10 nM or less (Catterall et al., 2005). Therefore,
this analysis suggests that to have sufficient power to
detect changes in spontaneous firing activity comparable
to those elicited by treatment with TTX at its IC50 concen-
tration requires treatment groups with eight to nine arrays
per condition. Of course, it is important to emphasize that
these power estimates are based on a simple two condi-
tion experiment, so any experiment seeking to examine
more conditions would need to allow for more replicates
per condition to provide sufficient power for multiple com-
parisons. This estimate of a requirement of eight to 10
replicates to discern effects on firing frequencies within
MEA between treatment conditions of strong perturba-
tions is consistent with replicates used in studies report-
ing effect of known pharmaceutical compounds or
neurodegenerative disease associated mutations (Novel-
lino et al., 2011; Wainger et al., 2015).

Implementation of unsupervised spike sorting for
MEA recordings

MEA recordings provide a means of generating rich
data sets of electrophysiological activity from a large
number of neurons over comparatively long-time intervals
of days to weeks. However, resolving the activity of indi-
vidual neurons within this data are challenging due to the
poor spatial resolution of MEA data acquisition since the
density of detectors is sparse on a cellular scale, effec-
tively rendering each electrode a point detector. Despite
this, it is possible to deconvolute the mixed signals of
multiple neurons detected on each recording electrode of
a MEA through the implementation of spike sorting anal-
ysis in which shape parameters of waveforms arising from
a population of neurons are binned by similarity allowing
for attribution of individual waveforms to a cell of origin.
However, results of spike sorting performed in this fashion
come with the caveat that there is no “ground-truth,”
since it is not possible to know exactly how many individ-
uals neurons are being recorded and signals arising from
separate cells may be conflated as coming from the same
point of origin or vice versa due to fluctuations in field
potentials and propagation of potentials across the array
(for review, see Buzsáki et al., 2012; Gibson, 2012). The
application of spike sorting analysis to MEA recordings is
attractive as it allows for: (1) refinement of spike frequency
metrics to be resolved to the level of individual neurons;
(2) assessment of frequency-independent phenotypes,
such as changes in the amplitude of potentials emitted
from firing neurons; (3) determination of network dynam-
ics within cultures through determination of coordinated
firing patterns.

A review of commercially available software solutions
capable of performing this analysis was performed. One
such product available at the time of initiation of this study
was Offline Sorter (Plexon) which has been used in the
analysis of other MEA studies (Slomowitz et al., 2015;
Vertkin et al., 2015). While this software has the capability

to implement similar clustering algorithms to those ulti-
mately employed in the analysis pipeline developed for
this study, this software has critical limitations that limit its
utility for the analysis of multi-well MEA recording data.
First, this software is only capable of running on a single
CPU, precluding the ability to take advantage of distrib-
uted computing resources available, and thus greatly in-
creasing the processing times of analysis. Second, the
software required the data to be analyzed in a recording
centric fashion, which greatly diminishes the accuracy of
the clustering.

The development criteria for the analysis pipeline were:
(1) flexibility to analyze data collected during separate
recording sessions; (2) ability to perform clustering anal-
ysis in an unsupervised fashion; (3) extendable to parallel
processing in a distributed computing environment such
as high-performance computing clusters; and (4) able to
use open-source software to enable distribution and use
by other researchers.

For these analyses, the recording sampling rate was
12.5 kHz, and the spike detection threshold was set at 5.5
SD from the root-mean square of the background voltage
potential calculated over a 10-ms moving window. On
recording of a voltage above the detection threshold
(spike event), 3 ms of recording data were retained, 1 ms
preceding and 2 ms following the timing of the threshold
crossing event. With a sampling rate of 12.5 kHz, the 3-ms
window around each threshold event results in the reten-
tion of 38 momentary voltage recordings for each spike
event. These 38 momentary voltage recordings are recon-
structed into a wave form. From the reconstructed wave
form, an array of shape parameters are calculated for
each event, including: maximum voltage (peak), minimum
voltage (valley), wave form amplitude (peak-valley range),
time interval between peak and valley, AUC, and NLE, a
parameter describing the “sharpness” around the maxima
and minima of the wave form (Kim and Kim, 2000).

The spike sorting process begins by aggregating all of
the spike events detected by a given electrode during all
recordings of an experiment, as shown in Figure 7A.
Based on the wave form parameters of all spike events
collected on a given electrode, principal component anal-
ysis (PCA) is performed and all spike events were pro-
jected along the first two principal components as shown
in Figure 7B.

