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Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but
these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new
strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution
of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed
from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI) and “cartilage repair” in clinical trials, meta-
analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks.
Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are
distinguishable by cell source (including chondrocytes and stem cells) and associated scaffolds (natural or synthetic, hydrogels or
membranes). ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s
knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough
evidence to determine the best repair technique, ACI is themost established cell-based treatment for full-thickness chondral defects
in young patients.

1. Introduction

Articular cartilage (AC) lines the surface of diarthrodial
joints, provides a low-friction interface for motion, and
distributes forces to underlying subchondral bone. AC lesions
do not heal spontaneously and are often intractable clini-
cal problems. Curl et al. [1] retrospectively reviewed 31516
arthroscopies, noting a 63% incidence of knee cartilage
lesions and Outerbridge grade IV [2] chondral lesions in
patients less than 40 years old accounting for 4% of all
lesions noted at arthroscopy [1]. Advances in magnetic
resonance imaging (MRI), combined with a longitudinal
human trial [3], have shown that cartilage defects often
progress to large, higher grade lesions over time, ultimately
resulting in osteoarthritis. Arthroplasty is the definitive
treatment for end-stage osteoarthritis, but its limited dura-
bility makes it better suited for older patients. Conse-
quently, there is a need for effective methods of repairing

cartilage early, which can potentially delay osteoarthritis
development.

There are three predominant surgical cartilage repair
paradigms. The first involves surgical access to bone marrow
spaces, which promotes blood clot formation, a crude scaffold
for fibrocartilaginous repair tissue produced by extravasated
bone marrow stem cells (Table 1). According to Insall [4],
Pridie, in the 1960s, was the first to advance this concept;
subsequent iterations resulted in modern day microfracture
(Table 1). The second paradigm, mosaicplasty or osteochon-
dral autograft transfer, involves the surgical transfer ofmature
autologous tissue from a nonloadbearing region to a cartilage
defect (Table 1) or the transfer of mature allograft tissue from
a cadaveric specimen. The third and most recent paradigm,
autologous chondrocyte implantation (ACI), is based on ex
vivo expansion and subsequent chondrocyte reimplantation
(Table 1). These approaches are distinguished by their cell
sources and associated scaffolds. We review the evolution of
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Table 1: Summary of techniques.

Category/technique Schematic representation Notes Commercial
products

Surgical bone
marrow access

Pridie drilling

Bone marrow

Mature native cartilage (grey)

Red blood cells in clot

Interrupted subchondral plate 
Subchondral bone

Bone mesenchymal stem cell
Red blood cell

Intra-articular space

Cell source: autologous
bone marrow constituents
Scaffold: none
(i) 1 stage
(ii) Open procedure
(iii) 2- to 2.5-mm drill holes
to access bone marrow
(iv) Inconsistent results
(v) Long recovery
(vi) High complication rate

Microfracture

Mature native cartilage (grey)

Red blood cells in clot

Interrupted subchondral plate 
Subchondral bone

Bone marrow

Bone mesenchymal stem cell
Red blood cell

Intra-articular space

Cell source: autologous
bone marrow constituents
Scaffold: none
(i) 1 stage
(ii) Arthroscopic procedure
(iii) 0.5- to 1-mm drill holes
to access bone marrow
(iv) Less impact than Pridie
drilling on biomechanics of
underlying subchondral
bone

Abrasion
chondroplasty

Bone marrow

Mature native cartilage (grey)

Red blood cells in clot

Interrupted subchondral plate 

Subchondral bone

Intra-articular space

Bone mesenchymal stem cell
Red blood cell

Cell source: autologous
bone marrow constituents
Scaffold: none
(i) 1 stage
(ii) Arthroscopic procedure
(iii) Irreproducible,
unreliable
(iv) Loss of underlying
subchondral mechanical
support
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Table 1: Continued.

