
entropy

Article

Variationally Inferred Sampling through a Refined Bound

Víctor Gallego 1,2,* and David Ríos Insua 1,3

����������
�������

Citation: Gallego, V.; Ríos Insua, D.

Variationally Inferred Sampling

through a Refined Bound. Entropy

2021, 23, 123. https://doi.org/

10.3390/e23010123

Received: 24 December 2020

Accepted: 13 January 2021

Published: 19 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Mathematical Sciences (ICMAT), 28049 Madrid, Spain; david.rios@icmat.es
2 Statistical and Applied Mathematical Sciences Institute, Durham, NC 7333, USA
3 School of Management, University of Shanghai for Science and Technology, Shanghai 201206, China
* Correspondence: victor.gallego@icmat.es

Abstract: In this work, a framework to boost the efficiency of Bayesian inference in probabilistic
models is introduced by embedding a Markov chain sampler within a variational posterior approx-
imation. We call this framework “refined variational approximation”. Its strengths are its ease of
implementation and the automatic tuning of sampler parameters, leading to a faster mixing time
through automatic differentiation. Several strategies to approximate evidence lower bound (ELBO)
computation are also introduced. Its efficient performance is showcased experimentally using state-
space models for time-series data, a variational encoder for density estimation and a conditional
variational autoencoder as a deep Bayes classifier.

Keywords: variational inference; MCMC; stochastic gradients; neural networks

1. Introduction

Bayesian inference and prediction in large, complex models, such as in deep neural
networks or stochastic processes, remains an elusive problem [1–3]. Variational approxi-
mations (e.g., automatic differentiation variational inference (ADVI) [4]) tend to be biased
and underestimate uncertainty [5]. On the other hand, depending on the target distribu-
tion, Markov Chain Monte Carlo (MCMC) [6] methods, such as Hamiltonian Monte Carlo
(HMC) [7]), tend to be exceedingly slow [8] in large scale settings with large amounts of
data points and/or parameters. For this reason, in recent years, there has been increasing
interest in developing more efficient posterior approximations [9–11] and inference tech-
niques that aim to be as general and flexible as possible so that they can be easily used with
any probabilistic model [12,13].

It is well known that the performance of a sampling method depends heavily on
the parameterization used [14]. This work proposes a framework to automatically tune
the parameters of a MCMC sampler with the aim of adapting the shape of the posterior,
thus boosting the Bayesian inference efficiency. We deal with a case in which the latent
variables or parameters are continuous. Our framework can also be regarded as a prin-
cipled way to enhance the flexibility of variational posterior approximation in search of
an optimally tuned MCMC sampler; thus the proposed name of our framework is the
variationally inferred sampler (VIS).

The idea of preconditioning the posterior distribution to speed up the mixing time
of a MCMC sampler has been explored recently in [15,16], where a parameterization was
learned before sampling via HMC. Both papers extend seminal work in [17] by learning an
efficient and expressive deep, non-linear transformation instead of a polynomial regression.
However, they do not account for tuning the parameters of the sampler, as introduced in
Section 3, where a fully, end-to-end differentiable sampling scheme is proposed.

The work presented in [18] introduced a general framework for constructing more
flexible variational distributions, called normalizing flows. These transformations are one
of the main techniques used to improve the flexibility of current variational inference (VI)
approaches and have recently pervaded the approximate Bayesian inference literature with

Entropy 2021, 23, 123. https://doi.org/10.3390/e23010123 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-0349-0714
https://doi.org/10.3390/e23010123
https://doi.org/10.3390/e23010123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23010123
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/1/123?type=check_update&version=1

Entropy 2021, 23, 123 2 of 19

developments such as continuous-time normalizing flows [19] (which extend an initial
simple variational posterior with a discretization of Langevin dynamics) or householder
flow for mixtures of Gaussian distributions [20]. However, they require a generative
adversarial network (GAN) [21] to learn the posterior, which can be unstable in high-
dimensional spaces. We overcome this problem with our novel formulation; moreover, our
framework is also compatible with different optimizers, rather than only those derived
from Langevin dynamics [22]. Other recent proposals create more flexible variational
posteriors based on implicit approaches typically requiring a GAN, as presented in [23] and
including unbiased implicit variational inference (UIVI) [24] or semi-implicit variational
inference (SIVI) [25]. Our variational approximation is also implicit but uses a sampling
algorithm to drive the evolution of the density, combined with a Dirac delta approximation
to derive an efficient variational approximation, as reported through extensive experiments
in Section 5.

Closely related to our framework is the work presented in [26], where a variational
autoencoder (VAE) is learned using HMC. We use a similar compound distribution as the
variational approximation, yet our approach allows any stochastic gradient MCMC to be
embedded, as well as facilitating the tuning of sampler parameters via gradient descent.
Our work also relates to the recent idea of sampler amortization [27]. A common problem
with these approaches is that they incur in an additional error—the amortization gap [28]—
which we alleviate by evolving a set of particles through a stochastic process in the latent
space after learning a good initial distribution, meaning that the initial approximation bias
can be significantly reduced. A recent related article was presented in [29], which also
defined a compound distribution. However, our focus is on efficient approximation using
the reverse KL divergence, which allows sampler parameters to be tuned and achieves
superior results. Apart from optimizing this kind of divergence, the main point is that
we can compute the gradients of sampler parameters (Section 3.3), whereas in [29] the
authors only consider a parameterless sampler: thus, our framework allows for greater
flexibility, helping the user to tune sampler hyperparameters. In the Coupled Variational
Bayes (CVB) [30] approach, optimization is in the dual space, whereas we optimize the
standard evidence lower bound (ELBO). Note that even if the optimization was exact, the
solutions would coincide, and it is not clear yet what happens in the truncated optimization
case,other than performing empirical experiments on given datasets. We thus feel that
there is room for implicit methods that perform optimization in the primal space (besides
this, they are easier to implement). Moreover, the previous dual optimization approach
requires the use of an additional neural network (see the paper on the Coupled Variational
Bayes (CVB) approach or [31]). This adds a large number of parameters and requires
another architecture decision. With VIS, we do not need to introduce an auxiliary network,
since we perform a “non-parametric” approach by back-propagating instead through
several iterations of SGLD. Moreover, the lack of an auxiliary network simplifies the
design choices.

Thus, our contributions include a flexible and consistent variational approximation to
the posterior, embedding an initial variational approximation within a stochastic process;
an analysis of its key properties; the provision of several strategies for ELBO optimization
using the previous approximation; and finally, an illustration of its power through relevant
complex examples.

2. Background

Consider a probabilistic model p(x|z) and a prior distribution p(z), where x denotes
the observations and z ∈ Rd the unobserved latent variables or parameters, depending
on the context. Whenever necessary for disambiguation purposes, we shall distinguish
between z for latent variables and θ for parameters. Our interest is in performing inference
regarding the unobserved z by approximating its posterior distribution

p(z|x) = p(z)p(x|z)∫
p(z)p(x|z)dz

=
p(x, z)
p(x)

.

Entropy 2021, 23, 123 3 of 19

The integral assessing the evidence p(x) =
∫

p(z)p(x|z)dz is typically intractable.
Thus, several techniques have been proposed to perform approximate posterior infer-
ence [3].

