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ABSTRACT: Designing molecular structures with desired chemical properties is an essential task in drug discovery and materials
design. However, finding molecules with the optimized desired properties is still a challenging task due to combinatorial explosion of
the candidate space of molecules. Here we propose a novel decomposition-and-reassembling-based approach, which does not include
any optimization in hidden space, and our generation process is highly interpretable. Our method is a two-step procedure: In the first
decomposition step, we apply frequent subgraph mining to a molecular database to collect a smaller size of subgraphs as building
blocks of molecules. In the second reassembling step, we search desirable building blocks guided via reinforcement learning and
combine them to generate new molecules. Our experiments show that our method not only can find better molecules in terms of two
standard criteria, the penalized log P and druglikeness, but also can generate drug molecules showing the valid intermediate
molecules.

B INTRODUCTION

Designing new molecules for drugs and materials with desired
properties is a challenging task due to the massive number of
potential druglike molecules, which is estimated to be between

between its features, which makes it challenging to reconstruct a
new molecular graph from the optimized descriptors as it
requires preserving such correlation information. In addition,
molecules are often treated as 3D structures so that 3D

10% and 10%°."* Although various types of representations have
been investigated, molecules are essentially graphs with node
and edge attributes.” The graph structure of chemical
compounds makes it difficult to generate valid molecules with
desired activities or properties even if you can build a
Quantitative Structure—Activity Relationship (QSAR) model,
which is a computational modeling method for revealing
relationships between structural properties of chemical com-
pounds and biological activities, by designing descriptors of
chemical features specifically for virtual screening. One of the
straightforward ways of generating molecules is to solve the
inverse QSAR problem through the objective function estimated
from the molecular structures.’”’ However, feature vectors
extracted from molecular graphs are often highly correlated
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descriptors can be calculated to predict desired properties more
accurately. The inverse design of 3D molecular structures is also
highly challenging because the coordination of atoms must be
taken into consideration.”*"*

A number of methods have been proposed to tackle the
problem of molecular generation.”'*'* Recent advanced

approaches to drug-candidate molecule findings have employed
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deep generative models.'"’”'*"*~'® The basic idea of using
generative models is to learn the latent representation of
molecules, which enables us to reconstruct and explore
molecules that satisfy target properties in the learned latent
chemical space. In particular, for 3D molecular generation, not
only the graph structures but also the conformation and distance
between atoms are needed as additional node attributes.

Exploration methods such as Bayesian optimization are used
to search the latent chemical space.l" However, it is
fundamentally difficult to reconstruct molecular graphs from
the latent space and to search molecules with the desired
property by extrapolation from a training data set as a large part
of the latent space corresponds to invalid molecules.

Another strategy to search desired molecules is based on
reinforcement learning. In the setting of reinforcement learning,
an agent learns the optimal policy to maximize the cumulative
reward, and the trained agent can take an action to generate the
optimal molecules. When each molecule is represented as a
string in the form of the simplified molecular-input line-entry
system (SMILES),'” the agent takes an action of the next
character of SMILES based on the optimized policy, where
recurrent neural networks (RNNs) are often used to generate
strings. In the case of molecular graph generation using
reinforcement learning, the agent takes an action of choosing
the atom tglpe and bond type between nodes to expand each
molecule.” The state is represented as latent feature vectors by
using RNNs or graph neural networks. However, both
approaches of SMILES generation and nodewise molecular
graph generation share the problem that the intermediate steps
do not represent valid molecules, which significantly deterio-
rates the interpretability of resulting generated molecules.
Moreover, the property and the state radically change if the
ring structure appears, and it is fundamentally difficult to treat
such binary response in optimization on a continuous latent
space.

In this paper, we propose a novel molecular generation
approach, called MOLDR (MOLecular graph Decomposition
and Reassembling), which generates optimized new molecules
by decomposing molecular graphs in a training data set into
subgraphs and reassembling such obtained subgraphs again in a
different way. Our key insight is that chemical properties depend
on the combination of subgraphs, which correspond to the
functional group or the motif of molecules in the context of
chemoinformatics, and that it can be optimized when
appropriate substructures are included in molecules. More
specifically, MOLDR is composed of a decomposition step and a
reassembling step. In the decomposition step, we first convert
each molecular graph into a tree structure to efficiently obtain
subgraphs, that is, functional groups, followed by extracting
frequent subgraph structures by applying a graph mining
method. In the reassembling step, we treat the extracted
subgraphs as building blocks of molecular graphs and reassemble
them in an autoregressive way by searching desired blocks
according to the target property using reinforcement learning.
Although MOLDR can employ other optimization methods
such as Monte Carlo tree search (MCTS),”"** we consistently
use reinforcement learning in our study as it is known to be
effective in the context of molecular generation. We empirically
evaluate molecular graphs generated by our method with respect
to various well-established property scores, the penalized log P
and Quantitative Estimation of Druglikeness (QED)* and
multiobjective score of QED and Synthetic Accessibility (SA).
In addition, we evaluate our method in the task of rediscovery of

known drug molecules and show that our method is competitive
with the state-of-the-art molecular generation methods, showing
transition paths of generated molecules.