Category/technique Schematic representation Notes Commercial
products

Mosaicplasty

Bone marrow

Mature native cartilage (grey)

Implanted osteochondral
autografts

Interrupted subchondral plate
Subchondral bone

Red blood cell

Intra-articular space

Cell source: osteochondral
autograft and autologous
bone marrow constituents
Scaffold: N/A
(i) 1 stage
(ii) Morbidity at harvest site
(iii) Osteochondral plugs
15–20mm deep
(iv) Blood clot in
interspaces

Autologous
matrix-induced
chondrogenesis

Mature native cartilage (grey)

Red blood cells in hydrogel

Interrupted subchondral plate 
Subchondral bone

Bone marrow

Bone mesenchymal stem cell
Red blood cell

Intra-articular space

Hydrogel injected in situ Cell source: autologous
bone marrow constituents
Scaffold: hydrogel
(i) 1 stage
(ii) Arthroscopic procedure
(iii) 0.5- to 1-mm drill holes
to access bone marrow
(iv) Less impact than Pridie
drilling on biomechanics of
underlying subchondral
bone

ChonDux
CART-PATCH
BST-CarGel

Chondrocyte
implantation

First generation

Subchondral bone

Secured periosteal patch/
collagen membrane

Mature native cartilage (grey)

Autogolous chonodrocytes

Intact subchondral plate 

Intra-articular space

expanded ex vivo

Cell Source: autologous
chondrocytes
Scaffold: none
(i) 2 stages
(ii) Periosteal patch or
collagen membrane
(iii) Secured by sutures
and/or fibrin glue
(iv) Greatest clinical
experience

Chondro-Gide
Carticel

Second generation

Subchondral bone

Mature native cartilage (grey)

Autogolous chondrocytes

Intact subchondral plate 

3D scaffold for chondrocytes

Intra-articular space

expanded and seeded ex vivo

Cell source: autologous
chondrocytes
Scaffold: hydrogel, fibrous
scaffold, decellularized
ECM, or composite
(i) 1 or 2 stages
(ii) ±Cells expanded and
seeded in scaffold or matrix
(iii) Also known as
matrix-induced autologous
chondrocyte implantation
(MACI)

Hyalograft C
BioSeed-C
Histogenics
NeoCart
CaReS
Cartilage Autograft
Implantation
System
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Table 1: Continued.

Category/technique Schematic representation Notes Commercial
products

Third generation

Subchondral bone

Scaffold for cells
Mature native cartilage (grey)

Allogenic stem cells

Intact subchondral plate 

Integrated growth factors

Intra-articular space

isolated and seeded ex vivo

Cell source: allogenic stem
cells, autologous stem cells
Scaffold: hydrogel, fibrous
scaffold, decellularized
ECM, or composite
(i) 1 stage
(ii) Differentiation of
pluripotent stem cells
induced by environment
(iii) Least clinical
experience

DeNovo ET
DeNovo NT

autologous chondrocyte implantation, comparing it to the
aforementioned cartilage repair techniques, discuss relevant
comparative clinical trials, and briefly highlight some emerg-
ing new strategies for chondral repair.

2. Materials and Methods

An electronic literature search in PubMed (http://www
.ncbi.nlm.nih.gov/pubmed) was performed to identify arti-
cles on autologous chondrocyte implantation for this review.
We searched from 1949 through 2014 using the search terms
“autologous chondrocyte implantation” OR “cartilage repair.”
Of those 2472 articles, the 188 that were clinical trials (107
articles), meta-analyses (9 articles), or systematic review
articles (72 articles) underwent abstract review. Of the 188
articles, 61 were examined in detail. For the clinical trials,
the best available evidence was considered. Specifically, if
Level 1 or 2 evidence was available, lower quality studies
of the same cartilage repair technique were excluded from
further review. All meta-analyses were reviewed. Given the
large number of systematic reviews, those not published in
peer-reviewed journals were excluded. Reference lists of the
identified 61 articles were scrutinized to screen for other
relevant articles not captured by the search. Thirteen more
articles of interest were identified this way and added to our
study group (𝑛 = 74). Subsequently, additional searches
with the same entry terms were performed in the databases
EMBASE and Cochrane Library databases, but no additional
articles were found.