2.1. Inference as Optimization

Variational inference (VI) [4] tackles the problem of approximating the posterior p(z|x)
with a tractable parameterized distribution qφ(z|x). The goal is to find the parameters φ so
that the variational distribution qφ(z|x) (also referred to as variational guide or variational
approximation) can be as close as possible to the actual posterior. Closeness is typically
measured through the Kullback–Leibler divergence KL(qφ||p), reformulated into the ELBO
as follows:

ELBO(q) = Eqφ(z|x)
[
log p(x, z)− log qφ(z|x)

]
, (1)

This is the objective to be optimized, typically through stochastic gradient descent tech-
niques. To enhance flexibility, a standard choice for qφ(z|x) is a Gaussian distribution
N (µφ(x), σφ(x)), with the mean and covariance matrix defined through a deep, non-linear
model conditioned on observation x.

2.2. Inference as Sampling

HMC [7] is an effective sampling method for models whose probability is pointwise
computable and differentiable. When scalability is an issue, as proposed by the authors
in [32], a formulation of a continuous-time Markov process that converges to the target
distribution p(z|x) can be used, which is based on the Euler–Maruyama discretization of
Langevin dynamics

zt+1 ← zt + ηt∇z log p(x, zt) +N (0, 2ηt I), (2)

where ηt is the step size at time period t, and I is the identity matrix. The required gradient
∇ log p(zt, x) can be estimated using mini-batches of data. Several extensions of the original
Langevin sampler have been proposed to increase its mixing speed, such as in [33–36]. We
refer to these extensions as stochastic gradient MCMC samplers (SG-MCMC) [37].

3. A Variationally Inferred Sampling Framework

In standard VI, the variational approximation is analytically tractable and typically
chosen as a factorized Gaussian, as mentioned above. However, it is important to note that
other distributions can be adopted as long as they are easily sampled and their log-density
and entropy values evaluated. However, in the rest of this paper, we focus on the Gaussian
case, as the usual choice in the Bayesian deep learning community. Stemming from this
variational approximation, we introduce several elements to construct the VIS.

Our first major modification of standard VI proposes the use of a more flexible distri-
bution, approximating the posterior by embedding a sampler through

qφ,η(z|x) =
∫

Qη,T(z|z0)q0,φ(z0|x)dz0, (3)

where q0,φ(z|x) is the initial and tractable density qφ(z|x) (i.e., the starting state for the
sampler). We designate this as refined variational approximation. The conditional distri-
bution Qη,T(z|z0) refers to a stochastic process parameterized by η and used to evolve the
original density q0,φ(z|x) for T periods, so as to achieve greater flexibility. Specific forms
for Qη,T(z|z0) are described in Section 3.1. Observe that when T = 0, no refinement steps
are performed and the refined variational approximation coincides with the original one;
on the other hand, as T increases, the approximation will be closer to the exact posterior,
assuming that Qη,T is a valid MCMC sampler in the sense of [37].

We next maximize a refined ELBO objective, replacing in Equation (1) the original qφ

by qφ,η :
ELBO(qφ,η) = Eqφ,η(z|x)

[
log p(x, z)− log qφ,η(z|x)

]
(4)

Entropy 2021, 23, 123 4 of 19

This is done to optimize the divergence KL(qφ,η(z|x)||p(z|x)). The first term of Equation (4)
requires only being able to sample from qφ,η(z|x); however, the second term, the entropy
−Eqφ,η(z|x)

[
log qφ,η(z|x)

]
, also requires the evaluation of the evolving, implicit density.

Section 3.2 describes efficient methods to approximate this evaluation. As a consequence,
performing variational inference with the refined variational approximation can be regarded
as using the original variational guide while optimizing an alternative, tighter ELBO,
as Section 4.2 shows.

The above facilitates a framework for learning the sampler parameters φ, η using
gradient-based optimization, with the help of automatic differentiation [38]. For this,
the approach operates in two phases. First, in a refinement phase, the sampler parameters
are learned in an optimization loop that maximizes the ELBO with the new posterior.
After several iterations, the second phase, focused on inference, starts. We allow the
tuned sampler to run for sufficient iterations, as in SG-MCMC samplers. This is expressed
algorithmically as follows.

Refinement phase:
Repeat the following until convergence:

1. Sample an initial set of particles, z0 ∼ q0,φ(z|x).
2. Refine the particles through the sampler, zT ∼ Qη,T(z|z0).
3. Compute the ELBO objective from Equation (4).
4. Perform automatic differentiation on the objective wrt parameters φ, η to update them.

Inference phase:
Once good sampler parameters φ∗, η∗ are learned,

1. Sample an initial set of particles, z0 ∼ q0,φ∗(z|x).
2. Use the MCMC sampler zT ∼ Qη∗ ,T(z|z0) as T → ∞.

Since the sampler can be run for a different number of steps depending on the phase,
we use the following notation when necessary: VIS-X-Y denotes T = X iterations during
the refining phase and T = Y iterations during the inference phase.

Let us specify now the key elements.

3.1. The Sampler Qη,T(Z|Z0)

As the latent variables z are continuous, we evolve the original density q0,φ(z|x)
through a stochastic diffusion process [39]. To make it tractable, we discretize the Langevin
dynamics using the Euler–Maruyama scheme, arriving at the stochastic gradient Langevin
dynamics (SGLD) sampler (2). We then follow the process Qη,T(z|z0), which represents T
iterations of the MCMC sampler.

As an example, for the SGLD sampler zt = zt−1 + η∇ log p(x, zt−1) + ξt, where t
iterates from 1 to T. In this case, the only parameter is the learning rate η and the noise is
ξt ∼ N (0, 2η I). The initial variational distribution q0,φ(z|x) is a Gaussian parameterized
by a deep neural network (NN). Then, after T iterations of the sampler Q are parameterized
by η, we arrive at qφ,η .

An alternative arises by ignoring the noise ξ [22], thus refining the initial variational
approximation using only the stochastic gradient descent (SGD). Moreover, we can use
Stein variational gradient descent (SVGD) [40] or a stochastic version [36] to apply repulsion
between particles and promote more extensive explorations of the latent space.

3.2. Approximating the Entropy Term

We propose four approaches for the ELBO optimization which take structural advan-
tage of the refined variational approximation.

Entropy 2021, 23, 123 5 of 19

3.2.1. Particle Approximation (VIS-P)

In this approach, we approximate the posterior qφ,η(z|x) by a mixture of Dirac deltas
(i.e., we approximate it with a finite set of particles), by sampling z(1), . . . , z(M) ∼ qφ,η(z|x)
and setting

qφ,η(z|x) =
1
M

M

∑
m=1

δ(z− z(m)).

In this approximation, the entropy term in (4) is set to zero. Consequently, the sample
converges to the maximum posterior (MAP). This may be undesirable when training gen-
erative models, as the generated samples usually have little diversity. Thus, in subsequent
computations, we add to the refined ELBO the entropy of the initial variational approxima-
tion, Eq0,φ(z|x)

[
log q0,φ(z|x)

]
, which serves as a regularizer alleviating the previous problem.

When using SGD as the sampler, the resulting ELBO is tighter than that without refinement,
as shown in Section 4.2.