Once projected along principal components, clustering
of the waveforms is performed to group those exhibiting
the highest degree of similarity. to do so in an unsuper-
vised fashion, the mean-shift algorithm was applied, im-
plemented through use of the MeanShift library within the
R programming language (Fukunaga and Hostetler, 1975;
Comaniciu and Meer, 2002; Ciollaro and Wang, 2016).
The use of mean-shift clustering has particular advan-
tages for the analysis of MEA data over other non-
hierarchical clustering techniques such as, k-means,
since mean-shift does not require an a priori estimate of
the number of groups in the dataset. This is an important
practical consideration given that the number of cells that
will be recorded on a single electrode is unknown and
variable. While others have implemented semi-supervised
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Figure 7. Demonstration of spike sorting. A, Waveforms of 269 spike events captured by a single electrode across 7, 30-min
recordings. B, Projection of 269 spike events along principle first two principal components calculated from wave form shape
parameters, blue lines indicate density contours of events. C, Varying number of cluster centroids identified by mean-shift clustering
as a function of bandwidth value h of KDE. Cluster centroids indicated in red, value of kernel density estimate denoted above each
panel. D, Spike events colored by cluster membership as determined by mean-shift clustering performed with a KDE h � 1.5, cluster
centroids are indicated in black. E, Mapping of cluster centroids (black circle) to nearest spike (filled circle) event by minimum
Euclidean distance. F, Waveforms of spike events colored by cluster membership.
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clustering methods relying on k-means for the purpose of
spike sorting in MEA recordings (Slomowitz et al., 2015),
this requires manual intervention to indicate the number of
distinct wave form shapes present on each channel. In-
stead, the mean-shift algorithm operates by applying a
density function to the observed data and identifying the
local maxima across the distribution of the observations,
all observations within the dataset are then mapped or
“shifted” to the nearest local maxima. The only variable
that needs to be supplied to the algorithm is the band-
width term (h) to the kernel density estimator (KDE) func-
tion to determine the degree of curvature supplied to the
density function. For this analysis, a Gaussian density
function was applied, while the value of the KDE was
determined empirically by applying a range of values to
sample clustering of a teach-set of electrodes to establish
a value which provided accurate segregation of the wave-
forms, resulting in the use of h � 1.5. The influence of the
KDE in the mean-shift algorithm is demonstrated in Figure
7C, in which lower values of h result in insufficient
smoothing of the density function, resulting in an over
proliferation of local maxima, while higher values of h
result in over smoothing of the density function resulting
in only a single maximum.

While the cluster centroids, as shown in Figure 7D,
occupy a finite position with respect to the eigenvectors
these points may or may not coincide with points repre-
senting individual, observed waveforms. Therefore to map
the cluster centroid back to the original shape parameters
used in deriving the clusters themselves, the wave form
closest to the centroid is determined by calculating the
minimum Euclidean distance (Fig. 7D,E). The shape pa-
rameters of the wave form closest to the centroid can thus
be used for evaluating the mean shape differences be-
tween clusters.

Spike sorting in a recording-dependent versus
recording-independent fashion

Given the longitudinal nature of many MEA-based experi-
ments, it was important to assess the effect of performing the
mean-shift clustering in a recording-dependent fashion, in
which the clustering is performed several times, once for
each set of single recording data, or in a recording-
independent fashion, in which the clustering is performed
once on the data from all recordings. In the latter case, the
meta-data describing the recording origin of each event is
maintained, so that the events can still be parsed by
recording. The result of these two approaches is shown in
Figure 8, in which spikes recorded by a single electrode
across multiple recordings were clustered in a recording-
dependent fashion (Fig. 8A) or recording-independent
fashion (Fig. 8B). The limitation of the recording-depedent
approach is exposed as a consequence of the uneven
distribution of spike events across recordings. During the
fifth recording in which 92 spikes are recorded, the
recording-dependent method identifies the same number
of clusters, three, as identified in the recording-inde-
pendent analysis. However, during the third recording in
which only 35 spikes are recorded, sporadic events that
are otherwise aggregated into cluster #3 (green) in the

recording-independent analysis are oversegregated in
the clusters #4 (purple), #5 (dark green), #6 (orange) in the
recording-dependent method. The other limitation to the
recording-dependent approach is that since the values
assigned denoting cluster membership are arbitrary, clus-
ters that occupy the same position in principal component
space are assigned to different cluster values in different
recordings, presenting an additional challenge of correctly
associating clusters hosting similarly shaped waveforms
based on the cluster identifier alone.

These data emphasize the importance of performing
spike-sorting in an recording-independent manner when
examining recording data collected over several sessions
to avoid misattribution of firing events to separate clusters
that are in fact likely arising from a common point of
origin.

Stochastic nature of firing patterns of individual
spike clusters

Having implemented spike sorting analysis, it is possi-
ble to evaluate the firing frequencies of individual spike
clusters, providing a higher resolution of the spontaneous
firing than obtained with the array (or well)-level as de-
scribed above.

The firing frequencies of 237 spike clusters identified
within 32 arrays wells across four untreated culture prep-
arations, are shown in Figure 9A. These data show the
firing frequencies as average spikes / sec (Hz) from 30-
min recordings taken on three consecutive days. Across
the four experiments, the timing of culture media changes
was coordinated with respect to the timing of recordings
to minimize differences in firing across experiments as a
consequence of the state of media exhaustion.