Our contributions are summarized as follows:

e Our method MOLDR explicitly constructs new molecules
by combining substructures of molecules; hence, its
generation process is highly interpretable.

e MOLDR can easily generate larger sizes of molecules out
of distribution in a data set by combining subgraph
structures.

® Molecules generated by MOLDR are superior to those by
the current state-of-the-art generative models in terms of
log P and QED (druglikeness).

B RELATED WORKS

Yang et al”* and Olivecrona et al.'* proposed SMILES
generation approaches by RNNs and searched molecules with
desired properties over SMILES representation using MCTS
and policy gradients, respectively. Yang et al.”* also proposed the
massive parallel computation of MCTS to generate and search
molecules. Instead of SMILES-based strategies, You et al.?®
proposed nodewise graph generation and property optimization
using reinforcement learning. States of molecules are
represented through graph convolutional networks, and the
agent selects nodes, edges types, and the terminal to expand
molecules. The policy is optimized through the Proximal Policy
Optimization. These methods can generate valid molecules with
desired properties at the final step. However, the generation
process is a black-box by nature, and it is difficult to explain why
and how such molecules are obtained.

Jin et al.*® proposed a VAE model that generates junction
trees over molecules. Nodes in a junction tree represent
subgraphs extracted from a molecular data set, and a graph
neural network determines which nodes or edges are combined
with each other in the junction tree. To search molecules that
optimize the desirable properties, it is necessary to search two
vectors, what a tree structured scaffold is and how a molecule is
reconstructed within the latent embedding space. In contrast, in
our method, junction trees themselves are used to efficiently
extract frequent substructures from a molecular data set, and we
expand and search substructures directly to achieve target scores
instead of generating junction trees from VAE.

Takeda et al." proposed to generate molecules by combining
substructures that contribute to the target properties, where
candidate molecules are searched by McKay’s Canonical
Construction Path (MC-MCCP) algorithm.%’ 7 Jin et al*®
proposed the multiobjective molecule generation using
interpretable substructures as rational for extracting substruc-
tures by MCTS to generate molecules by merging common
substructures and graph completion. Although their approaches
and our approach share the general strategy of constructing new
molecules from its substructures, our method can cover a wider
variety of substructures in molecular generation as we directly
apply frequent subgraph mining to the entire molecular data set,
which will lead to better new molecules.

Our approach of combining decomposition of molecules into
subgraphs by graph mining and reassembling of subgraphs to
generate new molecular graphs has not been studied at sufficient
depth. There is a related approach in the task of planning of
chemical synthesis, which also combines subgraphs and
MCTS,” while it is not applied to the property optimization.

https://doi.org/10.1021/acsomega.3c01078
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B THE PROPOSED ALGORITHM: MOLDR

We introduce our molecular generation algorithm MOLDR. We
provide the problem setting, tree decomposition preprocessing,
graph mining, and the strategy to build up molecules via
reinforcement learning.

Problem Setting. A graph is a tuple G = (V, E), where Vand
E denote the set of nodes and edges, respectively. Nodes and
edges can have labels (attributes) via label functions I;: V — X,
for nodes and Iz: E — X for edges with some label domain Xy,

2, which can be any set such as Z and R?. We assume that each
molecule is represented as a graph. If we see a graph as a
molecule, V is the set of atom types, and E is the set of bond
types. For two graphs G = (V, E) and G’ = (V', E), we say that
G’ is asubgraph of G, denoted by G’ C G,if V' C Vand E' C (V' X
V)N E.

Let f(G) be some chemical property of a graph G, which is
usually a real-valued function, and we assume that f is known
beforehand and we can compute f(G) for any graph G. For
example, f can be the log P of a molecular G. Given a molecular
data set, which is a collection of graphs, the problem of
molecular generation is to explore a new graph G,,.,, that has a
high f(G,,.,,) value as long as possible.

