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Functional Roles of Calreticulin in Cancer Biology
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Calreticulin is a highly conserved endoplasmic reticulum chaperone protein which participates in various cellular processes. It
was first identified as a Ca2+-binding protein in 1974. Accumulated evidences indicate that calreticulin has great impacts for the
development of different cancers and the effect of calreticulin on tumor formation and progression may depend on cell types
and clinical stages. Cell surface calreticulin is considered as an “eat-me” signal and promotes phagocytic uptake of cancer cells by
immune system.Moreover, several reports reveal that manipulation of calreticulin levels profoundly affects cancer cell proliferation
and angiogenesis as well as differentiation. In addition to immunogenicity and tumorigenesis, interactions between calreticulin and
integrins have been described during cell adhesion, which is an essential process for cancer metastasis. Integrins are heterodimeric
transmembrane receptors which connect extracellular matrix and intracellular cytoskeleton and trigger inside-out or outside-
in signaling transduction. More and more evidences reveal that proteins binding to integrins might affect integrin-cytoskeleton
interaction and therefore influence ability of cell adhesion. Here, we reviewed the biological roles of calreticulin and summarized
the potential mechanisms of calreticulin in regulating mRNA stability and therefore contributed to cancer metastasis.

1. Structural Information of Calreticulin

Calreticulin (CRT) is a 46KDa multifunctional protein pre-
dominantly located in endoplasmic reticulum (ER) and
highly conserved in diverse species. It is synthesized with a
cleavable signal sequence at N-terminal and an ER KDEL
(Lys-Asp-Glu-Leu) retrieval signal at C-terminal. Structural
predictions of CRT demonstrated that the protein is com-
posed of three domains, including N-domain, P-domain, and
C-domain (Figure 1) [1].

The N-terminal region of CRT is a globular domain
containing eight antiparallel 𝛽-strands [2]. This domain can
interact with 𝛼-integrins [3] and DNA-binding site of steroid
receptor [4]. The disulfide bond formed by cysteine residues
in the N-domain may interact with P-domain to generate
important chaperone function of calreticulin [5].

The proline-rich P-domain contains two sets of three
repetitive regions [6]. These repeated amino acid sequences
form the lectin-like chaperone structures which are respon-
sible for protein-folding function of CRT. Moreover, the P-
domain of CRT is also a high-affinity and low-capacity Ca2+-
binding region [7, 8].

The C-domain of CRT is a highly acidic region which
is important for Ca2+-buffering functions. It binds to Ca2+
with high capacity and low affinity manner [9]. It is known
that Ca2+ binding to this region plays a critical role in the
interaction with other chaperone proteins in ER [1, 10].

Since there is a KDEL sequence for retrieval in the ER
at C-terminal of CRT, it is not surprising that this protein
is highly enriched within the ER lumen. However, evidences
demonstrated that CRT is also expressed in cytosol [11] and
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Figure 1: The protein structure and putative functions of calreticulin domains. The figure represents a schema of calreticulin. The protein
contains three functional domains: N-domain, P-domain, and C-domain. There is a signal sequence at N-terminal and a KDEL ER retrieval
peptide at C-terminal. The two sets of repeated regions are indicated by triangles and squares, respectively. The putative functions of each
domain as shown.

on cell surface [12]. It has been reported that the C-domain
is important for CRT retrotranslocation from ER lumen
to the cytosol [13]. Further study also indicates that this
retrotranslocation process is triggered by ER Ca2+ depletion
[14]. In addition, some studies have shown that cytoplasmic
CRT may interact with the cytoplasmic tail of 𝛼-integrin
through the KXGFFFKR sequences [3, 15–17]. Furthermore,
cell surface CRT is associated with phagocytic uptake and
immunogenicity of cells [18]. These results provide more
evidences for CRT as a multifunctional protein which may
participate in various physical and pathological events in
cells.