Examining firing frequencies at the level of individual
spike clusters in Figure 9A, the patterns of firing over time
appear largely stochastic. First, the firing frequencies, as
indicated by increasing values from white ¡ black of
clusters differ dramatically with respect to each other
across clusters within recordings (along rows) and within
the same cluster across recordings (down columns), from
a minimum of 0 Hz to a maximum of 15.96 Hz. Addition-
ally, while all clusters are observed firing in at least one of
the recordings, the number of instances in which clusters
are inactive during any one 30-min recording interval in
which the culture is observed is substantial. As shown in
the cumulative density plot in Figure 9B, the proportion of
inactive clusters during a given recording ranges from
24% to 41%. Additionally, while the majority of spike
clusters exhibit firing frequencies are �1 Hz, there are a
limited number of highly active clusters. The combination
of a large proportion of inactive clusters and a limited
number of highly active clusters results in a highly skewed
distribution of firing frequencies (Fig. 9C, left) analogous
to the distribution firing frequencies observed at the array-
level (Fig. 2).

The zero-inflated nature of the cluster firing frequencies
presents a challenge when aiming to describe differences
in distributions of cluster frequencies, such as in response
to experimental conditions. The strategy of applying a log
transformation to the frequency values as described
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above for array-level frequency data are not applicable
in this instance, since the result of the log transforma-
tion is not a symmetrical normal distribution as is
achieved in that case, but rather an asymmetrical bi-
modal distribution (Fig. 9C, right) However, since the
values of the firing frequencies can theoretically as-
sume values from 0 ¡ acquisition sampling rate, an
alternative approach is to model the distribution of
cluster firing frequencies with a � distribution. While the
distribution of non-transformed array-level firing fre-
quencies could be described using a � distribution as
well, in practice the log-transformation of array-level
firing frequencies is more convenient since most arrays
exhibit some basal level of activity across recordings
compared to the large proportion of clusters which
exhibit no activity during a given recording.

To assess changes in the firing frequencies across
distributions of clusters under different experimental con-

ditions, �-GLMs can be applied to obtain estimates for
the average firing frequency in each condition (McCullagh
and Nelder, 1989). This approach is demonstrated in
Figure 9D, in which a �-GLM was fit to the data model
frequency as a function of recording, and the resulting �
distributions predicted by the model are overlaid on the
distribution of clustering firing frequencies observed in
each recording. The differences in firing frequencies
across recordings are shown in Figure 9E comparing the
� distributions predicted for each recording and in Figure
9F comparing the differences in average Hz 
 SE be-
tween recordings based on the estimates obtained from
the fitted model.

Characterizing network behavior of cultures within
MEA recordings

Beyond quantifying the distributions of firing frequen-
cies observed across individual neurons (spike clusters),

Figure 8. Spike sorting within single recordings versus independent of recording. Result of cluster assignment of 269 spike events
recorded from a single electrode across 7, 30-min recordings. Mean-shift clustering performed in recording-dependent fashion on
spike events from each recording (A) or in recording-independent fashion across pooled spike events from all recordings (B).
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Figure 9. Stochastic firing patterns of spike clusters. A, Firing frequencies (Hz) of 237 spike clusters identified in recordings of 156
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having resolved the recording data to this level it is pos-
sible to examine the network dynamics within popula-
tions. Compiling all action potentials attributed to an
individual neuron (spike cluster) through spike sorting
over a given recording interval results in the formation of
a spike train for each cell (Fig. 10). Examining the spike
trains arising from neurons detected on a single array over
an interval of minutes (Fig. 10A) reinforces the variability in
firing frequencies described above. However, examining
the time course of firing events over a duration of a few
seconds reveals synchronized firing patterns (Fig. 10B), a

phenotype of neuronal networks widely reported to be
maintained in dissociated cultures (Segev et al., 2001; Van
Pelt et al., 2004; Chen et al., 2006). The STTC is a param-
eter for describing the concordance or discordance of
firing events between a pair of spike trains (Cutts and
Eglen, 2014). Figure 10C shows the STTC between seven
individuals detected within an array over a single 10-min
recording. Examining the distribution of over 40,000 STTC
values calculated from �14,000 unique pairs of neurons
detected from repeated recordings of 387 arrays contain-
ing primary cortical cultures, shows that large magnitude,

continued
electrodes in 32 replicate wells across 4 mature, untreated cultures (DIV20–DIV45). Data from 30-min recordings across three
consecutive days. Spike clusters within common wells and experiments indicated by hash bars. B, Cumulative distribution of spike
cluster firing frequencies across recordings, arrows denote y-intercept, indicating proportion of inactive clusters during each
recording. C, Distribution of firing frequencies Hz across all three recordings on a linear (left) or log10-transformed scale (right). D,
Distribution of firing frequencies across each recording overlaid with estimated distribution of firing frequencies obtained from �-GLM.
E, Overlay comparing estimated distribution of firing frequencies from each recording. F, Average firing frequency per recording
estimated from �-GLM, presented as mean 
 SE.

Figure 10. STTC derived from pairwise contemporaneous firing across spike clusters. A, Raster plot indicating instances of action
potentials attributed to seven individual neurons following unsupervised spike clustering of 10-min recording of DIV8 primary cortical
culture. Red box indicates 10-s interval within the recording window. B, Instances of action potentials within 10-s interval indicated
within the longer 10-min recording depicted in panel A. C, Value of STTC calculated between spike clusters within a single array
across a single 10-min recording. D, Distribution of 42,486 STTC values calculated between 14,225 unique spike cluster pairings
detected across 387 arrays recorded between DIV3 and DIV22.
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positive and negative, STTC values are detected within a
week from initiation of culture (Fig. 10D). Moreover, while
the distribution of observed STTC values are largely con-
sistent and symmetrical over the observed period, the
majority of values are positive indicative of a propensity
for in-phase rather than out-of-phase activity relation-
ships in this culture type.