3.2.2. MC Approximation (VIS-MC)

Instead of performing the full marginalization in Equation (3), we approximate it with
qφ,η(zT , . . . , z0|x) = ∏T

t=1 qη(zt|zt−1)q0,φ(z0|x); i.e., we consider the joint distribution for
the refinement. However, in inference we only keep the zT values. The entropy for each
factor in this approximation is straightforward to compute. For example, for the SGLD
case, we have

zt = zt−1 + η∇ log p(x, zt−1) +N (0, 2η I), t = 1, ..., T.

This approximation tracks a better estimate of the entropy than VIS-P, as we are not
completely discarding it; rather, for each t, we marginalize out the corresponding zt using
one sample.

3.2.3. Gaussian Approximation (VIS-G)

This approach is targeted at settings in which it could be helpful to have a posterior
approximation that places density over the whole z space. In the specific case of using SGD
as the inner kernel, we have

z0 ∼ q0,φ(z0|x) = N (z0|µφ(x), σφ(x))

zt = zt−1 + η∇ log p(x, zt−1), t = 1, . . . , T.

By treating the gradient terms as points, the refined variational approximation can be
computed as qφ,η(z|x) = N (z|zT , σφ(x)). Observe that there is an implicit dependence on
η through zT .

3.2.4. Fokker–Planck Approximation (VIS-FP)

Using the Fokker–Planck equation, we derive a deterministic sampler via iterations of
the form

zt = zt−1 + η(∇ log p(x, zt−1)−∇ log qt(zt−1)), t = 1, ..., T.

Then, we approximate the density qφ,η(z|x) using a mixture of Dirac deltas. A detailed
derivation of this approximation is given in Appendix A.

3.3. Back-Propagating through the Sampler

In standard VI, the variational approximation q(z|x; φ) is parameterized by φ. The pa-
rameters are learned employing SGD, or variants such as Adam [41], using the gradient
∇φELBO(q). We have shown how to embed a sampler inside the variational guide. It is
therefore also possible to compute a gradient of the objective with respect to the sampler
parameters η (see Section 3.1). For instance, we can compute a gradient ∇ηELBO(q) with

Entropy 2021, 23, 123 6 of 19

respect to the learning rate η from the SGLD or SGD processes to search for an optimal
step size at every VI iteration. This is an additional step apart from using the gradient
∇φELBO(q) which is used to learn a good initial sampling distribution.

4. Analysis of Vis

Below, we highlight key properties of the proposed framework.

4.1. Consistency

The VIS framework is geared towards SG-MCMC samplers, where we can compute
the gradients of sampler hyperparameters to speed up mixing time (a common major
drawback in MCMC [42]). After back-propagating for a few iterations through the SG-
MCMC sampler and learning a good initial distribution, one can resort to the learned
sampler in the second phase, so standard consistency results from SG-MCMC apply as
T → ∞ [43].

4.2. Refinement of ELBO

Note that, for a refined guide using the VIS-P approximation and M = 1 samples, the
refined objective function can be written as

Eq(z0|x)[log p(x, z0 + η∇ log p(x, z0))− log q(z0|x)]

noting that z = z0 + η∇ log p(x, z0) when using SGD for T = 1 iterations. This is equiv-
alent to the refined ELBO in (4). Since we are perturbing the latent variables in the
steepest direction, we show easily that, for a moderate η, the previous bound is tighter
than Eq(z0|x)[log p(x, z0)− log q(z0|x)], the one for the original variational guide q(z0|x).
This reformulation of ELBO is also convenient since it provides a clear way of implementing
our refined variational inference framework in any probabilistic programming language
(PPL) supporting algorithmic differentiation.

Respectively, for the VIS-FP case, we find that its deterministic flow follows the same
trajectories as SGLD: based on standard results of MCMC samplers [44], we have

KL(qφ,η(z|x)||p(z|x)) ≤ KL(q0,φ(z|x)||p(z|x)).

A similar reasoning applies to the VIS-MC approximation; however, it does not hold
for VIS-G since it assumes that the posterior is Gaussian.

4.3. Taylor Expansion

This analysis applies only to VIS-P and VIS-FP. As stated in Section 4.2, within the
VIS framework, optimizing the ELBO resorts to the performance of maxz log p(x, z + ∆z),
where ∆z is one iteration of the sampler; i.e., ∆z = η∇ log p(x, z) in the SGD case (VIS-P),
or ∆z = η∇(log p(x, z)− log q(z)) in the VIS-FP case. For notational clarity, we consider
the case T = 1, although a similar analysis follows in a straightforward manner if more
refinement steps are performed.

Consider a first-order Taylor expansion of the refined objective

log p(x, z + ∆z) ≈ log p(x, z) + (∆z)ᵀ∇ log p(x, z).

Taking gradients with respect to the latent variables z, we arrive at

∇z log p(x, z + ∆z) ≈ ∇z log p(x, z) + η∇z log p(x, z)ᵀ∇2
z log p(x, z),

where we have not computed the gradient through the ∆z term (i.e., we treated it as a
constant for simplification). Then, the refined gradient can be deemed to be the original
gradient plus a second order correction. Instead of being modulated by a constant learning
rate, this correction is adapted by the chosen sampler. The experiments in Section 5.4 show

Entropy 2021, 23, 123 7 of 19

that this is beneficial for the optimization as it typically takes fewer iterations than the
original variant to achieve lower losses.

By further taking gradients through the ∆z term, we may tune the sampler parameters
such as the learning rate as presented in Section 3.3. Consequently, the next subsection
describes two differentiation modes.

4.4. Two Automatic Differentiation Modes for Refined ELBO Optimization

For the first variant, remember that the original variant can be rewritten (which we
term Full AD) as

Eq[log p(x, z + ∆z)− log q(z + ∆z|x)]. (5)

We now define a stop gradient operator⊥ (which corresponds to detach in Pytorch or
stop_gradient in tensorflow) that sets the gradient of its operand to zero—i.e.,∇x⊥(x) =
0—whereas in a forward pass, it acts as the identity function—that is, ⊥(x) = x. With this,
a variant of the ELBO objective (which we term Fast AD) is

Eq[log p(x, z +⊥(∆z))− log q(z +⊥(∆z)|x)]. (6)

Full AD ELBO enables a gradient to be computed with respect to the sampler parame-
ters inside ∆z at the cost of a slight increase in computational burden. On the other hand,
the Fast AD variant may be useful in numerous scenarios, as illustrated in the experiments.

Complexity

Since we need to back propagate through T iterations of an SG-MCMC scheme,
using standard results of meta-learning and automatic differentiation [45], the time com-
plexity of our more intensive approach (Full-AD) is O(mT), where m is the dimension of
the hyperparameters (the learning rate of SG-MCMC and the latent dimension). Since for
most use cases, the hyperparameters lie in a low-dimensional space, the approach is
therefore scalable.

5. Experiments

The following experiments showcase the power of our approach as well as illustrating
the the impact of various parameters on its performance, guiding their choice in practice.
We also present a comparison with standard VIS and other recent variants, showing that
the increased computational complexity of computing gradients through sampling steps is
worth the gains in flexibility. Moreover, the proposed framework is compatible with other
structured inference techniques, such as the sum–product algorithm, as well as serving to
support other tasks such as classification.