2. Biological Functions of Calreticulin

Over the past years, CRT has been proposed to participate in
various physiological and pathological processes in cells. The
two major functions of CRT inside the ER are protein chap-
eroning and regulation of Ca2+ homeostasis. Furthermore,
accumulated studies indicate that non-ER CRT also regulates
important biological functions including cell adhesion, gene
expression, and RNA stability.

3. Protein Chaperone

ER is an important organelle for synthesis, folding, and
transportation of secretory proteins. These functions are
carried out bymolecular chaperoneswhich facilitate correctly
protein folding and assembly. CRT is one of the well-
characterized lectin-like ER chaperons for many proteins
[19–22]. Recent evidences indicated that CRT is involved in
quality control process during protein synthesis, including
integrins, surface receptors, and transporters [1].

4. Calcium Homeostasis

Ca2+ is mainly stored in ER lumen and is a universal sig-
naling molecule affecting many developmental and cellu-
lar processes [23]. Numerous reports indicated that Ca2+-
binding chaperones influence Ca2+ storage capacity in the ER

lumen [24–27]. CRT is considered as an intracellular Ca2+
regulator since it contains two Ca2+-binding sites in the
P-domain (high-affinity, low-capacity) and C-domain (low-
affinity, high-capacity) [7, 9].More than 50%ofCa2+ stored in
ER lumen associates with CRT [9].Therefore, higher levels of
CRT may lead to increase intracellular Ca2+ storage [28, 29].
In contrast, CRT-deficient cells have a lower capacity for Ca2+
storage in the ER lumen [9]. The cardiac development in
CRT-deficient mice is defective due to the impaired Ca2+
homeostasis of CRT [30, 31]. Besides, abnormal function
of CRT also associated with adipocyte differentiation and
Henle’s loop adaptation under osmotic stress [32, 33]. These
findings further support that CRT plays crucial roles during
Ca2+ homeostasis.

5. Cell Adhesion

The concept that CRT might be involved in cell adhesion
is based on the regulation of focal contact via multiple
mechanisms [34, 35]. It is clear that the extracellular matrix
(ECM) molecules are important for focal contact forma-
tion. Several studies elucidated that alteration of CRT levels
affects cell adhesion on various ECM [36–38]. Papp et al.
implicated that CRT plays a role in the control of cell adhe-
siveness through regulation of fibronectin expressions and
matrix deposition. These effects are mediated via Ca2+-
dependent effect of CRT on c-SRC activity [39]. In addition,
previous studies revealed that CRT-mediated cell adhesion
might be due to direct interaction betweenCRT and integrins
by binding to the cytoplasmicKXGFFKRmotif of the integrin
𝛼-subunit [3, 40, 41]. These studies provided evidences that
CRT plays a critical role in cellular adhesiveness.

6. RNA Stability

In 2002, Nickenig et al. first indicated CRT as a novel
mRNA binding protein that destabilizes type I angiotensin II
receptormRNAbybinding toAU-rich region in 3-UTR [42].
Moreover, Totary-Jain et al. reported that CRT also binds to
specific element in 3-UTR of glucose transporter-1 mRNA
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Table 1: Expression of CRT in different cancers.

Cancer CRT levels∗ Clinical outcomes Reference
Oral Increased — [43]
Esophagus Increased ↓ survival (poor prognosis) [44]
Breast Increased ↑metastasis, ↑ invasion, ↓ survival [45–47]
Pancreas Increased ↑ lymph node metastasis, ↑ UICC stage, ↓ survival [48]
Gastric Increased ↑ lymph node metastasis, ↑ invasion, ↑microvessel density, ↓ survival [49]
Colon Increased — [50]
Bladder Increased ↑ urinary CRT, ↑ histological grade, ↑ pathological T stage [51–53]
Prostate Increased — [54]
Vagina Increased — [55]
#Ovarian Increased Better response to chemotherapy [55, 56]
#Neuroblastoma Increased ↑ differentiation, ↑ survival [57]
↑: increased; ↓: decreased.
∗CRT levels in tumor tissue except ovarian carcinoma in effusion fluids.
#Higher levels of CRT seem to correlate with good prognosis for the diseases.

and destabilizes the mRNA under high-glucose conditions
[58]. These results identified a new function of CRT which
is being a trans-acting factor which regulates mRNA stability.