Using STTC to assess coordinated activity between
pairs of neurons, this can be extended to infer whether the
two cells are functionally connected. Those bona fide
connections thereby are considered to represent edges in
a network of activity among the neurons. To determine
which pairs of neurons are likely to be functionally con-
nected a permutation based analysis was applied similar
to that described by Vincent et al. (2013). For each pair of
neurons, a null distribution of STTC values was generated
by 1000 random permutations of the time stamps of the
observed firing events. The empirically observed STTC
values were compared to this random distribution, and
only those instances in which the observed STTC value
was of sufficiently strong correlation (positive or negative)
that the likelihood of occurring by chance had a proba-
bility of �1% where taken to represent a functional con-
nection between neurons. Using this method, the firing
patterns from 1106 arrays representing three primary cul-
tures, each recorded eight to nine times over a three-
week period were examined. From this dataset across all
recordings, 75,390 STTC values were calculated from
32,414 unique pairs of neurons. Of the 75,390 STTC
values calculated from the data, 43,421 (57.6%) were
deemed to represent functional connections based on
permutation testing. This selection was made with the
qualification that these relationships are based on firing
patterns and not detection of physical connection.

Specifying these connections, the topography of the
functional network between neurons detected on each
array during each recording session can established. to
quantify the degree of connectedness within each net-
work, the network cluster coefficient (C� ) is calculated for
each array and recording (Watts and Strogatz, 1998).
Examining the activity across these 1106 arrays reveals
that spontaneous firing activity does not always result in
the detection of network activity. As shown in Figure 11,
while the vast majority of arrays exhibit spontaneous firing
activity emerging within the first week of culture (panel A),
network activity as defined by a non-zero (C� ) value is
detected in a much lower proportion of arrays. Further,
the density of the networks as determined by (C� ) signifi-
cantly decreases from a peak within the first week at an
estimated rate of –0.008/d (p � 0.001; Fig. 11C). This
decline in network activity is consistent with findings re-
ported by Golshani and colleagues showing that firing
patterns of mouse cortical neurons in vivo become less
synchronized over a period comparable with the age of
these in vitro cultures (Golshani et al., 2009). However,
given the relatively simple topography of the networks
detected in these cultures caution should be taken when
drawing conclusions based on changes in density param-
eters. Further, despite this seemingly steady decline in
network density with maturation of cultures, the topogra-

phy within individual networks can be seen to change
dramatically between recordings as shown in Figure 11D.

Paradigms of spike cluster firing patterns
Given the stochasticity observed in the firing patterns of

spike clusters over successive recordings, the firing pat-
tern of any one spike cluster can be thought of as adher-
ing to one of four paradigms: (1) persistent, (2) lost, (3)
recovering, or (4) emergent. (1) persistent, pertaining to
clusters active during all recordings of interest; (2) lost,
pertaining to those that are active during initial recordings
but not observed in subsequent recordings, either as the
result of chance or the consequence of an experimental
perturbation; (3) recovering, pertaining to those that are
active during initial recordings, inactive during interim
recordings, yet are observed again in subsequent record-
ings, similarly either as the result of chance or the conse-
quence of an experimental perturbation; and lastly, (4)
emergent, pertaining to those clusters that are absent
during initial recordings but observed during subsequent
recordings. The emergent class harbors the caveat that
these clusters may have been absent during initial record-
ings due to chance, or that the cluster represent wave-
forms from a cell active during an initial recording but then
as a result of experimental perturbation produces wave-
forms with sufficiently different shape characteristics as to
result in the identification of a distinct cluster than those
produced originally. In this potential scenario, the analysis
would identify two distinct clusters, mutually exclusive
with respect to time, in which one is lost and the other is
emergent. These classifications of firing patterns are not
purely semantic, since there are practical implications for
which classes can contribute to the analysis of different
phenotypes. For frequency-dependent phenotypes, such
as rates of firing, the absence of activity is itself relevant.
However, for frequency-independent phenotypes, such
as wave form amplitude (discussed below), the phenotype
is dependent on activity such that the analysis needs to
be restricted to those persistent clusters that present
during all recordings when these frequency-independent
phenotypes are being assessed.

Examining changes in firing frequency and voltage
potential amplitude in response to exogenous
treatment

To examine changes in two distinct phenotypes, (1)
spontaneous firing frequency and (2) magnitude of
voltage potentials, cultures were treated with two well
characterized neurotoxins with different mechanisms of
action. A pore-forming toxin, �HL derived from Staphylo-
coccus aureus (Parker and Feil, 2005) and the Na	-
channel blocker TTX (Narahashi et al, 1964). A pore-
forming toxin was chosen for this analysis since an
increase in conductance across the membrane resulting
from perforation an ionophore such as �HL would be
expected to cause a decrease in wave form amplitude.