3. Results

3.1. Cell Sources for Cartilage Repair

3.1.1. Chondrocytes. Chondrocytes, the predominant cell type
within AC, synthesize matrix components. Because AC lacks
a major vascular supply, lymphatic drainage, and nervous
system innervation, chondrocytes function under avascular,
anaerobic conditions, obtaining nutrients by diffusion from

synovial fluid. Within AC, metabolic and morphologic pro-
files of deep-zone chondrocytes are distinct from those popu-
lating the superficial tangential zone. The factors responsible
for this variation are unknown. Maintaining the chondrocyte
phenotype with robust hyaline tissue synthesis in vitro during
expansion for ACI is an ongoing challenge.

Given the accessibility of AC by arthroscopic surgery,
native chondrocytes are a logical cell source for AC repair.
The first attempts to culture chondrocytes ex vivo in the 1970s
showed decreased production of proteoglycans and type II
collagen when expanded in a monolayer [5, 6]. Although this
process has been termed dedifferentiation, it is a misnomer
and does not imply reversion to a more primitive or multipo-
tent state. Dedifferentiation more accurately refers to chon-
drocytes with a phenotype more reminiscent of fibroblasts.
Benya and Shaffer [5] seminally showed the reversibility of
this process when expanded cells were cultured in a three-
dimensional (3D) culture system. Many modern approaches
to ACI reproduce a 3D environment by incorporating a
scaffold for culturing chondrocytes.

Techniques for optimal ex vivo chondrocyte selection and
expansion have been an area of active research. Dell’Accio et
al. [7] introduced the concept of chondrocyte quality control,
arguing that a more reproducible outcome of ACI can be
accomplished with enriched populations of stable chondro-
cytes, with the greatest potential of producing cartilage in
vivo. In the first clinical trial of ACI in 1994, Brittberg et al. [8]
used anchorage-independent growth and the expression of
type II collagen in agarose culture of chondrocytes to validate
chondrocyte expansion. However, none of these markers
predict the capacity of expanded chondrocytes to form stable
cartilage tissue in vivo. Dell’Accio et al. [7] found that the
markers COL2A1, FGFR-3, andBMP-2were associatedwith a
stable chondrocyte phenotype and, conversely, up-regulation
of ALK-1 was negatively associated with a chondrocyte
phenotype [7].

3.1.2. StemCells. Stem cells are clonogenic and self-renewing,
and they can differentiate intomultiple tissue types, including
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cartilage. Adult stem cell and embryonic stem cells (ESCs) are
active areas of cartilage repair research. The recent discovery
of induced pluripotent stem (IPS) cells has also spurred new
investigation.

(1) Adult Stem Cells. Adult stem cells contribute to the
homeostatic maintenance of tissues. Two promising sources
of adult stem cells are bone marrow and adipose tissue.

(a) Bone Marrow Mesenchymal Stromal Cells (BM-MSCs).
This common nomenclature can be confusing given the
alternate names, for example, connective tissue stem cells,
mesenchymal stem cells, stromal fibroblastic cells, adult mul-
tipotent mesenchymal stromal cells, and stromal stem cells.
BM-MSCs aremost relevant for cartilage repair in facilitating
clot remodeling of microfracture, Pridie drilling, abrasion
chondroplasty, and autologous matrix-induced chondrogen-
esis (AMIC) techniques. The notion of BM-MSCs was first
suggested in 1966 by Friedenstein et al. [9], who induced
osteogenesis, lipogenesis, and chondrogenesis using hetero-
topically transplanted bone marrow in mice; 25 years later,
this trilineage potential was finally appreciated in vitro, and
interest in mesenchymal stromal cell biology exploded. BM-
MSCs comprise approximately 0.001% of mononuclear cells
within human bone marrow [10]; therefore, a clot induced by
penetration of the subchondral plate and extravasating bone
marrow, occupying a large defect severalmilliliters in volume,
would contain less than 100 BM-MSCs. A corresponding
area of healthy AC contains approximately 10 million cells.
Although microfracture and other bone-marrow-accessing
techniques have produced variable clinical results [7, 11–15],
the resulting tissue is fibrocartilaginous and inferior to native
cartilage.

In vitro techniques for inducing BM-MSC chondrocyte
differentiation are a popular research topic. After isolation
from bone marrow aspirate, a clinically relevant amount of
BM-MSCs can be expanded in culture. Minimal requisites
for chondrocyte differentiation include a 3D environment,
serum withdrawal, and addition of dexamethasone, vita-
min C, and transforming growth factor-𝛽 [10]. The roles
of paracrine signals from BM-MSCs in this process are
incompletely understood.