7. Regulation of CRT Expression

The human calreticulin gene (CALR) is located on chro-
mosome 19p13.2 with nine exons. Calreticulin promoter
region contains several binding sites for reputed transcription
factors and many of these factors have been identified as
important modulators of CRT expression including NKx2.5,
MEF2C, COUP-TF1, GATA6, Evi-1, and PPAR factors [59].
In addition, calcium depletion and ER stress were shown to
be important activators ofCALR transcription [60]. Recently,
studies have also revealed that nerve growth factor (NGF)
can also upregulate CRT expression in both ovarian cells
and neuronal differentiation [61, 62]. These results suggested
an involvement of CRT expression in various biological and
pathological processes.

8. Clinical Impacts of Calreticulin Expression
in Different Cancers

The correlation between CRT expression levels and tumori-
genesis has been extensively studied in various cancers
and most reports have indicated that tumor tissues express
significant higher levels of CRT compared to normal tissues
[63]. These clinicopathological significances for CRT in
different cancers are summarized in Table 1. Studies have
demonstrated that the CRT expression levels were positively
correlated with clinical stages and lymph node metastasis
in gastric cancer [49] and breast cancer [45]. In addition,
patients with higher CRT levels had a poor survival rate in
pancreatic cancer and esophageal squamous cell carcinoma
[44, 48]. Other studies also revealed CRT expression levels to
be significantly upregulated in oral cancer [43], breast ductal
carcinoma [46, 47], colorectal cancer [50], prostate cancer
[54], and vaginal carcinoma [55]. Furthermore, CRT levels
not only increase in bladder cancer tissues [51], and urinary

CRT has also shown to be a useful biomarker for bladder
urothelial cancer detection [52]. Kageyama et al. implicated
that the concentration of urinary CRT has a tendency to
increase in high grade tumors [53].These results indicate that
increased CRT expression might play a crucial role during
cancer progression.

On the other hand, the roles of CRT in ovarian can-
cer progression are inconclusive. Compared with primary
tumors and solid metastases, reduced CRT expression was
observed in malignant effusions of high-grade ovarian carci-
noma along disease progression [56]. Moreover, CRT expres-
sion levels in effusionsmay be associatedwith better response
to chemotherapy while the survival was not related to CRT
expression [56]. Furthermore, in neuroblastoma, increased
CRT expression is found to be associated with better prog-
nosis and differentiated histologies [57, 64]. Therefore, the
impact of CRT on tumor formation and progression may
depend on different cell types and clinical stages.

Very recently, mutations in calreticulin gene were
detected in myeloproliferative neoplasms (MPN) [65, 66].
Most patients with MPN including polycythemia vera (PV),
essential thrombocythemia (ET), and primary myelofibrosis
(PMF) were found to have mutations in Janus kinase 2 gene
(JAK2) [67, 68]. For the remaining patients, mutations in
CRT gene were identified [65, 66]. These CRT mutations
include 52 bp deletion and 5 bp insertion of certain base
pairs, which leads to frameshift mutations [69]. Proteins
encoded by mutated CRT gene lack the C-terminal KDEL
domain; therefore they may affect normal Ca2+ binding and
cell growth.

9. Membrane Calreticulin as
a Phagocytic Signal

An important role for CRT exposed on the cell surface,
which is relevant for destruction of cancer cells, is via
induction of the immune response [18, 70]. Results from
several laboratories have demonstrated that cell surface CRT
facilitates the phagocytic uptake of apoptotic and cancer cells
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[71–73]. Clarke and Smyth demonstrated that drug treat-
ments (anthracyclines) caused tumor cell to expose a surface
prophagocytic protein, CRT, which induced immunogenic
cell death [74]. Additionally, suppression of CRT by siRNA
inhibited the anthracycline-induced phagocytosis by den-
dritic cells and destroyed their immunogenicity in mice [72].
It is becoming clear that surface exposure of CRT is required
for phagocytosis on dying tumor cells. CRT expressed on the
cell surface is considered as an “eat-me” signal for multiple
human cancers, and this prophagocytic function of CRT is
disrupted by an antiphagocytic signal CD47 [71]. It has been
previously described that an antiphagocytic signal CD47
was increased with high amounts of CRT on cancer cell
surfaces to avoid phagocytosis by the immune system [73].
Therefore, interruption of the ability of CD47 by anti-CD47
antibodies might have a therapeutic effect to enhance cancer
cell phagocytic uptake [18]. Taken together, these results
indicate that CRT-mediated immune mechanisms might be
an important strategy for developing new anticancer therapy.