Graph Decomposition via Frequent Subgraph Mining.
Given a collection of graphs as an input molecular data set, our
idea is to apply frequent subgraph mining30 to the data set, which
finds all subgraphs that frequently appear in the graph data set.
Formally, given a graph dataset D = {G,, G, ..., G, } that contains
n graphs, the objective of frequent subgraph mining is to find all
subgraphs G satisfying the condition support(G) > minsup,
where support(G) is defined as

new

support(G) = I{Gi eD|GCG;} ‘

that is, the number of graphs in D that contain G as a subgraph,
and minsup € N is a frequency threshold.

We use the gSpan®" algorithm, which is commonly used for
the task of frequent subgraph mining. It enumerates subgraphs
in a depth first manner. In gSpan, each graph is represented as
the DFS code, which is constructed from a search tree based on a
lexicographic order and enables us to efficiently check
duplication of enumerated graphs. More precisely, for each
explored graph during the enumeration, it checks whether or not
its DFS code is canonical. After completion of gSpan, we check
every enumerated subgraph and keep only subgraphs whose
target property score is already higher than some threshold,
which is determined beforehand, to efficiently reassemble them
to construct new graphs in the next reassembling step.

Molecules are first converted into molecular graphs, where
each node represents an atom type and each edge represents a
bond type. However, if we directly apply gSpan to such
molecular graphs, it gives a lot of invalid subgraphs in terms of
molecules as building blocks for molecular generation. This is
because gSpan does not know the chemical context and simply
enumerates frequent subgraphs; hence, for example, the ring
structure will be truncated by gSpan, while such truncated
subgraphs are invalid and unnecessary for the reassembling step.

To circumvent this problem, we apply tree decomposition to
molecular graphs as preprocessing before applying gSpan and
convert them into molecular junction trees. A tree decom-
position maps a graph G = (V, E) into a junction tree
T = (V, &), where V = {C,, .., C,} is a collection of subsets
of V; thatis, each v; C V, and & is a set of edges between elements
of V. A junction tree satisfies the following properties:

1. The union of all sets Cj, .., C, equals to V; that is,
uc =V.

2. For every edge (u, v) € E, there exists C, € V such that u
€ Candv e C,

3. If Ciis on a path from C;to C;in 7, V,N V; C V.

By converting a graph into its corresponding junction tree, by
definition, each cycle will be gathered as a single node, and all
cycles will be eliminated. Therefore, if we apply gSpan not to the
original graphs but instead to the converted junction trees, we
can avoid enumerating invalid subgraphs in which the ring
structure of a molecule, represented as a cycle on a graph, is
truncated. In addition, gSpan on junction trees can dramatically
reduce the number of frequent subgraphs. This is also an
advantage of using junction trees in the decomposition step for
molecular generation.

The edge label information and the node label information in
each clique are lost in a junction tree; hence, we need to restore
them after frequent subgraph mining. To achieve this task, we
use a subgraph matching algorithm that matches between
original graphs and obtained trees. We use the indexed based
subgraph matching algorithm with general symmetries (IS-
MAGS).” Since the size of each molecule is usually not so large
and the number of nodes is mostly around 20—30 in the task of
molecular generation, this restoring process is not computa-
tionally expensive.

Graph Reassembling from Frequent Subgraphs. Now
we generate new molecules by reassembling frequent subgraphs
obtained by the previous graph decomposition step. In contrast
to our approach using subgraphs as building blocks, existing
approaches are based on either text generation or nodewise
graph generation. In the text generation approach®® based on
SMILES, an algorithm picks up a particular character which
denotes the chemical state, such as the atom (C, N, O, F, ...), the
bond type (=, =), or the branched symbols, from the set of
character types occurred in a training data set to generate and
expand molecules. In the nodewise graph generation,””** an
algorithm selects a node (atom symbol) and the edge type
between source and target atoms from the candidate set of atom
and edge types. Our method can be more powerful and efficient
as we directly combine subgraphs that already have desirable
properties as building blocks in molecular generation.