(b) Adipose-Derived MSCs. The tissue-forming capacity of
adipose-derived stem cell appears similar to that of BM-
MSC, but the former is 300-fold more abundant and readily
isolated. Guilak et al. [16] reviewed in vitro molecular and
functional studies comparing chondrogenic and osteogenic
potentials of adipose-derived stem cells and BM-MSCs, and
although no definitive conclusions could be drawn, the
potential of adipose-derived stem cells is hard to ignore.

(2) ESCs. ESCs are isolated from a developing embryo,
and therefore ESC research is clouded in controversy. ESCs
form aggregates that undergo chondrogenesis in response
to multiple physical and diffusible factors [17]. Coculture
with mature chondrocytes promotes ESC chondrogenesis.
Hurdles to adopting ESCs include teratoma formation and
host immunorejection [17, 18].

(3) IPSs. A recent development that might overcome ESC
and adult stem cells limitations is the discovery of IPS cells,
the product of somatic cell reprogramming to an embryonic-
like state. Introducing a specific set of transcription factors
to a terminally differentiated cell can induce reversion to a
pluripotent stem cell state. IPS cells have excellent prospects
for use in cartilage regeneration, but the exact techniques
for directed chondrocyte differentiation have not yet been
elaborated. Varghese et al. [19] have shown the feasibility
of promoting mesenchymal cell differentiation and cartilage
tissue production from IPS cells.

3.2. Scaffolds for Cartilage Repair. AC is predominantly
composed of extracellular matrix (ECM), with a sparse
population of chondrocytes that maintain it. Water, which
comprises more than 65% of AC, is moved through the ECM
by pressure gradients across the tissue. AC derives its ability
to support high joint loads by the frictional resistance of the
water through ECM pores. Type II collagen comprises most
of AC’s dry weight.The orientation of collagen bundles, along
with chondrocyte organization, distinguishes AC’s layers.
In the last decade, basic science studies have shown the
importance of paracrine signaling and cellular interaction
in the development of cartilage [5, 6], and scaffolds that
recapitulate native ultrastructure of ECM have emerged.
Scaffolds are used as cell carriers for matrix-induced ACI
(MACI; not to be confused with MACI from Genzyme
Biosurgery, Cambridge, MA) and to facilitate microfracture-
based repair techniques in AMIC.

Scaffold synthesis has been attempted with natural and
synthetic materials. Although natural materials are attrac-
tive for their inherent complexity and biocompatibility,
issues with purification, pathogen transmission, and limited
mechanical properties have restricted their clinical appli-
cation. Synthetic materials overcome some of these limita-
tions but lack biologic complexity. Scaffold structures can
be divided into two categories, hydrogels and membranes,
based on predominant architecture; each has its own natural,
synthetic, and composite materials.

3.2.1. Hydrogels. Hydrogels consist of crosslinked hydrophilic
polymer networks engineered to mimic cartilage’s mechani-
cal properties and can be delivered noninvasively. An attrac-
tive feature is the ability to modify the mechanical properties
by crosslinking in situ after injection. Hydrogel crosslinking
methods include light irradiation, temperature modulation,
and pH change. Less crosslinked (softer) hydrogels produce
dynamic loading that might favor MSC chondrogenesis [20,
21].

(1) Natural Hydrogels. Common, naturally derived hydrogels
include alginate, agarose, chitosan, cellulose, chondroitin
sulfate, and hyaluronic acid (HA). These materials are read-
ily available, inexpensive, and easy to crosslink. Alginate
and agarose were the first hydrogels used to study with
chondrocytes. Hydrogels based on alginate and agarose are
being piloted for clinical AMIC use (CART-PATCH, Tissue
Bank of France, Mions, France). Chitosan and its chemical
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derivatives are obtained through the chemical modification
of glycosaminoglycans found in arthropod exoskeletons. In
a recent large-animal experiment, chitosan integrated well
into surrounding tissue [22]. Clinically, chitosan combined
with glycerol phosphate and autologous whole blood has
been used in AMIC (BST-CarGel, Piramal Healthcare, Laval,
Canada) [23–25]. Alginate, agarose, and chitosan are derived
from nonhuman sources; immune responses have not been
systemically investigated.