Within the spirit of reproducible research, the code for VIS has been released at
https://github.com/vicgalle/vis. The VIS framework is implemented with Pytorch [46],
although we have also released a notebook for the first experiment using Jax to highlight
the simple implementation of VIS. In any case, we emphasize that the approach facilitates
rapid iterations over a large class of models.

5.1. Funnel Density

We first tested the framework on a synthetic yet complex target distribution. This ex-
periment assessed whether VIS is suitable for modeling complex distributions. The target
bi-dimensional density was defined through

z1 ∼ N (0, 1.35)

z2 ∼ N (0, exp(z1)).

We adopted the usual diagonal Gaussian distribution as the variational approximation.
For VIS, we used the VIS-P approximation and refined it for T = 1 steps using SGLD.
Figure 1 top shows the trajectories of the lower bound for up to 50 iterations of variational

https://github.com/vicgalle/vis
https://github.com/vicgalle/vis

Entropy 2021, 23, 123 8 of 19

optimization with Adam: our refined version achieved a tighter bound. The bottom figures
present contour curves of the learned variational approximations. Observe that the VIS
variant was placed closer to the mean of the true distribution and was more disperse than
the original variational approximation, illustrating the fact that the refinement step helps in
attaining more flexible posterior approximations.

Figure 1. Top: Evolution of the negative evidence lower bound (ELBO) loss objective over 50 iterations. Darker lines depict
means along different seeds (lighter lines). Bottom left: Contour curves (blue–turquoise) of the variational approximation
with no refinement (T = 0) at iteration 30 (loss of 1.011). Bottom right: Contour curves (blue–turquoise) of refined
variational approximation (T = 1) at iteration 30 (loss of 0.667). Green–yellow curves denote target density.

5.2. State-Space Markov Models

We tested our variational approximation on two state-space models: one for discrete
data and another for continuous observations. These experiments also demonstrated that
the framework is compatible with standard inference techniques such as the sum–product
scheme from the Baum–Welch algorithm or Kalman filter. In both models, we performed
inference on their parameters θ. All the experiments in this subsection used the Fast AD
version (Section 4.4) as it was not necessary to further tune the sampler parameters to
obtain competitive results. Full model implementations can be found in Appendix B.1,
based on funsor (https://github.com/pyro-ppl/funsor/), a PPL on top of the Pytorch
autodiff framework.

Hidden Markov Model (HMM): The model equations are

p(x1:τ , z1:τ , θ) =
τ

∏
t=1

p(xt|zt, θem)p(zt|zt−1, θtr)p(θ), (7)

https://github.com/pyro-ppl/funsor/

Entropy 2021, 23, 123 9 of 19

where each conditional is a categorical distribution taking five different classes. The prior
is p(θ) = p(θem)p(θtr) based on two Dirichlet distributions that sample the observation
and state transition probabilities, respectively.

Dynamic Linear Model (DLM): The model equations are as in (7), although the
conditional distributions are now Gaussian and the parameters θ refer to the observation
and transition variances.

For each model, we generated a synthetic dataset and used the refined variational ap-
proximation with T = 0, 1, 2. For the original variational approximation to the parameters
θ, we used a Dirac delta. Performing VI with this approximation corresponded to MAP
estimation using the Baum–Welch algorithm in the HMM case [47] and the Kalman filter
in the DLM case [48], as we marginalized out the latent variables z1:τ . We used the VIS-P
variant since it was sufficient to show performance gains in this case.

Figure 2 shows the results. The first row reports the experiments related to the HMM,
the second row those for the DLM. We report the evolution of the log-likelihood during
inference in all graphs; the first column reports the number of ELBO iterations, and the
second column portrays clock times as the optimization takes place. They confirm that VIS
(T > 0) achieved better results than standard VI (T = 0) for a comparable amount of time.
Note also that there was not as much gain when changing from T = 1 to T = 2 as there
is from T = 0 to T = 1, suggesting the need to carefully monitor this parameter. Finally,
the top-right graph for the case T = 0 is shorter as it requires less clock time.

Figure 2. Results of ELBO optimization for state-space models. Top-left (Hidden Markov Model (HMM)): Log-likelihood
against the number of ELBO gradient iterations. Top-right (HMM): Log-likelihood against clock time. Bottom-left (Dynamic
Linear Model (DLM)): Log-likelihood against number of ELBO gradient iterations. Bottom-right (DLM): Log-likelihood
against against clock time.

Entropy 2021, 23, 123 10 of 19

5.2.1. Prediction with an HMM

With the aim of assessing whether ELBO optimization helps in attaining better auxil-
iary scores, results in a prediction task are also reported. We generated a synthetic time
series of alternating values of 0 and 1 for τ = 105 timesteps. We trained the previous HMM
model on the first 100 points and report in Table 1 the accuracy of the predictive distribution
p(yt) averaged over the final five time-steps. We also report the predictive entropy as it
helps in assessing the confidence of the model in its predictions, as a strictly proper scoring
rule [49]. To guarantee the same computational budget time and a fair comparison, the
model without refinement was run for 50 epochs (an epoch was a full iteration over the
training dataset), whereas the model with refinement was run for 20 epochs. It can be
observed that the refined model achieved higher accuracy than its counterpart. In addition,
it was more correctly confident in its predictions.

Table 1. Prediction metrics for the HMM.

T = 0 T = 1

accuracy 0.40 0.84
predictive entropy 1.414 1.056
logarithmic score −1.044 −0.682

5.2.2. Prediction with a DLM

We tested the VIS framework on Mauna Loa monthly CO2 time-series data [50]. We
used the first 10 years as a training set, and we tested over the next 2 years. We used a
DLM composed of a local linear trend plus a seasonal block of periodicity 12. Data were
standardized to a mean of zero and standard deviation of one. To guarantee the same
computational budget time, the model without refining was run for 10 epochs, whereas
the model with refinement was run for 4 epochs. Table 2 reports the mean absolute error
(MAE) and predictive entropy. In addition, we computed the interval score [49], as a
strictly proper scoring rule. As can be seen, for similar clock times, the refined model
not only achieved a lower MAE, but also its predictive intervals were narrower than the
non-refined counterpart.

Table 2. Prediction metrics for the DLM.

T = 0 T = 1

MAE 0.270 0.239
predictive entropy 2.537 2.401

interval score (α = 0.05) 15.247 13.461

5.3. Variational Autoencoder

The third batch of experiments showed that VIS was competitive with respect to
other algorithms from the recent literature, including unbiased implicit variational infer-
ence (UIVI [24]), semi-implicit variational inference (SIVI [25]), variational contrastive
divergence (VCD [29]), and the HMC variant from [26], showing that our framework can
outperform those approaches in similar experimental settings.

To this end, we tested the approach with a variational autoencoder (VAE) model [51].
The VAE defines a conditional distribution pθ(x|z), generating an observation x from a
latent variable z using parameters θ. For this task, our interest was in modeling the 28× 28
image distributions underlying the MNIST [52] and the fashion-MNIST [53] datasets.
To perform inference (i.e., to learn the parameters θ) the VAE introduces a variational
approximation qφ(z|x). In the standard setting, this distribution is Gaussian; we instead
used the refined variational approximation comparing various values of T. We used the
VIS-MC approximation (although we achieved similar results with VIS-G) with the Full
AD variant given in Section 4.4.