To assemble molecular subgraphs, we pick up two graphs G,
and G from building blocks and combine them to generate a
new graph G,,;, where t is the number of building up steps of
molecules. As an example of such molecules, 2-acetyl-5-
methylpyridine and naphthalene are shown in Figure 1. Let us

C:8—=C:9 2 C:5 c7
/ ~\ /? ca” ce” cs
c:7—cC6 c:3—c: | ||
N /7 \ c3N _Cls _C9
C:5—N:4 c:0 S’ Neo”

Figure 1. An example of molecular graphs G and G’. Atoms of C:0 and
C:7 are candidates to merge.

assume that G, = (V(G,), E(G,)) with V(G,) = {v,, .., v,} and G
= (V(G}), E(G})) with V(G}) = {uy, ., u,/}. In the reassembling
procedure with nodes, we select single nodes v; € V(G,) and u; €
V(G!) such that they have the same node labels: [,(v;) = lv(ul-) .
We overlay these two nodes as v,,y; that is, V(G,,;) = V(G,)
UV(G;) \{v; u} U {v,,,} for a newly constructed graph G, ;. All
edgesin G, and G; are preserved in G,,,, where if there is an edge
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Figure 2. Reassembling two molecules with nodes in Figure 1. It shows merging with nodes labeled as C. In this example, reassembled molecules are
sanitized to be valid molecules.
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Figure 3. Reassembling two molecules with edges in Figure 1. Molecules were merged between edges in rings.

(v vp) or (u]-, uy), it is replaced with (v,,,, v;.) or (v, ) . In the
reassembling with edges, we select edges from rings and overlay
them in the same manner as the assembling with edges.

This assembling is similar to reconstructing a graph from a
junction tree; that is, nodes of a clique in a junction tree have
intersected nodes that are connected with each other between
subgraphs. Assembling two graphs is equivalent to choosing the
intersection of nodes or edges. Figures 2 and 3 show the process
of reassembling the two molecular graphs with nodes or edges,
respectively. The candidate set of node label C for merging is
{C:0: {C:0, C:2, C:3, C:4, C:5, C:7, C:8, C:9}, C:7: {C:0, C:2,
C:3, C:4, C:5, C:7, C:8, C:9}}, where indices of nodes
correspond to numbers in the illustration in Figure 1. We do
notinclude internal nodes such as C:1, C:6 as the resulting graph

will be an invalid molecule nor include duplicated structures. In
the reassembling with edges, the candidate set in the same node
label (C, C) is {(C:8, C:9): {(C:0, C:9), (C:2, C:3), (C:3, C:4),
(C:4, C:S), (C:8, C:9)}}, resulting in five new graphs as Kékule
structures, and (C:0, C:9) and (C:7, C:8) are also the same due
to symmetry structure.

The computational cost of combining two graphs depends on
the number of nodes and the number of edges in rings. In the
worst case, where we need to consider all combinations of nodes
and edges of two graphs G = (V, E) and G’ = (V/, E’), the
complexity becomes O(IV ||Vl + IE||E'l). However, this can
usually be reduced in practice by considering the symmetrical
structure of a graph and some type of restrictions of chemical
valency of an element in the case of molecules. We always check

19578 https://doi.org/10.1021/acsomega.3c01078
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Figure 4. Diagram of molecular generation in the reassembling step. Mined subgraph structures are selected based on the policy network 7,. After
reassembling molecules, a new graph is selected based on the highest score of a target property computed from reward function r.

such conditions whenever a new molecule is generated and
remove it if does not satisfy such conditions. Therefore,
molecules generated by our method are always valid.

Finding Candidate Subgraphs by Reinforcement
Learning. To efficiently find subgraphs that will lead to
desirable molecules when assembled in graph generation, we use
reinforcement learning. Another potential choice of a searching
method is Monte Carlo tree search (MCTS), which is a search
method that combines tree search with random sampling.*
MCTS has been applied to a number of tasks when the search
space is massive and achieved huge success in various fields such
as the game of Go® and the planning of chemical syntheses.””
However, the parallel computation of MCTS is difficult to
implement, so we exploit the reinforcement learning and
proximal policy optimization (PPO) that can be used for
continuous control. In reinforcement learning, the agent takes
action a based on a policy 7z, which is often represented as neural
networks. The policy network returns the probability of each
actiona € A and the state-value function V, based on the state
s € 8. In other words, at a time step t, the action g, is sampled

with probability V,

0

(s;) = mp(sla,). The agent is trained so that
o0

the expected cumulative reward E[Y,~ |

1] is maximized while
interacting with the environment.