HA, a nonsulfated glycosaminoglycan found throughout
the body, is abundant in cartilage ECM and has a 30-
year track record in medical products. Uncrosslinked HA,
delivered through intra-articular injection, was approved by
the Food and Drug Administration in 1997 for viscosupple-
mentation and, despite its controversial efficacy, is widely
used today. HA is involved in many biologic processes,
including wound healing, cell migration, and MSC differen-
tiation. These actions are mediated, in part, through binding
interactions of cell surface receptor CD44. The HA molecule
length influences cellular responses. Smaller HA oligomers
promote angiogenesis and subsequent bone formation; larger
HA fragments are predominantly chondrogenic. To form
hydrogels, HA must be chemically modified [26, 27]. Hyalo-
graft C (Fidia Advanced Biopolymers, Abano Terme, Italy) is
a form of esterified HA used clinically in MACI.

Collagen accounts for approximately 30% of all protein
within the human body and has been used extensively for
tissue engineering applications. Hydrogels constructed from
type I and type II collagen promote cartilage formation
of encapsulated cells. At the molecular level, cells interact
with collagen through integrins, initiating intracellular events
that promote chondrogenesis [27]. Type II collagen hydro-
gels enhance the in vitro chondrogenic differentiation of
MSCs compared with type I gels; however, type II collagen
degradation products can trigger cartilage breakdown in
vivo. Two type I collagen gels are available commercially:
PureCol (Glycosan Biosystems, Salt Lake City, UT) and
CaReS (Arthro Kinetics, Krems, Austria).

Fibrin hydrogels have been routinely used for surgical
hemostasis and tissue adhesion. They can be prepared from
autologous fibrinogen and thrombin, minimizing disease
transmission risk. Fibrin has inferior mechanical proper-
ties compared with other hydrogels, but it is an effective
cell carrier for ACI for securing materials within cartilage
defects. Fibrin glue is available commercially (Tissucol; Bax-
ter, Vienna, Austria). Fibrin has been used to retain platelet-
rich plasma in a sheepAMICmodel [28].Most recently, fibrin
hydrogels have been used as a vehicle to deliver allogenic
juvenile cartilage fragments; this technology (DeNovo NT;
Zimmer, Inc., Warsaw, IN) is currently in clinical trials [29].

(2) Synthetic Hydrogels. Polyethylene glycol-diacrylate and
polyvinyl alcohol are the most common synthetic hydrogels
with clinical track records. Prefabricated polyvinyl alcohol
hydrogels (SaluCartilage; SaluMedica, Atlanta, GA) were
press-fit into debrided stage IV [2] chondral lesions; how-
ever, at 1 year, many failed to integrate with surrounding
tissue [30]. Another prefabricated polyvinyl alcohol hydrogel
has structural modifications to promote subchondral bone

integration (Carticept Medical Inc., Alpharetta, GA). A
recently developed photopolymerizable polyethylene glycol-
diacrylate hydrogel, in combination with a biologic adhesive
(ChonDux, Biomet, Warsaw, IN), is being investigated for
AMIC in phase 2 clinical trials. Modifications to synthetic
hydrogels to promote integration, integrate bioactive signals,
and regulate release of soluble factors are areas under inves-
tigation.

3.2.2. Membranes

(1) Natural Membranes. The original ACI procedure used a
periosteal flap to retain transplanted chondrocytes. This pro-
cedure remains the only autologous chondrocyte technique
approved by the Food and Drug Administration. Postoper-
ative complications (e.g., pathologic flap hypertrophy), led
to the development of a bilayered collagen I/III membrane
substitute, a procedure known as collagen-covered ACI.
This procedure has been performed extensively in Europe
and has been performed “off-label” in the United States.
This technology evolved into an MACI-type procedure, with
culturing of expanded chondrocytes on themembrane before
implantation. In its most advanced incarnation, this mem-
brane is fabricated with a mechanically strong outer layer, an
effective barrier, and an inner porous substrate for chondro-
cyte differentiation. Such collagen membranes are available
commercially as MACI (Genzyme Biosurgery, Cambridge,
MA),Maix (Matricel, Herzogenrath, Germany), or Chondro-
Gide (Geistlich Biomaterials, Wolhusen, Switzerland).