Entropy 2021, 23, 123 11 of 19

For the experimental setup, we reproduced the setting in [24]. For pθ(x|z), we used
a factorized Bernoulli distribution parameterized by a two layer feed-forward network
with 200 units in each layer and relu activations, except for a final sigmoid activation.
As a variational approximation qφ(z|x), we used a Gaussian with mean and (diagonal)
covariance matrix parameterized by two distinct neural networks with the same structure
as previously used, except for sigmoid activation for the mean and a softplus activation for
the covariance matrix.

Results are reported in Table 3. To guarantee fair comparison, we trained the VIS-
5-10 variant for 10 epochs, whereas all the other variants were trained for 15 epochs
(fMNIST) or 20 epochs (MNIST), so that the VAE’s performance was comparable to that
reported in [24]. Although VIS was trained for fewer epochs, by increasing the number
T of MCMC iterations, we dramatically improved the test log-likelihood. In terms of
computational complexity, the average time per epoch using T = 5 was 10.46 s, whereas
with no refinement (T = 0), the time was 6.10 s (which was the reason behind our decision
to train the refined variant for fewer epochs): a moderate increase in computing time may
be worth the dramatic increase in log-likelihood while not introducing new parameters
into the model, except for the learning rate η.

Table 3. Test log-likelihood on binarized MNIST and fMNIST. Bold numbers indicate the best
results. UIVI: unbiased implicit variational inference; SIVI: semi-implicit variational inference; VAE:
variational autoencoder; VCD: variational contrastive divergence; HMC-DLGM: Hamiltonian Monte
Carlo for Deep Latent Gaussian Models; VIS: variationally inferred sampler.

Method MNIST fMNIST

Results from [24]

UIVI −94.09 −110.72
SIVI −97.77 −121.53
VAE −98.29 −126.73

Results from [29]

VCD −95.86 −117.65
HMC-DLGM −96.23 −117.74

This paper

VIS-5-10 −82.74 ± 0.19 −105.08 ± 0.34
VIS-0-10 −96.16± 0.17 −120.53± 0.59

VAE (VIS-0-0) −100.91± 0.16 −125.57± 0.63

Finally, as a visual inspection of the VAE reconstruction quality trained with VIS,
Figures 3 and 4, respectively, display 10 random samples of each dataset.

Figure 3. Top: original images from MNIST. Bottom: reconstructed images using VIS-5-10 at
10 epochs.

Entropy 2021, 23, 123 12 of 19

Figure 4. Top: original images from fMNIST. Bottom: reconstructed images using VIS-5-10 at
10 epochs.

5.4. Variational Autoencoder as a Deep Bayes Classifier

In the final experiments, we investigated whether VIS can deal with more general
probabilistic graphical models and also perform well in other inference tasks such as classi-
fication. We explored the flexibility of the proposed scheme to solve inference problems
in an experiment with a classification task in a high-dimensional setting with the MNIST
dataset. More concretely, we extended the VAE model, conditioning it on a discrete variable
y ∈ Y = {0, 1, . . . , 9}, leading to a conditional VAE (cVAE). The cVAE defined a decoder
distribution pθ(x|z, y) on an input space x ∈ RD given a class label y ∈ Y , latent vari-
ables z ∈ Rd and parameters θ. Figure 5 depicts the corresponding probabilistic graphic
model. Additional details regarding the model architecture and hyperparameters are given in
Appendix B.

Figure 5. Probabilistic graphical model for the deep Bayes classifier.

To perform inference, a variational posterior was learned as an encoder qφ(z|x, y) from
a prior p(z) ∼ N (0, I). Leveraging the conditional structure on y, we used the generative
model as a classifier using the Bayes rule,

p(y|x) ∝ p(y)p(x|y) = p(y)
∫

pθ(x|z, y)qφ(z|x, y)dz ≈ 1
M

M

∑
m=1

pθ(x|z(m), y)p(y), (8)

where we used M Monte Carlo samples z(m) ∼ qφ(z|x, y). In the experiments, we set
M = 5. Given a test sample x, the label ŷ with the highest probability p(y|x) is predicted.

For comparison, we performed several experiments changing T in the transition
distribution Qη,T of the refined variational approximation. The results are given in Table 4,
which reports the test accuracy at end of the refinement phase. Note that we are comparing

Entropy 2021, 23, 123 13 of 19

different values of T depending on their use in refinement or inference phases (in the latter,
the model and variational parameters were kept frozen). The model with Tre f = 5 was
trained for 10 epochs, whereas the other settings were for 15 epochs, to give all settings a
similar training time. Results were averaged over three runs with different random seeds.
In all settings, we used the VIS-MC approximation for the entropy term. From the results,
it is clear that the effect of using the refined variational approximation (the cases when
T > 0) is crucially beneficial to achieve higher accuracy. The effect of learning a good initial
distribution and inner learning rate by using the gradients ∇φELBO(q) and ∇ηELBO(q)
has a highly positive impact in the accuracy obtained.

On a final note, we have not included the case of only using an SGD or an SGLD
sampler (i.e., without learning an initial distribution q0,φ(z|x)) since the results were much
worse than those in Table 4 for a comparable computational budget. This strongly suggests
that, for inference in high-dimensional, continuous latent spaces, learning a good initial
distribution through VIS may accelerate mixing time dramatically.

Table 4. Results on digit classification task using a deep Bayes classifier.

Tre f Tin f Acc. (Test)

0 0 96.5± 0.5 %
0 10 97.7± 0.7 %
5 10 99.8± 0.2 %

6. Conclusions

In this work, we have proposed a flexible and efficient framework to perform large-
scale Bayesian inference in probabilistic models. The scheme benefits from useful properties
and can be employed to efficiently perform inference with a wide class of models such as
state-space time series, variational autoencoders and variants such as the conditioned VAE
for classification tasks, defined through continuous, high-dimensional distributions.

The framework can be seen as a general approach to tuning MCMC sampler pa-
rameters, adapting the initial distributions and learning rate. Key to the success and
applicability of the VIS framework are the ELBO approximations based on the introduced
refined variational approximation, which are computationally cheap but convenient.

Better estimates of the refined density and its gradient may be a fruitful line of research,
such as the spectral estimator used in [54]. Another alternative is to use a deterministic
flow (such as SGD or SVGD), keeping track of the change in entropy at each iteration using
the change of the variable formula, as in [55]. However, this requires a costly Jacobian
computation, making it unfeasible to combine with our approach of back-propagation
through the sampler (Section 3.3) for moderately complex problems. We leave this for
future exploration. Another interesting and useful line of further research would be to
tackle the case in which the latent variables z are discrete. This would entail adapting the
automatic differentiation techniques to be able to back-propagate the gradients through
the sequences of acceptance steps necessary in Metropolis–Hastings samplers.

In order to deal with the implicit variational density, it may be worthwhile to consider
optimizing the Fenchel dual of the KL divergence, as in [31]. However, this requires the use
of an auxiliary neural network, which may entail a large computational price compared
with our simpler particle approximation.