PPO is based on the trust region policy optimization (TRPO)
method”®” to prevent the high variance in learning with the policy
gradient.”® The main objective is to optimize the parameter 6 of

a policy network 7 through the loss function L as the following:

LP(0) = E,[min(x,(0)A,, clip(x,(0), 1 — €, 1 + €)A,)], where

wy(a,ls
xt(a) — 9( t t) ,
”Hold(“tlst)
s
n )
A= Z VT — SVn,,(St)
1=0

where € is a hyperparameter, y is a discount factor, and SV, is the
state-value function denoting the expected return computed
from the policy network. The function clip(-, 1—¢, 1+€) clips the
value of the first argument within the range from 1 —eto 1 + €.
The first term inside the min is conservative policy iteration.””
The second term modifies the surrogate objective by clipping

the probability ratio, which removes the incentive for moving r;
outside of the interval [1 — ¢, 1 + €].*

States Space. A graph G, is mapped into F-dimensional
continuous space in the form of a node feature matrix H, € R""*F
converted by Mol2vec,” which is based on word2vec*' and
designed for molecular substructures obtained through Morgan
fingerprints. Each computed node feature in a graph is reduced
via the sum function over nodes into a single F-dimensional
vector s, € R, which incorporates graph topological
information.

Action Space. Action space A is equivalent to the set of
subgraphs enumerated from a subgraph mining algorithm. Each
actiona € A is sampled according to softmax of the likelihood
based on the state-value function SV(s,) and the expected
cumulative reward.

Rewards. To generate molecules with target properties, we
assume that target properties satisfy the additive composition-
ality of subgraphs. Therefore, if some subgraph structure is not
related to the target property, it is not selected as a building
block. This assumption can be simply represented in the
following strategy: If the difference of rewards at a time step ¢ is
negative, we stop the trial. The reward r, is computed by a
scoring function f(G,) at time step t. If the reward is below a
certain threshold of the score, further search will be stopped
(Figure 4).

B EXPERIMENTS

We empirically examine the effectiveness of our proposed
method MOLDR compared to the state-of-the-art molecular
generation methods. In particular, first we examine the standard
criteria, the penalized log P and the druglikeness score QED, of
generated molecules. In addition, we also examine the
multiobjective score of QED and SA. Furthermore, we
benchmark the rediscovery molecules using the GuacaMol
benchmark data set.”

All methods are implemented in Python 3.7.6. We used the
gSpan library (https://github.com/betterenvi/gSpan) to obtain
building blocks. All neural networks and reinforcement learning
are implemented in RLIb*’ and PyTorch.** All experiments
were conducted on Ubuntu 18.04.5LTS with 40 cores of 2.2
GHz Intel Xeon CPU ES5-2698 v4, 256 GB of memory, and 32
GB Nvidia Tesla V100.
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Data Set. We use the ZINC molecular data set and
GuacaMol data set with about 1.5Sm molecules preprocessed
with the ChEMBL data set. The ZINC data set is a freely
available druglike molecular database.” There are 249 456
molecules in total, and the maximum numbers of nodes and
edges are 38 and 45, respectively. The number of node labels is
8: {B, C,F, I, N, O, P, S}. The number of molecules on the
GuacaMol data set is 1591378 in total, and the maximum
numbers of nodes and edges are 88 and 87. The number of node
labels is 12: {B, Br, C, CL F, I, N, O, P, S, Se, Si}. All molecules
are prepossessed by RDKit* so that they are treated as graphs.

Before applying MOLDR, we converted molecules in the
molecular data set into junction trees. As a result, on the ZINC
data set, the number of cliques is 784, which are used as the node
labels of junction trees. The maximum numbers of nodes and
edges in junction trees become 31 and 30, respectively. On the
GuacaMol data set, the number of cliques is 5106, and the
maximum numbers of nodes and edges in junction trees become
88 and 87, respectively.

Experimental Setting. The gSpan algorithm was applied to
converted junction trees with the minimum support of 10 000,
5000, 1000, and 100, where we enumerated molecules with
more than seven nodes. To see the effectiveness of our junction
tree-based enumeration, we also applied gSpan to the original
ZINC data set without junction tree conversion. On the
GuacaMol data set, we applied gSpan with a minimum support
of 10 000.

In the molecular reassembling step in MOLDR, we use
building blocks extracted under the condition of the minimum
support of 1000. In reinforcement learning, we use the policy
network with three-layer MLPs (256, 128, and 128 hidden
units) to take actions (to choose building blocks and compute
state-value functions), and the activation function is the ReLu
function. The generalized advantage estimate (GAE) parame-
ters are set as 4 = 1.0 and y = 0.99. The optimizer is stochastic
gradient descent, where the minibatch size is 128 and the
learning rate is 5.0 X 107°. The terminal condition is when the
maximum number of nodes exceeds 100, or the previous reward
exceeds the current reward or threshold.

