
O R I G I N A L  R E S E A R C H

Improving Mortality Risk Prediction with Routine 
Clinical Data: A Practical Machine Learning Model 
Based on eICU Patients
Shangping Zhao1, Guanxiu Tang2, Pan Liu1, Qingyong Wang3, Guohui Li1, Zhaoyun Ding1

1Laboratory for Big Data and Decision, National University of Defense Technology, ChangSha, Hunan, People’s Republic of China; 2The Nursing 
Department, The Third Xiangya Hospital of Central South University, ChangSha, Hunan, People’s Republic of China; 3School of Information and 
Computer, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China

Correspondence: Zhaoyun Ding, Laboratory for Big Data and Decision, National University of Defense Technology, No. 109 Deya Road, Kaifu 
District, ChangSha, Hunan, 410003, People’s Republic of China, Tel +86 17607310865, Fax +86 731 88618837, Email dingzhaoyun1983@163.com 

Purpose: Mortality risk prediction helps clinicians make better decisions in patient healthcare. However, existing severity scoring 
systems or algorithms used in intensive care units (ICUs) often rely on laborious manual collection of complex variables and lack 
sufficient validation in diverse clinical environments, thus limiting their practical applicability. This study aims to evaluate the 
performance of machine learning models that utilize routinely collected clinical data for short-term mortality risk prediction.
Patients and Methods: Using the eICU Collaborative Research Database, we identified a cohort of 12,393 ICU patients, who were 
randomly divided into a training group and a validation group at a ratio of 9:1. The models utilized routine variables obtained from 
regular medical workflows, including age, gender, physiological measurements, and usage of vasoactive medications within a 24-hour 
period prior to patient discharge. Four different machine learning algorithms, namely logistic regression, random forest, extreme 
gradient boosting (XGboost), and artificial neural network were employed to develop the mortality risk prediction model. We 
compared the discrimination and calibration performance of these models in assessing mortality risk within 1-week time window.
Results: Among the tested models, the XGBoost algorithm demonstrated the highest performance, with an area under the receiver 
operating characteristic curve (AUROC) of 0.9702, an area under precision and recall curves (AUPRC) of 0.8517, and a favorable 
Brier score of 0.0259 for 24-hour mortality risk prediction. Although the model’s performance decreased when considering larger time 
windows, it still achieved a comparable AUROC of 0.9184 and AUPRC of 0.5519 for 3-day mortality risk prediction.
Conclusion: The findings demonstrate the feasibility of developing a highly accurate and well-calibrated model based on the 
XGBoost algorithm for short-term mortality risk prediction with easily accessible and interpretative data. These results enhance 
confidence in the application of the machine learning model to clinical practice.
Keywords: intensive care unit, XGBoost, routinely collected data, short-term mortality risk

Plain Language Summary
Mortality risk prediction helps clinicians make better decisions in patient healthcare. Machine learning methods are flexible algorithms 
that offer potential advantages over conventional scoring systems and demonstrate promising performance in medical data analysis. In 
this study, we developed a highly accurate and well-calibrated short-term mortality risk prediction model based on XGBoost. The 
model utilized routine clinical data collected within a 24-hour window prior to patient discharge. This timeframe allowed us to capture 
physiological data that accurately reflected the differences in health status between the dead and the surviving patients. Furthermore, 
the model was applied in short-term mortality risk prediction at different time points during a patient’s hospital stay, which enhances 
its reliability in assessing dynamic mortality risk for patients at any given time. With its excellent prediction performance across 
various time windows and easy availability of features, our model has the potential to accurately identify high-risk patients at an earlier 
stage. It can be efficiently used even in low-resource healthcare environments, thereby assisting healthcare professionals in making 
better therapeutic decisions, optimizing resource allocation, and addressing other challenges in patient healthcare.
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Introduction
Reliable mortality predictions are essential for assessing the severity of illness and determining the effectiveness of new 
interventions for intensive care unit (ICU) patients, which may help to promote the quality of care and clinical 
outcomes.1 For the past decades, significant efforts have been invested in predicting the risk of death for ICU patients, 
and several severity scoring systems have been developed. Some widely documented tools for mortality risk prediction 
include the Acute Physiology and Chronic Health Evaluation (APACHE), the Mortality Probability Model (MPM), and 
the Simplified Acute Physiology Score (SAPS).2,3 However, studies indicate that only 12% of ICUs actually use these 
severity scoring systems.4 This low adoption rate may mainly be attributed to two main factors. At first, the deployment 
of these mortality risk assessment tools requires clinicians to engage in the labor-consuming collection of patient data 
that is not captured in routine workflows. For instance, the well-known APACHE model heavily relies on manual 
comprehensive evaluations of a patient’s chronic health status, which may increase the workload on clinicians. Secondly, 
these prediction models seem to show rapid deteriorates in performance over time. In a study by Kramer, the SAPS II 
was reported to be out of calibration by 2005.5 Some subsequent research has also highlighted the calibration issues with 
APACHE and SAPS.6,7 Additionally, the diverse patient cohorts and variations in medical treatments have been 
associated with an overestimation of mortality rates.