Lastly, probabilistic programming offers powerful tools for Bayesian modeling. A PPL
can be viewed as a programming language extended with random sampling and Bayesian
conditioning capabilities, complemented with an inference engine that produces answers
to inference, prediction and decision-making queries. Examples include WinBUGS [56],
Stan [57] or the recent Edward [58] and Pyro [59] languages. We plan to adapt VIS into
several PPLs to facilitate the adoption of the framework.

Entropy 2021, 23, 123 14 of 19

Author Contributions: Conceptualization, V.G. and D.R.I.; methodology, V.G.; software, V.G.; inves-
tigation, V.G.; writing—original draft preparation, V.G. and D.R.I.; writing—review and editing, V.G.
and D.R.I. All authors have read and agreed to the published version of the manuscript.

Funding: VG acknowledges support from grant FPU16-05034. DRI is grateful to the MINECO
MTM2017-86875-C3-1-R project and the AXA-ICMAT Chair in Adversarial Risk Analysis. Both au-
thors acknowledge support from the Severo Ochoa Excellence Program CEX2019-000904-S. This
material was based upon work partially supported by the National Science Foundation under Grant
DMS-1638521 to the Statistical and Applied Mathematical Sciences Institute as well as a BBVA
Foundation project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Fokker-Planck Approximation (Vis-Fp)

The Fokker–Planck equation is a PDE that describes the temporal evolution of the
density of a random variable under a (stochastic) gradient flow [39]. For a given SDE

dz = µ(z, t)dt + σ(z, t)dBt,

the corresponding Fokker–Planck equation is

∂

∂t
qt(z) = −

∂

∂z
[µ(z, t)qt(z)] +

∂2

∂z2

[
σ2(z, t)

2
qt(z)

]
.

We are interested in converting the SGLD dynamics to a deterministic gradient flow.

Proposition A1. The SGLD dynamics, given by the SDE

dz = ∇ log p(z)dt +
√

2dBt,

have an equivalent deterministic flow, written as the ODE

dz = (∇ log p(z)−∇ log qt(z))dt.

Proof. Let us write the Fokker–Planck equation for the respective flows. For the Langevin
SDE, it is

∂

∂t
qt(z) = −

∂

∂z

[
∇ log p(z)qt(z)

]
+

∂2

∂z2

[
qt(z)

]
.

On the other hand, the Fokker–Planck equation for the deterministic gradient flow is
given by

∂

∂t
qt(z) = −

∂

∂z

[
∇ log p(z)qt(z)

]
+

∂

∂z

[
∇ log qt(z)qt(z)

]
.

The result immediately follows since ∂
∂z [∇ log qt(z)qt(z)] = ∂2

∂z2 [qt(z)].

Given that both flows are equivalent, we restrict our attention to the deterministic
flow. Its discretization leads to iterations of the form

zt = zt−1 + η(∇ log p(zt−1)−∇ log qt−1(zt−1)). (A1)

In order to tackle the last term, we make the following particle approximation. Using
a variational formulation, we have

Entropy 2021, 23, 123 15 of 19

−∇ log q(z) = ∇
(
− δ

δq
Eq[log q]

)
.

Then, we smooth the true density q convolving it with a kernel K, typically the rbf
kernel, K(z, z′) = exp{−γ‖z− z′‖2}, where γ is the bandwidth hyperparameter, leading to

∇
(
− δ

δq
Eq[log q]

)
≈ ∇

(
− δ

δq
Eq[log(q ∗ K)]

)
= ∇ log(q ∗ K)−∇

(
q

(q ∗ K)
∗ K
)

.

If we consider a mixture of Dirac deltas, q(z) = 1
M ∑M

m=1 δ(z− zm), then the approxi-
mation is given by

−∇ log q(z) ≈ −∑k∇zm K(zm, zn)

∑n K(zm, zn)
−∑

l

∇zm K(zm, zl)

∑n K(zn, zl)
,

which can be inserted into Equation (A1). Finally, note that it is possible to back-propagate
through this equation; i.e., the gradients of K can be explicitly computed.

Appendix B. Experiment Details

Appendix B.1. State-Space Models

Appendix B.1.1. Initial Experiments

For the HMM, both the observation and transition probabilities are categorical distri-
butions, taking values in the domain {0, 1, 2, 3, 4}.

The equations of the DLM are

zt+1 ∼ N (0.5zt + 1.0, σtr)

xt ∼ N (3.0zt + 0.5, σem).

with z0 = 0.0.

Appendix B.1.2. Prediction Task in a DLM

The DLM model comprises a linear trend component plus a seasonal block with a
period of 12. The trend is specified as

xt = zlevel,t + εt εt ∼ N (0, σobs)

zlevel,t = zlevel,t−1 + zslope,t−1 + ε′t ε′t ∼ N (0, σlevel)

zslope,t = zslope,t−1 + ε′′t ε′′t ∼ N (0, σslope).

With respect to the seasonal component, we specify it through

xt = Fzt + vt vt ∼ N (0, σobs)

zt = Gzt−1 + wt wt ∼ N (0, σseas)

where F is a 12-dimensional vector (1, 0, . . . , 0, 0) and G is the 12× 12 matrix

G =


0 0 . . . 0 1
1 0 0 0
0 1 0 0

. . .
0 0 1 0

.

Entropy 2021, 23, 123 16 of 19

Further details are in [60].

Appendix B.2. Vae

Appendix B.2.1. Model Details

The prior distribution p(z) for the latent variables z ∈ R10 is a standard factorized
Gaussian. The decoder distribution pθ(x|z) and the encoder distribution (initial variational
approximation) q0,φ(z|x) are parameterized by two feed-forward neural networks, as
detailed in Figure A1.

Appendix B.2.2. Hyperparameter Settings

The optimizer Adam is used in all experiments, with la earning rate of λ = 0.001.
We also set η = 0.001. We train for 15 epochs (fMNIST) and 20 epochs (MNIST) to achieve
a performance similar to the VAE in [24]. For the VIS-5-10 setting, we train only for 10
epochs to allow a fair computational comparison in terms of similar computing times.

Appendix B.3. cVAE

Appendix B.3.1. Model Details

The prior distribution p(z) for the latent variables z ∈ R10 is a standard factorized
Gaussian. The decoder distribution pθ(x|y, z) and the encoder distribution (initial varia-
tional approximation) q0,φ(z|x, y) are parameterized by two feed-forward neural networks
whose details can be found in Figure A2. Equation (8) is approximated with one MC
sample from the variational approximation in all experimental settings, as it allowed fast
inference times while offering better results.

class VAE(nn.Module):
def __init__(self):

super(VAE, self).__init__()

self.z_d = 10
self.h_d = 200
self.x_d = 28*28

self.fc1_mu = nn.Linear(self.x_d, self.h_d)
self.fc1_cov = nn.Linear(self.x_d, self.h_d)
self.fc12_mu = nn.Linear(self.h_d, self.h_d)
self.fc12_cov = nn.Linear(self.h_d, self.h_d)
self.fc2_mu = nn.Linear(self.h_d, self.z_d)
self.fc2_cov = nn.Linear(self.h_d, self.z_d)

self.fc3 = nn.Linear(self.z_d, self.h_d)
self.fc32 = nn.Linear(self.h_d, self.h_d)
self.fc4 = nn.Linear(self.h_d, self.x_d)

def encode(self, x):
h1_mu = F.relu(self.fc1_mu(x))
h1_cov = F.relu(self.fc1_cov(x))
h1_mu = F.relu(self.fc12_mu(h1_mu))
h1_cov = F.relu(self.fc12_cov(h1_cov))
we work in the logvar-domain
return self.fc2_mu(h1_mu),
torch.log(F.softplus(self.fc2_cov(h1_cov)))

def decode(self, z):
h3 = F.relu(self.fc3(z))
h3 = F.relu(self.fc32(h3))
return torch.sigmoid(self.fc4(h3))

Figure A1. Model architecture for the VAE.