Effect of neuronal toxin treatment on cell viability
To determine the maximum tolerated dose of these two

toxins, a cell viability assay was performed to assess the
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induction of cell death in cultures following treatment with
a titration of each agent. Cortical cultures were treated
with titrations of �HL (0.25–16 �g/ml) and TTX (0.001–1
�M) for 24 h, after which viability was assessed by detec-
tion of lactate dehydrogenase (LDH) released into the
culture media. As shown in Figure 12B, �HL was tolerated
up to 4 �g/ml causing an �30% reduction in viability,
while TTX had negligible effect on viability even at the
highest dose tested. Based on these data, �HL was used
at a maximum concentration of 4 �g/ml in all subsequent
experiments.

Effect of neuronal toxins on firing frequency
To assess whether these concentrations of TTX and

�HL were sufficient to cause an effect on the generation

of action potentials, the frequency of spontaneous firing
was assessed in cultures treated with a titration of TTX or
�HL at 24 h following treatment, and again at 24 h follow-
ing the removal of treatment (washout). The data were
modeled using a �-GLM, estimating the average Hz
across the spike clusters within each condition as a func-
tion of treatment and recording. Differences in firing fre-
quencies between conditions were assessed using a
general linear hypothesis test (Hothorn et al., 2008). As
shown in Figure 12, treatment with 0.1 �M TTX (0.0266 

0.001 Hz) and 1 �M TTX (0.000556 
 2e-5 Hz) as well as
4 �g/ml �HL (0.05885 
 0.002 Hz) resulted in a significant
decrease in firing frequency compared to treatment with
media alone (0.24 
 0.008 Hz), p � 0.0148, p � 0.0001,

Figure 11. Pattern of network activity within cortical cultures. A, Proportion of arrays across three cultures exhibiting
spontaneous firing activity recorded between DIV3 and DIV22. B, Proportion of arrays across three cultures exhibiting network
activity as determined by non-zero, array level average network correlation coefficient. C, Change in average network correlation
coefficient between DIV3 and DIV22. Bars indicate mean 
 SE, regression fit derived from linear mixed model. D, Depiction of
network topography between 10 neurons within a single well (array) across nine recordings. Activity state of neuron within
recorded indicated by vertex color, lines indicate functional connection between neurons as determined by STTC of significant
magnitude.
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and p � 0.0088, respectively. While 2 �g/ml �HL (0.127 

0.004 Hz) also appeared to induce a decrease in firing
relative to control, the difference was not significant, p �
0.234. Following the washout of treatment, the TTX-
treated conditions show a complete restoration of firing
activity, returning to levels comparable with that of media
alone, while firing within the 4 �g/ml �HL treatment con-
dition was still significantly reduced compared to media
alone, p � 0.014. While the firing frequency within the 4
�g/ml �HL condition increased following the removal of
treatment, to 0.098 
 0.004 Hz from 0.059 
 0.002 Hz,
suggestive of some recovery, this increase was not sig-
nificant, p � 0.82.

The observed decrease in firing frequency among the 4
�g/ml �HL-treated condition following treatment could be
partially attributable to the effect on cell viability at this
concentration (Figure 12B), given that the effect was seen
both in the presence of the toxin and sustained following
its removal. This analysis examined the average firing
frequency across all clusters active during each record-
ing, and not specifically the change in firing frequency
among cluster that showed persistent activity across re-

cordings. Performing the analysis on the aggregate of all
clusters is necessary to capture the effect of a treatment
with the magnitude of effect of 1 �M TTX, in which there
are no active clusters in the treated condition in which the
comparison can be made.

Effect of neuronal toxin on voltage potential
amplitude

Having examined changes in firing frequency at the
cluster level, the next question was whether it is possible
to assess disruptions in membrane integrity by assessing
changes in the amplitude of voltage waveforms emitted
from the generation of action potentials.

There is minimal correlation between the rate at which a
neuron fires and the detected amplitude of the resulting
voltage potential Figure 13A. This lack of correlation
stems from the different factors underlying the generation
of these properties and the manner in which they are
detected in this system. The firing frequency of a neuron,
absent any exogenous experimental stimulus, arises from
the intrinsic properties of that particular class of neuron
and the excitatory and inhibitory inputs it receives from
other neurons that have formed synapses on it (Bean,

Figure 12. Spike cluster firing frequencies within TTX, �HL-treated cultures. A, Firing frequencies (Hz) of spike clusters within cortical
cultures treated with titration of TTX (green) or �HL (blue). Frequencies from recordings across three times points: untreated (open
bars), 24 h post treatment (filled bars), and washout 24 h following removal of treatment (half-filled bars). Treatment of 22–39 replicate
wells per condition across four experiments. Data presented as mean 
 SE Hz obtained from estimates of �-GLM modeling frequency
as function of treatment and recording. Differences in frequencies assessed by general-linear hypothesis test, significance indicated
by brackets and associated p values. B, Percentage viability of cortical cultures following 24-h treatment with TTX (left), or �HL (right)
as assessed by LDH release. Data presented as mean 
 SE, n � 5 per condition.
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2007). Conversely, while the action potentials of all neu-
rons are expected to be of the magnitude of �70–100 mV
with respect to the charge disparity between the intra-
cellular and extracellular space, the potential that is de-
tected by the extracellular recording electrode of the MEA
is dramatically influenced by the physical constraints of
the system. If a firing neuron is modeled as a point source
of charge, the extracellular potential Ve could be approx-
imated from Coulomb’s law, such that:

Ve �
I

4�d�
,

where I is amplitude of a point source of current (A), and
d is the distance from the source (meters), and � is the
conductivity (Siemens/meters) of extracellular space
(Gold et al., 2007). However, since neurons are better
approximate by cylinders whose length is much greater
than their transectional radius, the model is refined by the
linear source approximation (LSA) described by Holt and
Koch (1999). Thereby approximation of the extracellular
potential is instead modeled as:

Ve �
I

4���s
log��h2 � r2 � h

�l2 � r2 � l
� ,

where � s is the length of the cylinder, r is the radial
distance from the cylinder, h is the longitudinal distance
from the end of the cylinder, and l � h 	 � s representing
the longitudinal distance from the beginning of the cylin-
der (Holt and Koch, 1999; Gold et al., 2006, 2007). The

practical consequence of this is that the wave form of
extracellular voltage potential will vary drastically depend-
ing on the spatial orientation with respect to and distance
between the firing neuron and the recording electrode,
with an amplitude in the range of �10–100 �V, two to
three orders of magnitude below the potential across the
cell membrane (Gibson, 2012; Buzsáki et al., 2012). Taken
together, these considerations explain the wide range in
firing frequencies (Hz, x-axis) and voltage amplitude (�V,
y-axis) observed across this population of spike clusters.

Since an increase in conductance across the mem-
brane resulting from perforation by �HL would be ex-
pected to cause a decrease in wave form amplitude, the
analysis was limited to spike clusters exhibiting a potential
of at least 30 �V before treatment to allow for a sufficient
dynamic range of response. This threshold is indicated by
the dashed line on the histogram in center of Figure 13.
Additionally, in an attempt to estimate the magnitude of
the change in amplitude on individual cells, the analysis
was limited to those persistent clusters that were active
during both the untreated and treated recordings.

The estimate of the effect of treatment on wave form
amplitude has to account for several factors within the
data. First, the estimate of the amplitude of a given neuron
during a recording period is derived from the random
sample of firing events detected from that neuron, which
will exhibit a certain degree of variability. Next, the ampli-
tude across spike clusters varies greatly both before the
initiation of treatment, and likely in response to treatment.
Additionally, multiple spike clusters can be detected by a
single electrode. Each electrode will exhibit a range of

Figure 13. Comparison of firing frequency and wave form amplitude. A, Firing frequency (Hz) and wave form amplitude (�V) for 5506
spike clusters within untreated cortical cultures. Wave form amplitude determined by cluster centroid. B, Distribution of spike cluster
wave form amplitudes, dash line indicating 30-�V threshold used for selecting clusters for assessing changes in wave form amplitude
in response to treatment. C, Examples of low amplitude (teal), mid amplitude (gold), and high amplitude (persimmon) amplitude
waveforms.

Methods/New Tools 22 of 27

January/February 2020, 7(1) ENEURO.0080-19.2019 eNeuro.org



sensitivity due to either the micro-environment within the
culture in which they reside, and/or in the physical cir-
cuitry connecting them to the recording device. Finally,
these data were collected across several experiments
relying on separate preparations of cultures and reagents,
which can contribute to additional variability. Therefore, to
obtain an estimate for the effect of each treatment on
wave form amplitude while accounting for these sources
of variability, a linear mixed-effect model (LME) was con-
structed to predict log10�V as a function of the fixed
effects of treatment and recording (untreated and
treated), while controlling for cluster, electrode, and ex-
periment as nested-random effects (Pinheiro and Bates,
2000). The construction of the model is demonstrated in
Figure 14 for two treatments, media alone and 4 �g/ml
�HL. Based on the raw data of individual waveforms, a
series of linear regressions are fit, first based on wave-
forms within an individual spike cluster, then for all clus-
ters detected by a common electrode, all electrodes
within a single experiment, and finally for the effect of
treatment across all experiments.

This method was applied to the recording data from
treatment of cultures with a titration of TTX and �HL, to
determine if an increase in membrane conductance re-
sulting from exposure to a pore-forming toxin would result
in a decrease in the amplitude of the voltage waveforms
detected. The results in Figure 15 show that treatment
with either 2 �g/ml �HL (–0.068 
 0.034 � log10�V) or 4
�g/ml �HL (–0.074 
 0.034 � log10�V) induced a signif-
icant decrease in wave form amplitude compared to treat-
ment with media alone, p � 0.006 and p � 0.003,
respectively. While the media alone condition appeared

have a slight increase in wave form amplitude (0.046 

0.027 �log10�V), this estimate is not significantly different
from zero, p � 0.09. While treatment with 0.1 �M TTX
(–0.02 
 0.04 �log10�V) showed a slight decrease in
wave form amplitude as well, this difference was not
significant, p � 0.1. Treatment with 1 �M TTX could not
be included in this analysis, since this concentration
caused complete inhibition of firing activity.