The limitations of existing scoring systems have led to the emergence of novel machine learning (ML) algorithms for 
mortality prediction. It is inspiring that ML algorithms can be continuously trained using newly obtained data in clinical 
settings, allowing for updates and recalibration over time. This dynamic nature improves the accuracy of the model as 
populations and treatments evolve. Over the past few decades, researchers have demonstrated that ML techniques 
outperform traditional prediction methods in predicting outcomes such as mortality, complications, and length of 
stay.8–12 In a study by Delehanty,8 automated risk adjustment algorithms based on extreme gradient boosting 
(XGBoost) trees were developed for adult ICU patients, achieving an impressive area under the receiver-operator 
curve (AUROC) 0f 0.94. However, this model heavily relies on manual diagnoses made by clinicians, which may not 
be available early in hospitalization, limiting its applicability in hospitals that do not use the All Patients Refined 
Diagnosis Related Groups code. Recent advancements have focused on using more accessible features in ML models for 
mortality prediction.13–15 For instance, the XGBoost algorithm achieved an excellent AUROC of 0.97 in neonatal 
mortality prediction using routinely collected data in 2021.14 Another study by Alghatani et al15 compared various 
ML algorithms in mortality prediction for adult ICU patients using only baseline demographic and vital sign features. 
The Random Forest (RF) model demonstrated the highest accuracy with an accuracy of 0.8861.

Though the promising results highlight the use of routinely collected clinical data and state-of-The-art ML algorithms 
in mortality risk prediction, there are still several limitations that need to be addressed. Firstly, most models in the 
literature have primarily focused on predicting mortality at the time of admission, typically based on data collected 
within 24 hours pre or post-ICU admission.16–18 While this approach is valuable for the early detection of mortality risk, 
it lacks flexibility and fails to consider how patients respond to treatments after admission. This limitation can potentially 
reduce the accuracy of predictions when used at later time points. It would be beneficial to develop models that can adapt 
and update predictions based on patients’ responses to treatments during their hospital stay. Secondly, many published 
papers19,20 mainly report the discrimination performance of the models, typically evaluated by metrics like the AUROC. 
However, they may neglect the crucial aspect of calibration evaluation, which becomes particularly important when 
applying models to new population groups. In a system review of applications of ML to routinely collected ICU data by 
Shillan et al,21 the researcher noted that only 21(13.6%) papers reported the calibration. In addition, it has also been 
suggested that some studies validate their predictions using random subsets of the development data, which can lead to an 
overestimate of the model’s performance. To ensure a more robust evaluation, it is preferable to validate the model using 
an external dataset, separate from the one used for development. In cases where external validation is not feasible, proper 
procedures such as bootstrapping or cross-validation should be applied to compensate for statistical over-optimism and 
mitigate statistical over-optimism.

The ICU patients are always under intensive monitoring and thus produce multiple physiological data and treatment 
records in regular care workflows, which provide valuable data resources for mortality prediction. Mortality risk 
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assessments integrating the available clinical data and outstanding ML algorithms with rigorous evaluation are potential 
to facilitate the feasibility and confidence of the model in clinical practice. In this study, we aimed to develop machine 
learning models for in-hospital mortality risk prediction models by using routinely collected clinical data, and further 
evaluate the model’ performance in short-term mortality risk prediction.

Materials and Methods
Study Design and Population
This study was conducted as a retrospective cohort study, utilizing data extracted from the eICU- CRD, a large, multi- 
center, and publicly available critical care database.22 Access to this database is freely granted to researchers under the 
data usage agreement established by the review board of PhysioNet. We have obtained permission after the application 
and completion of the Protecting Human Research Participants course and test (37796533). All procedures undertaken in 
this study adhered to the ethical standards set by the responsible committee on human experimentation at The Third 
Xiangya Hospital of Central South University (Number 22296) and with the Helsinki Declaration of 1975, as revised in 
2008. Furthermore, the study design and use of de-identified data exempted the requirement for informed consent from 
the study participants, as determined by the hospital review board. The ethical guidelines outlined in the Helsinki 
Declaration of 1975, revised in 2008, were also strictly followed throughout the study.