Target Properties. As target chemical properties, we
employ scores of the penalized log P'® and QED.”> These
values are widely used as a benchmark for the task of a molecular
generation. The penalized log P is a logarithm of the octanol—
water partition coeflicient with restrictions on the ring size and
synthetic accessibility (SA).*” The SA score is defined as follows:

SA = fragment score — complex penalty

The fragment score was introduced to capture the “historical
synthetic knowledge” by analyzing common structural features
in a large number of already synthesized molecules.”” The
complex penalty is computed from summation of each term as
follows:

ring complexity
= log(nRingBridgeAtoms + 1)
+ log(nSpiroAtoms — 1)

stereo complexity = log(nStereoCenters + 1)

macro cycle penalty = log(nMacroCycles + 1)

1.005

size penalty = nAtoms — nAtoms

where “n” denotes the number. We used the penalized log P
normalized with the ZINC250k data set to compare the same
setting with other methods; thus, direct comparison of scores is
fair. QED is the score representing the druglike nature of
molecular structures. QED represents the function of weighted
chemical properties:

Z wlog di]
Y w

where w is the weight of a molecule and each d, is one of the
following chemical properties: molecular weight (MW),
octanol—water partition coefficient (ALOGP), number of
hydrogen bond donors (HBD), number of hydrogen bond
acceptors (HBA), molecular polar surface area (PSA), number
of rotatable bonds (ROTB), the number of aromatic rings
(AROM), or number of structural alerts (ALERTS). Thus,
optimizing QED implies generating the molecules subject to
these parameters. For guiding target values of properties, we
optimize the molecule with log P = 8.0. For the multiobjective
benchmark, we generate molecules such that QED is higher and
SA is smaller (easy to synthesize). We choose the objective
function proposed by Tan et al.*® defined as follows:

#(G) = max(QED(G) — 0.1SA(G))

QED = exp(

Distribution Benchmarks. To investigate whether
MOLDR can generate diverse molecules or not, we use the
GuacaMol benchmark data set. The proposed scores are listed as
follows:

e Validity: whether the generated molecules are actually
valid computed in RDKit.

e Uniqueness: the ratio of molecules that are not duplicated
to generate molecules.

e Novelty: the ratio of molecules that are not duplicated to
the original data set.

e Kullback—Leibler (KD) divergence: measures how well a
probability distribution Q approximates another distribu-
tion P: Dy = Y P(i)log %. The probability is
calculated from physiochemical descriptors for the
training set and the generated set.

e Fréchet ChemNet distance (FCD). Preuer et al.*’
introduced the Fréchet ChemNet distance as a measure
of how close distributions of generated data are to the
distribution of molecules in the training set. Low FCD
values characterize similar molecule distributions

Rediscovery Molecules. We examined whether or not
MOLDR can reconstruct target molecules such as drugs and can
generate molecules exceeding some threshold of similarity
between molecules, not just generating molecules with chemical
properties. In such cases, we chose celecoxib, troglitazone, and
thiothixene as rediscovery benchmarks, aripiprazole as a
similarity benchmark, and ranolazine and osimertinib as MPO
benchmarks.

B RESULTS AND DISCUSSION

Table 1 shows results of applying gSpan to the ZINC database
with varying the minimum support. We compare the number of
obtained subgraphs and calculation time with or without
molecular junction trees. We can see that enumeration based
on junction trees is much faster than directly applying gSpan to
molecular graphs. This result means that our junction tree-based
enumeration is effective in the real-world ZINC database. Note
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Table 1. Comparison of Frequent Subgraph Enumeration
with or without Junction Trees

minsup number of mined trees number of mined graphs®
100 000 0 23 (1334 s)
10 000 8 (164.42 s) 4040 (106.5 min)
5000 39 (21621s) -
1000 910 (34220 s) -
100 23616 (775.23 s) -

a«

—” means that computation did not stop in 2 h.