Entropy 2021, 23, 123 17 of 19

class cVAE(nn.Module):
def __init__(self):

super(cVAE, self).__init__()

self.z_d = 10
self.h_d = 200
self.x_d = 28*28
num_classes = 10

self.fc1_mu = nn.Linear(self.x_d + num_classes, self.h_d)
self.fc1_cov = nn.Linear(self.x_d + num_classes, self.h_d)
self.fc12_mu = nn.Linear(self.h_d, self.h_d)
self.fc12_cov = nn.Linear(self.h_d, self.h_d)
self.fc2_mu = nn.Linear(self.h_d, self.z_d)
self.fc2_cov = nn.Linear(self.h_d, self.z_d)

self.fc3 = nn.Linear(self.z_d + num_classes, self.h_d)
self.fc32 = nn.Linear(self.h_d, self.h_d)
self.fc4 = nn.Linear(self.h_d, self.x_d)

def encode(self, x, y):
h1_mu = F.relu(self.fc1_mu(torch.cat([x, y], dim=-1)))
h1_cov = F.relu(self.fc1_cov(torch.cat([x, y], dim=-1)))
h1_mu = F.relu(self.fc12_mu(h1_mu))
h1_cov = F.relu(self.fc12_cov(h1_cov))
we work in the logvar-domain
return self.fc2_mu(h1_mu),
torch.log(F.softplus(self.fc2_cov(h1_cov)))

def decode(self, z, y):
h3 = F.relu(self.fc3(torch.cat([z, y], dim=-1)))
h3 = F.relu(self.fc32(h3))
return torch.sigmoid(self.fc4(h3))

Figure A2. Model architecture for the cVAE.

Appendix B.3.2. Hyperparameter Settings

The optimizer Adam was used in all experiments, with a learning rate of λ = 0.01.
We set the initial η = 5× 10−5.

References
1. Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational inference: A review for statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877.

[CrossRef]
2. Insua, D.; Ruggeri, F.; Wiper, M. Bayesian Analysis of Stochastic Process Models; John Wiley & Sons: New York, NY, USA, 2012;

Volume 978.
3. Alquier, P. Approximate Bayesian Inference. Entropy 2020, 22, 1272. [CrossRef] [PubMed]
4. Kucukelbir, A.; Tran, D.; Ranganath, R.; Gelman, A.; Blei, D.M. Automatic differentiation variational inference. J. Mach. Learn.

Res. 2017, 18, 430–474.
5. Riquelme, C.; Johnson, M.; Hoffman, M. Failure modes of variational inference for decision making. In Proceedings of the

Prediction and Generative Modeling in RL Workshop (AAMAS, ICML, IJCAI), Stockholm, Sweden, 15 July 2018.
6. Andrieu, C.; Doucet, A.; Holenstein, R. Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 2010,

72, 269–342. [CrossRef]
7. Neal, R.M. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo; CRC Press: Boca Raton, FL, USA,

2011; Volume 2, p. 2.
8. Van Ravenzwaaij, D.; Cassey, P.; Brown, S.D. A simple introduction to Markov Chain Monte–Carlo sampling. Psychon. Bull. Rev.

2018, 25, 143–154. [CrossRef] [PubMed]
9. Nalisnick, E.; Hertel, L.; Smyth, P. Approximate inference for deep latent gaussian mixtures. In Proceedings of the NIPS

Workshop on Bayesian Deep Learning, Barcelona, Spain, 10 December 2016.
10. Salimans, T.; Kingma, D.; Welling, M. Markov chain Monte Carlo and variational inference: Bridging the gap. In Proceedings of

the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1218–1226.
11. Tran, D.; Ranganath, R.; Blei, D.M. The variational Gaussian process. In Proceedings of the 4th International Conference on

Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.
12. Wood, F.; Meent, J.W.; Mansinghka, V. A new approach to probabilistic programming inference. In Proceedings of the Artificial

Intelligence and Statistics, Reykjavik, Iceland, 22–25 April 2014; pp. 1024–1032.
13. Ge, H.; Xu, K.; Ghahramani, Z. Turing: a language for flexible probabilistic inference. In Proceedings of the International

Conference on Artificial Intelligence and Statistics, Lanzarote, Spain, 9–11 April 2018; pp. 1682–1690.
14. Papaspiliopoulos, O.; Roberts, G.O.; Sköld, M. A general framework for the parametrization of hierarchical models. Stat. Sci.

2007, 22, 59–73. [CrossRef]

http://doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.3390/e22111272
http://www.ncbi.nlm.nih.gov/pubmed/33287041
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://dx.doi.org/10.3758/s13423-016-1015-8
http://www.ncbi.nlm.nih.gov/pubmed/26968853
http://dx.doi.org/10.1214/088342307000000014

Entropy 2021, 23, 123 18 of 19

15. Hoffman, M.; Sountsov, P.; Dillon, J.V.; Langmore, I.; Tran, D.; Vasudevan, S. Neutra-lizing bad geometry in hamiltonian Monte
Carlo using neural transport. arXiv 2019, arXiv:1903.03704.

16. Li, S.H.; Wang, L. Neural Network Renormalization Group. Phys. Rev. Lett. 2018, 121, 260601. [CrossRef]
17. Parno, M.; Marzouk, Y. Transport map accelerated markov chain monte carlo. arXiv 2014, arXiv:1412.5492.
18. Rezende, D.; Mohamed, S. Variational Inference with Normalizing Flows. In Proceedings of the International Conference on

Machine Learning, Lille, France, 6–11 July 2015; pp. 1530–1538.
19. Chen, C.; Li, C.; Chen, L.; Wang, W.; Pu, Y.; Carin, L. Continuous-Time Flows for Efficient Inference and Density Estimation.

In Proceedings of the International Conference on Machine Learning, Vienna, Austria, 25–31 July 2018.
20. Liu, G.; Liu, Y.; Guo, M.; Li, P.; Li, M. Variational inference with Gaussian mixture model and householder flow. Neural Netw.

2019, 109, 43–55. [CrossRef]
21. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, USA, 8–13 December 2014;
pp. 2672–2680.

22. Mandt, S.; Hoffman, M.D.; Blei, D.M. Stochastic Gradient Descent as Approximate Bayesian Inference. J. Mach. Learn. Res. 2017,
18, 4873–4907.