It is worth noting that the significant effects on wave
form amplitude are somewhat modest. The estimated
change of –0.074 �log�V within the 4 �g/ml �HL-treated
cultures translates to a potential difference on average of
–5.74 �V after accounting for the baseline amplitude
among the spike clusters. That said, due to the attenua-
tion of voltage potentials detected by extracellular elec-
trodes as a result of distance from the neuron and
resistance of the extracellular milieu the decrease in po-
tential across the cell membrane is probably a 100�
greater or more (Buzsáki et al., 2012). Despite this atten-
uation of signal, the resulting decrease in amplitude is
still apparent. Figure 15B shows waveforms from the
spike cluster within the 4 �g/ml �HL treatment condi-
tion exhibiting the largest change in amplitude (� 14.2
�V) between the pre-treatment and post-treatment re-
cordings.

Lastly, is important to emphasize that despite treatment
with 4 �g/ml �HL inducing a slight decrease in cell via-
bility (Figure 12B), any such decrease in viability would not
be consequential for the effect on wave form amplitude,
since these estimates were derived purely from those
clusters active during both the untreated and treated
recordings.

Figure 14. Determining change in wave form amplitude using linear-mixed model. Modeling effect on wave form amplitude in
response to treatment media alone (top row) or 4 �g/ml �HL (bottom row) across untreated and treated recordings. Estimates derived
from amplitude values of individual waveforms (sample of 2000 shown per condition), and refined at level of spike cluster (open
circles), electrodes, experiment, and treatment, indicated above each panel. Estimates at each level shown in red, with estimates of
subsidiary level shown in gray.
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Discussion
Multi-well, MEAs are a compelling assay platform for

neuroscience combining a label-free, functional, electro-
physiological read-out with the ability to multiplex exper-
imental conditions. The increased commercial availability
of these instruments over the last decade has led to wider
adoption and an increase in published reports of MEA-
based experiments. However, despite this increased use,
there are limited studies delineating rigorous assay devel-
opment and experimental methods for use of these in-
struments.

Having generated recording data from a large popula-
tion of over a thousand MEAs, firing frequencies at the
array level were examined, revealing a highly skewed and
highly variable distribution. It was shown that application
of log-transformation should be used to obtain approxi-
mately normal distributions of firing frequencies before
statistical analysis, and that implementation of a boot-
strapping simulation can be used to accommodate for the
broad distribution of firing frequencies to generate treat-
ment with comparable levels of activity. Next, a series of
simulated experiments were performed to determine the
expected statistical power for a two condition, repeated
measure experiment across a range of sample and effect
sizes, based on the observed distribution of firing fre-
quencies of arrays and the empirically determined corre-
lation of firing in repeated recordings.

Assessing several methodological aspects of MEA ex-
periments, many of the commonly reported methods ap-
pear adequate for estimating firing activity within in vitro
neuronal cultures, while other elements of MEA experi-
mental design and analysis have either been under-
reported in the literature or investigators have employed
techniques that may be inappropriate for the task. Spe-
cifically, recording duration of 20 min or longer as re-
ported by several studies (Kuperstein et al., 2010;
McConnell et al., 2012; Vincent et al., 2013; Slomowitz
et al., 2015; Black et al., 2018; Feng et al., 2018), appear
sufficiently long to capture the activity in individual arrays
with a high degree of reproducibility. Similarly, the com-
mon practice of performing experiments with primary cul-
tures that have been aged two to three weeks is
reasonable, since the primary rat cortical cultures exam-
ined here showed a high degree of spontaneous firing by
the end of the first week that plateaued through these time
frames. Conversely, the highly skewed distribution of fir-
ing frequencies across both individual electrodes and
entire arrays has been largely omitted from reports or
accounted for in presentation of results, with a limited
number of noted exceptions (Biffi et al., 2013; Vincent
et al., 2013; Slomowitz et al., 2015; Wainger et al., 2015;
Black et al., 2018). Despite this observation, several of the
reviewed publications used parametric statistical tests
such as Student’s t test and ANOVA for assessing differ-

Figure 15. Change in wave form amplitude following treatment with pore-forming toxin. A, Estimated of change in spike wave form
amplitude (�log10 �V) of spike clusters within cortical cultures treated with titration of TTX (green) or �HL (blue), across untreated (0
h) and treated (24 h) recordings. Treatment of 22–39 replicate wells per condition across four experiments. Data presented as mean

 SE Hz obtained from LME model of wave form amplitude as function of treatment and recording. Differences in wave form
amplitude assessed by general-linear hypothesis test, significance indicated by brackets and associated p values. Table indicates
number of spike clusters, and spike events available for analysis in each condition. B, Comparison of waveforms within spike cluster
demonstrating the largest change in amplitude (�V) among the 4 �g/ml �HL treatment condition. Sample of 50 waveforms per
recording shown, untreated (light blue) and treated (dark blue).
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ences in firing frequency between MEAs. This is concern-
ing given that these tests assume a normally distributed
dependent variable, a condition that these data fail to
meet when examined on a linear scale. Further, some
studies used these methods for analyzing longitudinal
experiments (Feng et al., 2018; Sarkar et al., 2018), which
similarly violate the underlying assumptions of the com-
mon forms of these tests which expect measurements to
be independent and do not account for the anticipated
correlation of values between repeated measurements of
the same subject. Rather, ANCOVA and other linear re-
gression based methods that handle time as covariate
within the data would be more appropriate (Diggle et al.,
2002; Singer and Willett, 2003), as was employed here for
the simulation of treatment or as was reported by Wainger
et al. (2015).