Another interesting question is how this ER chaperone
protein gets out of the cell. Several possible mechanisms
have been discussed previously [18, 25, 70]. Studies revealed
that CRT cotranslocates to the cell surface with ERp57 after
anthracycline treatment dictates the immunogenic cell death
in preapoptotic cells [70, 75–77]. The exposure pathway of
CRT/ERp57 complex is suggested to be triggered by pro-
voking the reactive oxygen species (ROS) or ER stress that
activates pancreatic ER kinase (PERK). Activated PERK leads
to phosphorylation of the eukaryotic translation inhibition
factor eIF2𝛼, followed by preapoptotic cleavage of caspase 8
and activation of Bax and Bak [75, 78]. Interestingly, recent
studies indicated that ER calcium levels were also involved
in CRT translocation to cell surface. Thapsigargin treatment,
which leads to ER Ca2+ depletion, elevates cell surface
expression and secretion of CRT protein [79]. In addition,
some chemotherapeutic agents, such as anthracyclines, could
also affect the translocation of CRT to the cancer cell surface
[80]. CRT expressed on cancer cell surface is important for
activation of immune responses. Increasing cell surface CRT
exposure may be a potential strategy to develop therapeutics
to kill cancer cells.

10. Functions of Calreticulin in Regulating
Cancer Cell Proliferation

Cancer formation is characterized by rapid proliferation of
mutated cells. Many studies have elucidated that manipu-
lation of CRT levels had profound effects on tumor cell
proliferation in diverse types of cancer cells. In pancreatic
cells, overexpressed CRT enhanced cell growth; in contrast,
knockdown of CRT had the opposite effect on cell growth
[48]. In addition, depletion of CRT caused cell cycle arrest at
the G0/G1 phase which resulted in significantly suppressed
growth rate, colony-formation capacity, and anchorage-
independent growth in oral cancer cell [43]. Importantly,
Chen et al. have reported that higher levels of CRT promoted
cell proliferation and upregulated the proangiogenic factor
vascular endothelial growth factor (VEGF) expression in

gastric cancer cells [49]. The role of VEGF in regulating
angiogenesis has been well documented [81, 82]. As secreted
by tumor cells, VEGF binds to specific receptors and activates
downstream signal pathways including themitogen-activated
protein kinase (MAPK) and the Ras/extracellular signal-
regulated kinase (ERK) which promotes cell proliferation,
survival, migration, and angiogenesis [83, 84]. We also found
that knockdown of CRT suppressed cell growth in bladder
cancer [36]; therefore, we further investigated whether levels
of VEGF were also affected by CRT in bladder cancer cells.
Results shown in Figure 2 indicated that both expression and
secretion levels of VEGF were decreased in CRT-knockdown
bladder cancer cells. Although many reports have indicated
that CRT has a positive effect on cell growth, other studies
provided different viewpoints on this issue. A recent study
demonstrated that prostate cancer cells with higher CRT
levels produced fewer colonies as well as inhibition of tumor
growth both in vitro and in vivo [85]. Moreover, vasostatin, a
fragment of CRT, is considered as an antiangiogenic factor
and inhibits VEGF-induced endothelial cell proliferation
[86]. Our recent study also demonstrated that CRT upreg-
ulates VEGF expression, suppresses cell proliferation, and
enhances cell differentiation in neuroblastoma cells [87].
These results strongly suggested that effect of CRT on cell
proliferation might depend on cell types.