that we can fully recover original subgraphs from mined trees
using subgraph matching as we have discussed; thus, there is no
information loss in the junction tree-based enumeration, and it
can be viewed as loss-less compression of subgraphs. When the
minimum support is 100, we could find a large number of
subgraphs (23 616 subgraphs), and it is expected that we have
collected enough substructures. Therefore, we stop decreasing
the minimum support. Figure 5 shows examples of building
blocks of substructures extracted from the ZINC 250k filter by
the score of QED > 0.7. The obtained substructures are frequent
subgraphs with minimum support of 100. These structures are
used as building blocks for molecular graph reassembling.
Table 2 shows the top three generated molecules according to
property scores of the penalized log P or QED. Scores of other
methods come from the literature.””** MOLDR is similar to the
technique of JT-VAE as both methods use junction trees, while
MOLDR outperforms both scores. The log P is related to the
lipophilicity and hydrophilicity of a molecule. Hence, if nodes in
a generated molecule have many carbon (C) and less imide (=
NH) or hydroxyl groups (OH), the resulting log P becomes
high. It means that the larger the number of the atom C is, the
higher the log P value is. At the same time, we show penalized log
P scores in which the ring size and synthetic accessibility are
penalized in Table 2. In the case of penalized log P optimization,
an approach of greedy search such as selecting only C can be

enough to maximize the score because the calculation of the log
P score consists of additive compositionality. MOLDR can train
such a strategy by optimizing the penalized log P (the molecule
with the top score has only C (C43)) as shown in Figure 6a. The
QED score is empirically derived from the combination of
various chemical properties and chemical structures. Hence, it is
not straightforward to maximize QED, unlike the case of log P.
Nevertheless, MOLDR outperforms the score of JT-VAE and
the top-1 and -2 molecules generated by GCPN. To increase the
QED score, generated molecules need to follow the strict
restriction of structures. Figure 6b illustrates examples of
generated molecules with optimization of QED by MOLDR.
In penalized log P optimization, when the molecular size
becomes larger and molecules include a large number of C, the
resulting log P increases. In QED optimization, the size of the
molecule is smaller than in the case of log P optimization, and
they have subgraphs that contribute to the QED. We remove the
similar graphs with the highest score in Figure 6 to show the
variety of generated molecules by our method.

Moreover, MOLDR is flexible in the sense that it can generate
molecules with not only maximizing the target value like log P
but also controlling it to be a specific value. As an example, we
show molecules generated by MOLDR with specifying the
target value log P = 8.0 in Figure 7.

In a multiobjective task with both QED and SA, Figure 8
shows results of generated molecules when only QED is
optimized or both QED and SA are optimized. If only QED is
optimized (Figure 8a and b), generated molecules tend to have a
higher QED score with the SA score being around 3-S.
Otherwise, if both QED and SA are optimized, the distribution
of SA shifts left (Figure 8c and d) compared to the case of QED
optimization.

Results of distribution benchmarks are shown in Table 3. This
benchmark evaluates whether or not a model can generate valid,
unique, and novel molecules from a training data set. The KL
(Kullback—Leibler) divergence and the Fréchet ChemNet
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Figure S. Examples of extracted substructures sorted by the score of QED. ZINC 250k molecules are decomposed into junction trees, gSpan
enumerates frequent subtrees, and they are reconstructed into molecules by ISMAGS. These substructures become building blocks for molecular

reassembling.
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Table 2. Comparison of the Top Three Property Scores of Generated Molecules”

penalized log P QED

method first second third validity first second third validity
ZINC 4.52 4.30 423 100.0% 0.948 0.948 0.948 100.0%
ORGAN 3.63 3.49 3.44 0.4% 0.838 0.814 0.814 2.2%
JT-VAE 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN 7.98 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%
GraphAF 12.23 11.29 11.05 100.0% 0.948 0.948 0.947 100.0%
MOLDR 12.46 12.20 12.04 100.0% 0.948 0.948 0.947 100.0%

“Scores for ORGAN, JT-VAE, and GCPN are from refs 20 and 50 on the ZINC data set.
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Figure 6. Generated molecules based on ZINC data set by MOLDR with penalized log P and QED scores.
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Figure 7. Generated molecules with log P = 8.0.
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distance (FCD) between a training set and generated molecules
are also used. In a decomposition step, 1 709 building blocks are
mined from the GuacaMol data set with minsup = 10 000. The
distribution benchmark is evaluated from 10k sampled
molecules in a reassembling step. MOLDR can generate valid
molecules due to reassembling a building block of molecules.
Although the uniqueness is slightly smaller than in other models,
MOLDR depends on random seeds to choose building blocks.
In terms of the KL divergence and the FCD, MOLDR is inferior
to SMILES LSTM and VAE. However, the score is similar to
that of Graph MCTS because it is also a similar strategy to
generate molecules. In addition, MOLDR can sample molecules
randomly from an untrained policy network. Hence, MOLDR
has a potential to generate molecules that are largely different
from those in the training data set, leading to lower scores of the

KL divergence and the FCD. In order to improve the
performance in terms of the KL divergence and the FCD,
MOLDR would need to train the policy network and design an
appropriate reward function, such as the similarity between the
training data set and generated molecules.