(2) Synthetic Membranes. Synthetic aliphatic polyesters (e.g.,
polycaprolactone, polyglycolic acid, or polylactic acid) or
their copolymers (e.g., polylactic-coglycolic) were first trans-
lated into the clinical arena as biodegradable sutures
(polyglactin, vicryl). In cartilage repair, the same materials
have been used in membranes. Although the degradation
products (e.g., carboxylic acids and alcohols) can be toxic,
degradation rates can be optimized to match their metabolic
clearance to minimize toxicity.

These materials can facilitate cartilage formation and
provide substantial biomechanical stability in combination
with other materials. For example, the MACI graft BioSeed-
C (Biotissue Technologies, Freiburg, Germany) uses a com-
posite polylactic-coglycolic and polydioxane membrane that
is infiltrated with fibrin. The Cartilage Autograft Implanta-
tion System (CAIS, DePuy Mitek, Raynham, MA) uses a
copolymer membrane (35% polycaprolactone, 65% polygly-
colic acid) structurally reinforced with a polydioxane mesh.
Minced autologous cartilage is dispensed onto this scaffold,
coveredwith fibrin, andheld in placewith degradable sutures.
Nanofibrous scaffolds synthesized with these compounds
using complex 3D microenvironments with maximal surface
area for cell attachment that mimics ECM represent the next
frontier of scaffold material science.

3.3. Clinical Context/Trials. Although surgical techniques
penetrating the subchondral plate have existed for more
than 60 years, the first clinical experience with ACI was
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reported in 1994 by Brittberg et al. [8]. Subsequently, interest
in ACI or its subsequent iterations for cartilage defect repair
has grown exponentially. In a review of 20 clinical studies
of ACI, Iwasa et al. [31] found that femoral defect repairs
had 60% to 90% excellent-good clinical results after 1 to 11
years.

The literature on ACI is dominated by numerous case
series. Reports of patients with chondral defects treated with
ACI, nowwith 2 to 20 years of follow-up, have reported good-
excellent results [32–41]. Only a limited number of prospec-
tive, comparative trials of ACI exist. Three meta-analyses
of randomized trials have shown insufficient evidence to
establish the effectiveness of ACI relative to other cartilage
repair methods [42–44].

3.3.1. First-Generation Autologous Chondrocyte Implantation.
In its first iteration, ACI involved inoculation of expanded
chondrocytes under a membrane flap. Results have indicated
that ACI is comparable to microfracture and mosaicplasty.
Knutsen et al. [13] compared ACI with microfracture in
a randomized trial of 80 patients with femoral chondral
defects, noting at 2 years’ follow-up no histologic differences
by biopsy and equivalent clinical measures between the
two groups, except for a higher Short Form-36 physical
component score in the microfracture group [13]. 5 years’
follow-up [12], no difference was noted between the two
groups; a third of both groups showed early radiographic
osteoarthritis progression.

In a randomized trial of 47 patients with chondral defects,
Dozin et al. [45] compared ACI with mosaicplasty after an
initial debridement 6 months previously. Interestingly, 14
patients recovered without further intervention. For the 23
remaining patients who underwent treatment, there was no
difference between the two groups at 12 months’ follow-up.
Despite the low power of the study and large number of
patients lost to follow-up, the spontaneous improvement after
debridement for some was intriguing. Bentley et al. [46]
compared ACI withmosaicplasty in a randomized trial of 100
patients with chondral defects. At 1-year follow-up, ACI was
superior according to the Cincinnati and Stanmore scores
and second-look arthroscopy. (Note: the reported clinical
indices are not validated for cartilage repair.) At 10 year’s
follow-up in the same group of patients, Bentley et al. [47]
found failure rates with ACI and mosaicplasty of 17% and
55%, respectively, and significantly better functional outcome
with ACI using the same indices. In contrast, Horas et al.
[48] compared 40 patients with femoral defects randomized
to ACI or autologous osteochondral transplant treatment and
found that no clinical difference between the two techniques
was found at 2 years’ follow-up. By biopsy, however, osteo-
chondral plugs showed preserved hyaline tissue compared
with a predominance of fibrocartilage in ACI.