The eICU-CRD integrates de-identified clinical data of 139,367 patients who came from more than 200 US hospitals 
between 2014 and 2015. For this study, all inpatients aged 14 years or over were considered. Subjects with documented 
length-of-stay and survival for less than 24h following admission were excluded to ensure sufficient data for analysis. 
Ultimately, a total of 123,929 patients were included in the final analysis. Furthermore, these subjects were randomly 
divided into two groups at a ratio of 9:1, consisting of a training dataset (n=111,536) and a test dataset (n=12,393). The 
prediction model was developed based on the training dataset, and the test dataset was reserved for performance 
measurement. The detailed process of cohort selection is illustrated in Figure 1.

Figure 1 The process of cohort selection.
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Data Extraction and Feature Selection
Actual hospital mortality (labeled as 0 or 1) and predicted hospital mortality based on APACHE score were obtained 
from the database for all patients. The predicted hospital mortality served as an evaluation benchmark since the 
widespread use of APACHE scores in critical care settings. Additionally, administration information, such as hospital 
stay length, ICU stay length, and patient discharge time, was extracted during the data selection process to further 
analyze population characteristics.

As for features, a 7-day window of data was obtained for each patient to facilitate short-term mortality risk 
assessments. For patients whose stays exceeded 7 days in length, the 7 days of data prior to their discharge or death 
time were obtained; otherwise, patients’ data from admission to discharge were obtained. Variables routinely measured in 
medical practice were selected for model development, based on previous literature and consultations with critical care 
physicians.

The feature extraction and selection process proceeded as follows. Firstly, age and gender were extracted and selected 
for prediction as they provide basic information about the patient. Then, all vital signs and several laboratory tests 
screened by clinicians were obtained from the interested time window. These physiological variables were chosen as 
features due to their fundamental importance as indicators of health status, and their universal understanding among 
healthcare professionals. They are continuously collected through automatic or regular manual measurements during 
patient care, allowing for better quantification of health status variability and facilitating mortality risk prediction. To 
capture trends in vital signs and laboratory parameters, we calculated the minimum, maximum, and mean values over the 
24-hour window as inputs to quantify the variability of each physiological variable. By limiting the features to a 24-hour 
window, we ensure that the prediction model considers the patient’s current health status. Furthermore, the usage of 
vasoactive medications (such as epinephrine, noradrenaline, and dopamine) was examined and used as predictors. 
Medication usage was recorded as a binary value, with 1 indicating the presence of a medication record in the infusion 
drug table of the eICU database within the 24-hour window, and 0 indicating its absence. Vasoactive medications were 
chosen as predictors due to their fundamental role in improving patient circulatory function and maintaining homeostasis.

To ensure the accuracy of the prediction, we removed variables with more than 20% missing values. We did not employ 
any statistical methods or ML algorithms for further feature selection to avoid excluding potentially influential factors. The 
feature selection process resulted in a total of 138 features, which were listed in Table S1 (see Additional File 1). To fill in 
missing data and obtain the most realistic patient status possible, we applied the nearest neighbors approach23 to impute 
missing values. For patients without any record of a certain variable, a pre-specified normal value was used for imputation.24

Model Development
The features were derived from a 24-hour window prior to the patient’s discharge or death time and were used for 
training the model. The specific time period was chosen because it is more likely to capture the intrinsic characteristics of 
a patient experiencing deterioration or stabilization. Patients who died typically exhibit highly unstable patterns across 
various features towards the end of their hospital stay.

Before constructing the ML model, numerical variables were normalized to a range of 0 to 1 based on prior 
experience. Four ML models, namely logistic regression (LR), RF, XGBoost, and artificial neural network (ANN), 
were trained using the selected variables for mortality prediction in the training dataset.

1. LR is a widely utilized statistical method in medical data analysis and serves as a fundamental algorithm for ML 
development. We used binary logistic regression to predict the relationship between the outcome and the 
predictors. The LR model employed an L2 penalty with a stopping criterion of 0.0001.

2. RF is a bagging ensemble learning method based on multiple independent decision trees. The classification result 
is determined by the voting of decision trees. It is known to be relatively stable in high-dimensional data analysis 
compared to other ML algorithms.25 In this study, an RF model consisting of 200 trees was constructed, and the 
Gini measure was used as a criterion. There were no restrictions on tree depth, and at least 2 samples were required 
to split an internal node. To address overfitting, bootstrapping was allowed during the training process.
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3. XGBoost26 is an implementation of the gradient-boosted decision trees ensemble algorithm. It consists of 
numerous simple decision trees that subsequent trees based on the errors made by previous trees, thereby reducing 
variance and bias. It is not only robust to over-fitting issues but is quite fast as it utilizes parallel and distributed 
computing. Also, it has been generally considered a better classifier than RF for imbalanced datasets. A model 
with 100 estimators was built using the Python XGBoost library, with a learning rate set at 0.3. The maximum 
depth of the tree was limited to 6.