Figure 9 shows results of the distribution of generated
molecules when trained on the ZINC or the GuacaMol data set.
Molecules are first mapped into 300-dimensional vectors using
Mol2Vec, and t-distributed stochastic neighbor embedding (t-
SNE) is applied to visualize the distribution of generated
molecules and that of the training set. On the ZINC data set,
generated molecules are mostly overlapped within the training
set, while on the GuacaMol data set, the distribution of
generated molecules goes beyond that of the training set. This
means that the generated molecules are not similar to the
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Figure 8. Distribution of generated compounds for optimizing both QED and SA in the multiobjective task on the GuacaMol data set.

Table 3. Distribution Benchmarks at 10k Molecules on the
GuacaMol Data Set

random graph  SMILES MOLDR
benchmark sampler ~ MCTS LSTM VAE (random)
validity 1.00 1.000 0.959 0.870 1.000
uniqueness 0.997 1.000 1.000 0.999 0.994
novelty 0.000 0.994 0.912 0.974 0.996
KL divergence 0.998 0.522 0.991 0.982 0.442
Fréchet 0.929 0.015 0913 0.863 0.029
ChemNet
distance

training set; therefore, the KL divergence and FCD scores are
likely to be lower. However, random sampling from MOLDR
can generate larger molecules out of distribution.

Table 4 shows the result of rediscovery benchmarks. MOLDR
can generate the target molecules with high accuracy, whose
scores are competitive with SMILES LSTM and Graph GA. The
most notable difference between those models is that our model
can visualize the generating process of molecules, not just
generating the target molecule. Although in SMILES LSTM,

19583

intermediate molecules are evaluated from the state-value
function, and the SMILES character is selected based on the
state, it is not easy to interpret why the character is vital at a
particular time step, especially when generating a ring. In
contrast, in MOLDR, building blocks are directly selected, and
the substructure affects the target directly. The generating
process is shown in Figures 10 and 11. Since the generation
performance of MOLDR depends on the building blocks
obtained from graph mining, in practical applications, it is
important to prepare an appropriate data set and set an
appropriate minimum support based on a priori knowledge.

B CONCLUSION

We have proposed a new molecular generation method, called
MOLDR, which decomposes graph structures and reassembles
them. In our experiments on the ZINC database, MOLDR can
find better molecules in terms of two properties, the penalized
log P and the druglikeness score QED, than the state-of-the-art
molecular generation methods using generative models and
reinforcement learning. In terms of GuacaMol benchmarks,
MOLDR can also reconstruct the target molecule if the
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Figure 9. Distributions of training sets in the GuacaMol and ZINC data sets and generated molecules. Molecules are mapped into vectors using
Mol2vec, and then we apply t-SNE dimensionality reduction for visualization.

Table 4. Goal Directed Benchmarks

best in data SMILES graph
GA

benchmark set LSTM MOLDR
celecoxib rediscovery 0.505 1.000 1.000 1.000
troglitazone 0.419 1.000 1.000 1.000
rediscovery
aripiprazole similarity 0.595 1.000 1.000 1.000
osimertinib MPO 0.839 0.907 0.953 0.898
ranolazine MPO 0.792 0.855 0.920 0.864

substructures exist. Our approach is general; hence, it can also be
applied to any graph generation problem as well as molecular
graph generation. MOLDR can also incorporate a priori
knowledge about substructures by selecting specific data sets
and/or designing reward functions.

There are various prospective directions as our future work.
First, it is interesting to explore clustering of subgraphs extracted
by graph mining as graph mining tends to generate many similar
graphs, and they are often redundant. Second, since the graph
construction step is interpretable in MOLDR, it may be possible
to understand chemical reaction in the retrosynthesis analysis by
incorporating MOLDR since it can generate a path of graph
generation steps. Third, our approach can be extended to

™ 4
o 00

0.0 0.152 0.333

0.662 1.0

Figure 11. Generating process on celecoxib rediscovery.

generation of 3D molecules by designing the reward function
that can take the molecular geometry into account when
reassembling substructures.

B ASSOCIATED CONTENT

Data Availability Statement
The open-sourced codes and data for MOLDR are available at
https://github.com/Masatsugar/graph-decomposition-
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Figure 10. Generating process of troglitazone rediscovery. The number under the molecules denotes the similarity score between a generated molecule

and the target. MOLDR can generate troglitazone in eight steps.
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