23. Huszár, F. Variational inference using implicit distributions. arXiv 2017, arXiv:1702.08235.
24. Titsias, M.K.; Ruiz, F. Unbiased Implicit Variational Inference. In Proceedings of the 22nd International Conference on Artificial

Intelligence and Statistics, Naha, Japan, 16–18 April 2019; pp. 167–176.
25. Yin, M.; Zhou, M. Semi-Implicit Variational Inference. arXiv 2018, arXiv:1805.11183.
26. Hoffman, M.D. Learning deep latent Gaussian models with Markov chain Monte Carlo. In Proceedings of the 34th International

Conference on Machine Learning, Sydney, Australia, 22–31 July 2017; pp. 1510–1519.
27. Feng, Y.; Wang, D.; Liu, Q. Learning to draw samples with amortized stein variational gradient descent. arXiv 2017,

arXiv:1707.06626.
28. Cremer, C.; Li, X.; Duvenaud, D. Inference suboptimality in variational autoencoders. arXiv 2018, arXiv:1801.03558.
29. Ruiz, F.; Titsias, M. A Contrastive Divergence for Combining Variational Inference and MCMC. In Proceedings of the International

Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 5537–5545.
30. Dai, B.; Dai, H.; He, N.; Liu, W.; Liu, Z.; Chen, J.; Xiao, L.; Song, L. Coupled variational bayes via optimization embedding.

In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, USA, 3–8 December 2018; pp. 9690–9700.
31. Fang, L.; Li, C.; Gao, J.; Dong, W.; Chen, C. Implicit Deep Latent Variable Models for Text Generation. arXiv 2019, arXiv:1908.11527.
32. Welling, M.; Teh, Y.W. Bayesian learning via stochastic gradient Langevin dynamics. In Proceedings of the 28th International

Conference on Machine Learning (ICML-11), Montreal, QC, USA, 11–13 June 2014; pp. 681–688.
33. Li, C.; Chen, C.; Carlson, D.; Carin, L. Preconditioned stochastic gradient Langevin dynamics for deep neural networks.

In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.
34. Li, C.; Chen, C.; Fan, K.; Carin, L. High-order stochastic gradient thermostats for Bayesian learning of deep models. In Proceedings

of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.
35. Abbati, G.; Tosi, A.; Osborne, M.; Flaxman, S. Adageo: Adaptive geometric learning for optimization and sampling. In Proceed-

ings of the International Conference on Artificial Intelligence and Statistics, Canary Islands, Spain, 9–11 April 2018; pp. 226–234.
36. Gallego, V.; Insua, D.R. Stochastic Gradient MCMC with Repulsive Forces. arXiv 2018, arXiv:1812.00071.
37. Ma, Y.A.; Chen, T.; Fox, E. A complete recipe for stochastic gradient MCMC. In Proceedings of the Advances in Neural

Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2917–2925.
38. Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. J. Mach.

Learn. Res. 2017, 18, 5595–5637.
39. Pavliotis, G. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. In Texts in

Applied Mathematics; Springer: New York, NY, USA, 2014.
40. Liu, Q.; Wang, D. Stein variational gradient descent: A general purpose Bayesian inference algorithm. In Proceedings of the

Advances In Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2378–2386.
41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
42. Graves, T.L. Automatic step size selection in random walk Metropolis algorithms. arXiv 2011, arXiv:1103.5986.
43. Brooks, S.; Gelman, A.; Jones, G.; Meng, X.L. Handbook of Markov Chain Monte Carlo; CRC Press: Boca Raton, FL, USA, 2011.
44. Murray, I.; Salakhutdinov, R. Notes on the KL-Divergence between a Markov Chain and Its Equilibrium Distribution; 2008.

Available online: http://www.cs.toronto.edu/~rsalakhu/papers/mckl.pdf (accessed on 12 June 2020).
45. Franceschi, L.; Donini, M.; Frasconi, P.; Pontil, M. Forward and reverse gradient-based hyperparameter optimization. In Proceed-

ings of the 34th International Conference on Machine Learning, Sydney, Australia, 22–31 July 2017; pp. 1165–1173.
46. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Granada, Spain, 2019;
pp. 8024–8035.

47. Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286.
[CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.121.260601
http://dx.doi.org/10.1016/j.neunet.2018.10.002
http://www.cs.toronto.edu/~rsalakhu/papers/mckl.pdf
http://dx.doi.org/10.1109/5.18626

Entropy 2021, 23, 123 19 of 19

48. Zarchan, P.; Musoff, H. Fundamentals of Kalman filtering: A Practical Approach; American Institute of Aeronautics and Astronautics,
Inc.: Washington, DC, USA, 2013.

49. Gneiting, T.; Raftery, A.E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 2007, 102, 359–378.
[CrossRef]

50. Keeling, C.D. Atmospheric Carbon Dioxide Record from Mauna Loa; Scripps Institution of Oceanography, The University of California:
La Jolla, CA, USA, 2005.

51. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
52. LeCun, Y.; Cortes, C. MNIST handwritten Digit Database. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on

12 May 2020).
53. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv

2017, arXiv:1708.07747.
54. Shi, J.; Sun, S.; Zhu, J. A Spectral Approach to Gradient Estimation for Implicit Distributions. In Proceedings of the International

Conference on Machine Learning, Vienna, Austria, 25–31 July 2018; pp. 4651–4660.
55. Duvenaud, D.; Maclaurin, D.; Adams, R. Early stopping as nonparametric variational inference. In Proceedings of the Artificial

Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 1070–1077.
56. Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS-a Bayesian modelling framework: Concepts, structure, and

extensibility. Stat. Comput. 2000, 10, 325–337. [CrossRef]
57. Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A.

Stan: A probabilistic programming language. J. Stat. Softw. 2017, 76. [CrossRef]
58. Tran, D.; Hoffman, M.W.; Moore, D.; Suter, C.; Vasudevan, S.; Radul, A. Simple, distributed, and accelerated probabilistic

programming. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December
2018; pp. 7609–7620.

59. Bingham, E.; Chen, J.P.; Jankowiak, M.; Obermeyer, F.; Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.; Horsfall, P.; Goodman, N.D.
Pyro: Deep Universal Probabilistic Programming. arXiv 2018, arXiv:1810.09538.

60. West, M.; Harrison, J. Bayesian Forecasting and Dynamic Models; Springer: New York, NY, USA, 2006.

http://dx.doi.org/10.1198/016214506000001437
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1023/A:1008929526011
http://dx.doi.org/10.18637/jss.v076.i01

	Introduction
	Background
	Inference as Optimization
	Inference as Sampling

	A Variationally Inferred Sampling Framework
	The Sampler Q , T(Z|Z0)
	Approximating the Entropy Term
	Particle Approximation (VIS-P)
	MC Approximation (VIS-MC)
	Gaussian Approximation (VIS-G)
	Fokker–Planck Approximation (VIS-FP)

	Back-Propagating through the Sampler

	Analysis of Vis
	Consistency
	Refinement of ELBO
	Taylor Expansion
	Two Automatic Differentiation Modes for Refined ELBO Optimization

	Experiments
	Funnel Density
	State-Space Markov Models
	Prediction with an HMM
	Prediction with a DLM

	Variational Autoencoder
	Variational Autoencoder as a Deep Bayes Classifier

	Conclusions
	Fokker-Planck Approximation (Vis-Fp)
	Experiment Details
	State-Space Models
	Initial Experiments
	Prediction Task in a DLM

	Vae
	Model Details
	Hyperparameter Settings

	cVAE
	Model Details
	Hyperparameter Settings

	References