11. Roles of Calreticulin in Neuronal
Differentiation in Neuroblastoma

Neuroblastoma (NB) is themost frequently diagnosedmalig-
nancy in infancy,withmore than 96%of patients diagnosed at
the age of<10 years [88, 89]. It is derived from the sympathoa-
drenal lineage of embryonic neural crest cells [90]. Previous
studies suggest that incomplete development and failure of
differentiation or apoptosis of neuroblastic cells is critical in
its development [91]. Previous studies have shown that NB
cells exhibit a capacity of differentiating into mature cells or
spontaneous regression by apoptosis [92, 93]. Studies also
demonstrated that NB can be forced to differentiate upon the
treatment of retinoic acid [94]. On the other hand, NB with
better prognosis often express molecular markers indicative
of cell differentiation, such as TrkA [95]. Furthermore, the
expressions of apoptosis-related genes including p53, Bcl-2,
and Bax have been demonstrated in NB and are correlated
with favorable prognosis [96]. In some cancers, CRT is found
to be upregulated in tumor tissues compared to normal tissue.
Conversely, in NB, increased CRT expression is associated
with better prognosis and differentiated histologies both in
vitro and in vivo [57, 64]. A CRT knockout (KO) mouse
model exhibited embryonic lethality with significant defects
in heart, brain, and body wall, suggesting an essential role
of CRT in the embryonic development of nervous system
[97]. It has been reported that surface CRT is crucial for
neurite formation [98]. Moreover, a recent study using PC-12
cells expressingmutantCRT lacking aCa2+-buffering domain
(C-domain) suggested that the Ca2+-regulating capacity of
CRT is essential for NGF-elicited neuronal differentiation
[62]. Our recent studies further demonstrated that CRT could
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Figure 2: Knockdown of calreticulin suppressed VEGF-A mRNA expression and protein secretion in bladder cancer cell. Details on CRT-
knockdown human bladder cancer cell lines (control and CRT-RNAi) were described previously [36]. (a) Real-Time PCR was used to detect
VEGF-A mRNA levels in J82 control and CRT-knockdown cells. Total RNA was isolated by the TRIzol reagent following the manufacturer’s
instructions. Reverse transcription PCR was carried out using ReverTra Ace reverse transcriptase. Real-Time PCR was performed using the
iCycler iQ Real-Time detection system (Bio-Rad, Hercules, CA) with the DNA double-strand specific SYBR Green I dye for detection. RNA
expression was normalized to the internal control, GAPDH. (b) VEGF-A secretion levels were detected by enzyme-linked immunosorbent
assay (ELISA) in conditioned media of J82 control and CRT-knockdown cells. Cells were plated at 5 × 105 cells/well in six-well plates.
Conditioned media were collected and analyzed using an ELISA kit specific for human VEGF (BioSource, Camarillo, CA, USA). Statistical
differences were compared to the control level (∗𝑃 < 0.05, ∗∗∗𝑃 < 0.001).

suppress cell proliferation and enhance cell differentiation,
whereas apoptosis was not altered in NB cells, implying
CRT as an important favorable prognostic factor in NB [87].
Besides, we showed that blockage of VEGF signaling could
suppress neuronal differentiation in CRT-overexpressed NB
cells, suggesting that VEGF-A is involved in CRT-related
neuronal differentiation in NB.These results clearly delineate
a novel mechanism of CRT during tumorigenesis of NB [87].
These findings also suggest that CRT plays an important role
in neuronal differentiation.