As first-generation ACI evolved, surgeons substitute the
periosteal patch with collagen membranes to avoid the
morbidity of periosteum harvest and in situ periosteal patch
hypertrophy. Gooding et al. [49] compared ACI using a
periosteal path with ACI using a type I/III collagen mem-
brane cover in a randomized trial of 68 patients with chondral
defects. At 2 years’ follow-up, functional outcomes were

equivalent, but ACI periosteal patched grafts were often
complicated by symptomatic hypertrophy.

The application of characterized ACI [7] (see Section 3.1)
has been explored by multiple investigators. Van Assche
et al. [15] compared it with microfracture in a trial of 67
patients and found at 2 years’ follow-up no differences in
patient activity levels [15] and similar functional outcome,
but slower recovery initially with characterized ACI [14]. In a
large multicenter randomized trial, Saris et al. [50] compared
characterized ACI with microfracture in 118 patients. At 1-
year follow-up, they found superior histologic evidence of
characterized ACI repair but equivalent clinical outcomes.
By 3 years’ follow-up, the characterized ACI group had
significantly better clinical outcomes; time to treatment and
chondrocyte quality were associated with better outcomes
[51].

The clinical outcomes of ACI in specific patient popula-
tions have been investigated. In a case series of 20 adolescent
athletes with chondral defects, at a mean follow-up of 47
months, Mithöfer et al. [52] noted good-excellent clinical
results, with 60% return to sport after ACI. In another case
series of 45 soccer players with chondral defects, at a mean
follow-up of 41 months, Mithöfer et al. [53] noted that 72%
had good-excellent results, but only 33% returned to soccer
after ACI. The authors concluded that younger patients who
presented sooner for surgery fared better. Peterson et al. [54]
evaluated ACI for osteochondritis dissecans in a cohort of 58
patients. At a mean follow-up of 5.6 years, they noted that
91% had good-excellent clinical outcomes. Niemeyer et al.
[55] conducted a prospective age-matched pair analysis of 37
ACI patients 40 years old or older. At 2 years’ follow-up, there
was no difference in multiple clinical indices between age
groups.

3.3.2. Second-Generation Autologous Chondrocyte Implanta-
tion. The incorporation of a scaffold or substrate to promote
chondrocyte expansion represented the next step in ACI
evolution, also known as MACI. Compared with abrasive
techniques, the results have been promising. In a trial
of 50 patients, Višňa et al. [56] compared MACI using
autologous chondrocytes cultivated in a fibrin carrier with
abrasive techniques. At the 1-year follow-up, theMACI group
had significantly better clinical outcomes. Basad et al. [11]
compared a type I/III collagen scaffold for ACI (MACI;
Genzyme Biosurgery) with microfracture in a randomized
trial of 60 patients. At 2 years’ follow-up, the MACI group
had significantly improved cartilage repair clinical indices.

Some investigators have compared MACI to older
ACI techniques. Zeifang et al. [57] compared MACI with
periosteal flap technique ACI in a randomized trial of 21
patients. At 2 years’ follow-up, the results were equivocal.
Bartlett et al. [58] compared MACI with collagen patch
technique ACI in a randomized trial of 91 patients and, at
1-year follow-up, arrived at a similar conclusion, that is, the
two groups were clinically equivalent, with similar histologic
grades by biopsy and hypertrophy rates.

Multiple case series for proprietary technologies have
been published. Three case series using Hyalograft C with
autologous chondrocytes in chondral defects have shown
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promising clinical results at 2 years’ follow-up with low
complication rates [59–61]. In a prospective nonrandomized
trial of 80 patients comparing microfracture with Hyalograft
CMACI, Kon et al. [62] showed that Hyalograft C had better
clinical outcomes and faster return to sport at 5 years’ follow-
up.