Despite the increasing number of studies using multi-
well MEAs, none of the reports examined described meth-
ods for accounting for the wide variability of firing
frequencies when assigning treatment groups. Given the
ability to easily record MEAs repeatedly, implementation
of a simulation-based assignment technique using base-
line recording data such as described here seems ade-
quate for the purpose. While the use of complex treatment
maps generated by the process may seem impractical for
the addition of experimental perturbations, it is certainly
feasible for experiments being performed manually, and is
trivial for MEA recording systems that are integrated with
automated liquid-handlers as is the case with instruments
such as the Maestro Apex (Axion Biosystems, Hamilton
Robotics).

Using simulation methods incorporating data on the
variability and reproducibility of MEA recordings to calcu-
late statistical power of experiments showed the magni-
tude of effects that can be detected with confidence this
system. Comparing these simulated results with empirical
data from treatment of cultures with the neurotoxin TTX
shows that it is possible to detect changes in firing fre-
quency similar to those induced by treatment with TTX at
its IC50 using treatment groups containing eight to 10
replicates. Conversely, detecting large changes in firing,
such as those induced by high doses of TTX (10� IC50),
only requires a few replicates, while detecting more mod-
est changes will require many more replicates. This is an
important consideration for experimental design in the
different research areas in which MEAs are being used.
For toxicology studies in which the effect sizes of phar-
macological agents maybe larger, a few replicates per
condition may suffice, compared to disease modeling
studies assessing the functional effects of genetic vari-
ants where the effect sizes are expected to be smaller. For
these studies, much larger numbers of arrays would be
required to discern statistically significant differences.

Further, the high-frequency (�10 kHz) sampling rates of
typical MEA instruments can allow for greater resolution
of recording data, attributing events to individual cells of
origin through the use of spike sorting analysis. Doing so
can allow for the data acquired through MEA recordings
to be extended beyond aggregate array-level (well-level)
activity metrics to more refined phenotypes including

changes in: the spiking frequency of individual cells, the
amplitude of action potentials, and the network activity
neurons revealed through coordinated firing patterns.
Through this work, a spike sorting analysis pipeline was
developed implemented in the open source R statistical
programming language which provides flexibility to per-
form spike sorting across data from multiple recordings,
and that it can be executed within a parallel computing
environment, using multiple CPUs within a high-perfor-
mance computing cluster. The ability to perform spike
sorting across multiple recordings is an important distinc-
tion of the pipeline developed here relative to other com-
mercially available software. This is important, given the
longitudinal nature of many MEA experiments, and the
problems with sorting separately for each time point.
Further, the ability to leverage parallel computing is ad-
vantageous given the large number of recording channels
to be assessed (768 within the instrument used for this
study) and the time and computationally intensive nature
of the mean-shift algorithm underlying the analysis.

Utilizing this analysis pipeline, untreated cultures exam-
ined over multiple days were revealed to exhibit highly
stochastic patterns of spontaneous firing among individ-
ual cells. This observation provided essential grounding
for how to draw inferences about changes in firing pat-
terns across populations of spike clusters, as demon-
strated with the use of �-GLMs. Additionally, to assess
changes in the amplitude of action potentials originating
from individual cells, spike sorting analysis was performed
on recording data of cultures treated with a pore-forming
toxin, �HL, and non-pore forming, channel blocking toxin,
TTX. This analysis showed an significant decrease in the
voltage potentials within spike clusters of cultures follow-
ing treatment with �HL, consistent with the expected
changes in voltage potentials resulting from perforation of
the cellular membrane. This type of analysis may have
broader application in the field of toxicology where MEA
systems are commonly used. The technique described
here for monitoring changes in action potential amplitude
is analogous to the methods used for detecting changes
in QT intervals in cardiomyocytes recorded using MEAs
(Tertoolen et al., 2018). Finally, using these data in con-
junction with the STTC method described by Cutts and
Eglen (2014) and network cluster coefficient described by
Watts and Strogatz (1998), it was shown how the network
activity within cultures can be monitored using MEA re-
cordings by assessing the changes in coordinated firing
across individual neurons. While previous studies have
examined network dynamics within cultures on in vitro
MEAs, these have typically been carried without first iden-
tifying individual cells through spike sorting and instead
have examined the temporal correlation of events at the
electrode level (Vincent et al., 2013). This obfuscates
elements of the network, since activity of multiple cells is
likely being aggregated on a single electrode. Incorporat-
ing the techniques describe here will facilitate experi-
ments assaying for changes in network dynamics rather
than simply aggregated spike frequency. The ability to use
network phenotypes as an assay readout will improve as
multi-well MEA systems with higher electrode density
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become available allowing for better resolution of network
activity in vitro. This is relevant for modeling disease
biology, as the changes in neuronal activity resulting from
the pathophysiology of conditions such as Alzheimer’s
disease are likely to manifest as aberrant firing patterns
rather than simply an increase or decrease in the fre-
quency of spiking events (Palop and Mucke, 2010).
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