12. Roles of Calreticulin in Cell
Migration and Adhesion

Metastasis is a critical event for cancer progression. This
mechanism involvesmany processes, including cell adhesion,
migration, and invasion. Previous studies have revealed that
overexpressed CRT contributes to cancer metastasis in gas-
tric, pancreatic, prostate, and ovarian cancers [48, 49, 56, 99].
The possiblemechanisms for CRT-mediated cellmigration or
adhesion have been intensively investigated. One suggested
mechanism is that CRT is one of the few cytoplasmic proteins
that directly interact with integrin𝛼-subunits [15, 17]. In 1995,
Coppolino et al. have shown that the interaction between
integrin 𝛼2𝛽1 and CRT can be stimulated by integrin acti-
vation [100]. They further used the PC-3 prostate cancer cell
line as a model to demonstrate that the interaction between
integrins and CRT is modulated by phosphorylation and
dephosphorylation status [101]. A recent study also reported
that integrin-dependent cell adhesion on fibronectin was

apparently affected when CRT is overexpressed in epithelial-
mesenchymal transition- (EMT-) like cells [102].

Other mechanisms have also proposed that CRT mod-
ulates cell adhesion and migration through focal contact
dependent manners [34]. This theory is further supported
by different levels of CRT affects ECM expressions [39].
Manipulation of CRT expression in mouse L fibroblasts has
had a profound effect on fibronectins synthesis. These effects
might be due to regulation of c-SRC activity [39]. Cells
with higher levels of CRT exhibited increased adhesiveness
ability, which is relevant for the calmodulin/calmodulin-
dependent kinase II pathway [103]. Moreover, CRT has been
reported as a positive regulator for another important focal
contact molecule, vinculin. Upregulation of CRT enhanced
cell adhesiveness and cell spreading, while knockdown of
CRT showed inverse effects in L fibroblast cells [38]. Fur-
thermore, cell surface CRT interacted with thrombospondin
to modulate focal adhesion disassembly through the PI3-
kinase-dependent pathway [104]. Evidence from these studies
suggested that CRT plays a critical role in regulating cell
adhesion and migration via various mechanisms.

13. New Insight of Calreticulin in
Regulation of Integrin Activity

Integrins are heterodimeric transmembrane receptors com-
posed of 𝛼- and 𝛽-subunits. They connect extracellular
matrix and intracellular cytoskeleton by several cytoplasmic
binding proteins to control cell adhesion and migration
processes [105]. As we mentioned in previous sections, CRT
has been characterized as an intracellular integrin 𝛼-subunit
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binding protein and it is essential for integrin-mediated
cell adhesion [15, 17]. Meanwhile, little is known about how
this mainly ER-resident protein can modulate cell surface
receptor functions. According to our latest observation, one
critical role of CRT which regulates integrin activation is
through modifying 𝛼1, 2-linkaged glycomic status on 𝛽1-
integrin. Mechanistic investigation demonstrated that CRT
controlled the mRNA stability of an important enzyme,
fucosyltransferase 1 (FUT1), which catalyzes 𝛼1, 2-linked
fucosylation on 𝛽1-integrin and subsequently promotes 𝛽1-
integrin activities [106]. These results not only clarify the
biological mechanism for CRT regulating integrin functions
in cell adhesion process but also provide a new possible
strategy for inhibition of cancer metastasis.

14. Concluding Remarks

In this review, we summarized the evidences for CRT
effects on cancer development. Notably, abnormal CRT
levels are highly correlated with pathological outcomes in
different types of cancers. Extensive evidences have shown
that CRT participates in varieties of cellular functions both
inside and outside of ER lumen. The two major functions
of CRT are protein chaperoning and Ca2+ homeostasis,
while mounting evidences indicate that non-ER CRT also
plays a crucial role during tumor development. One of
the important CRT-mediated mechanisms which regulated
cancer cell adhesion is through interaction with integrins.
As well as connecting to extracellular matrix, activation of
integrins impacts cytoskeletal dynamic by various integrin
cytoplasmic-binding proteins [105, 107]. Recently, CRT is
known as an integrin 𝛼-subunit binding protein and it can
facilitate 𝛽1-integrin activation through influencing integrin
glycosylation by FUT1 levels. Taking this into consideration,
it will be crucial to understand how CRT regulates cell
adhesion. It still remained unclear how CRT levels were
stimulated in different cancer. Future studies should be
required to delineate the possible upstream signal of CRT-
related cancer progression, and these results will decipher the
roles of CRT in cancer biology.
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