Another group examinedCaReS, a 3D collagen-gel-based
MACI technique, for patients with femoral chondral defects
[63, 64]. A recent study using MRI and the Brittberg score
to compare cartilage repair by Hyalograft C and CaReS
MACI techniques in 20 patients 2 years postoperatively
showed comparable clinical outcome, but different repair
tissue composition [65]. The preliminary experience with
another MACI alternative, BioSeed-C, a bioresorbable 2-
component gel-polymer scaffold embedded with autologous
chondrocytes, has also been promising [66, 67].

The Histogenics NeoCart technique represents an exten-
sion of MACI-based therapies. Using a tissue bioreactor to
introduce mechanical loading, a proprietary matrix is seeded
with autologous chondrocytes to prepare cartilaginous tis-
sue [68]. Preliminary results at 2 years’ follow-up showed
decreased pain and hyaline-like fill in chondral defects by
MRI [69]. This result was recently validated in a randomized
trial (30 patients) comparing NeoCart and microfracture
[70].

Minced AC (Cartilage Autograft Implantation System) is
another novel second-generation, unique single-stage carti-
lage repair technique that mixes minced autograft cartilage
in a carrier gel/substrate. Clinical trials with this technology
are underway [29, 71].

3.3.3. Third-Generation Autologous Chondrocyte Implanta-
tion. Third-generation ACI uses allogenic tissue or autol-
ogous stem cells for cartilage regeneration, avoiding the
morbidity of autogenic cartilage harvest and two surgical
procedures. DeNovo ET, an off-the-shelf chondroconduc-
tive/inductive matrix with allogeneic fetal chondrocytes for
implantation in chondral defects [68], uses minced juvenile
allograft donor cartilage to fill chondral defects. Clinical trials
are underway [29, 71]. Bekkers et al. [72, 73] are investigating a
one-stage approach to ACI combining primary chondrocytes
with mesenchymal stromal cells without ex vivo expansion
before implantation. They hypothesize that mesenchymal
stromal cells will help prevent existing chondrocytes from
dedifferentiating and promote cartilage repair. Cole and
Gomoll are currently conducting a clinical trial for another
proprietary product, CARTISTEM,which usesmesenchymal
stem cells fromumbilical cord blood to culture a hyaluronate-
based gel for one-stage implantation [71]. The clinical trials
for these promising new techniques are underway.

3.4. Other Techniques. Benthien and Behrens [74] have advo-
cated the use of AMIC (Table 1), an enhanced microfracture
method for cartilage repair (see the AMIC discussion above).
They applied autologous collagen and fibrin glue matrix-
induced chondrogenesis to the treatment of focal cartilage
defects of the knee. In a retrospective cohort of 27 patients
(minimum 2 years’ follow-up), they observed that 87% were

highly satisfied, with significant improvement in multiple
clinical scores and MRI evidence of defect filling [75].

Stanish et al. [25] recently published a randomized
control trial comparing the repair of femoral osteochondral
defects in 80 patients with microfracture or a chitosan
hydrogel-based proprietary AMIC technology called BST-
CarGel. At 1 year of follow-up, they noted superior lesion
fill and repair tissue quality on MRI with BST-CarGel. The
clinical outcome scores as measured by the Western Ontario
McMaster Universities Osteoarthritis Index and Short Form-
36 were equivalent.

In a prospective case series of five patients, Dhollander
et al. [76] reported on the outcomes of autologous platelet-
rich plasma gel-induced chondrogenesis for patellar defects.
At 2 years’ follow-up, all experienced clinical improvement,
butMRI findings were not as favorable, showing intralesional
osteophytes and subchondral bone changes [76].

Multiple other commercial products usingAMIC, such as
ChonDux and CART-PATCH, are in clinical trials.

4. Conclusion

Basic science advances have fueled the development of ACI
and are promoting the development of new cartilage repair
techniques. The benefit of these new strategies compared
with established cartilage repair techniques is not yet estab-
lished, and the promise of one-stage techniques that harness
the potential of stem cells to create organized hyaline-like
repair tissue in situ remains the elusive goal. As cartilage
regeneration research matures, long-term follow-up and
larger comparative trials will ultimately establish the optimal
method for cartilage repair.
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