4. ANN27,28 is a well-known supervised ML algorithm based on the structure of a human neuron. It has been widely 
applied in data mining and has shown promise in risk stratification and early warning of critical complications. In 
this study, a deep neural network (DNN) with 6 hidden layers was constructed, where each hidden layer consisted 
of 256 nodes and a dropout rate of 10% was applied. To handle imbalanced samples, the focal loss function was 
used. The ANN model employed the Adam optimizer with a learning rate of 0.001 and the SeLU activation 
function. The ANN model was built using the Python PyTorch framework and the scikit-learn library.

Model Evaluation
Overall, we used a combination of discrimination and calibration metrics to comprehensively evaluate the performance 
of ML-based models in comparison to the APACHE-IV scores, which served as the reference standard for outcome 
prediction. The predicted mortality based on APACHE-IV scores was obtained from the eICU-CRD database. Given the 
imbalanced nature of the data, where the mortality prevalence for the entire population was 7.9%, AUROC alone may not 
be a reliable evaluation indicator. Therefore, we considered the Precision and Recall (PR) curve. The PR curve is a graph 
that plots precision values on the y-axis against recall values on the x-axis. We calculated the area under the PR curve 
(AUPRC) as it is a sensitive discrimination indicator for imbalanced datasets.29 This allows us to compare the models 
effectively. To assess calibration, traditional methods such as the Hosmer-Lemeshow test may become unreliable when 
dealing with large sample sizes.30,31 Instead, we utilized the Brier score as a quantitative indicator for calibration 
assessment. Brier score measures the mean squared difference between the predicted probabilities and the observed 
outcomes, with lower values indicating better calibration. Additionally, calibration curves were plotted to visually 
represent the calibration performance. The slope of these curves indicates the relationship between the predicted and 
observed outcomes, providing an intuitive understanding of the calibration performance.

Optimal Model Application in Short-Term Mortality Risk Prediction
In order to validate the ML-based models’ performance in short-term mortality risk prediction within one week, the optimal 
model that demonstrated the highest overall performance in in-hospital mortality prediction was further validated. By using 
cohorts of patients with a hospital stay length ranging from 1 day to 7 days. For each validation cohort, we defined specific 
time points based on the patient’s proximity to death or discharge. The last 24-hour window to either event was defined 
as day 1, day 2, and so on until day 7. On each of these time points, we extracted relevant features for mortality prediction, 
resulting in seven distinct mortality prediction tasks: 1-day mortality risk prediction, 2-day mortality risk prediction, and so 
forth up to 7-day mortality risk prediction. Similar to the previous evaluation, we assessed the performance of the model 
using AUROC, AUPRC, and Brier scores for each of the mortality prediction tasks.

Statistical Analysis
To compare the characteristics of patients between the death and survival groups, we utilized appropriate statistical tests 
based on the type and distribution of data. Categorical variables were presented as proportions, while continuous 
variables were reported as mean with standard deviation (SD), or median with interquartile range (IQR). Comparative 
analysis was conducted using Student’s t-tests, chi-squared tests, or the Mann–Whitney U-tests. A two-tailed P value less 
than 0.05 was considered statistically significant. Statistical analyses and ML algorithms were conducted using SPSS 
18.0 and Python version 3.6, along with the scikit-learn version 0.22.1.

International Journal of General Medicine 2023:16                                                                             https://doi.org/10.2147/IJGM.S391423                                                                                                                                                                                                                       

DovePress                                                                                                                       
3155

Dovepress                                                                                                                                                            Zhao et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Results
Baseline Characteristics
A total of 123,929 ICU patients were included in this study. Among them, 9844 patients died during hospitalization, 
while 114,085 survived and were discharged. The overall mortality rate was only 7.9%, indicating that the dataset was 
highly imbalanced. The average age of all patients included in the study was 64 years, and 53.8% of them were men. The 
majority of the subjects were Caucasian individuals, accounting for 76.7% of the sample, The median length of 
hospitalization for these patients was 5 days. The basic characteristics of the dead and surviving patients on admission 
were shown in Table 1. Compared to the survival patients, the dead patients were significantly older, had higher 
APACHE IV sores, and experienced longer stays in both ICU and the hospital (P<0.05). The detailed comparison of 
these characteristics between the two groups were described in Table 1.

Comparison of Models’ Performance
We used the APACHE IV scores model as a benchmark for performance evaluation. As demonstrated in Table 2, the 
APACHE IV scores exhibited an AUROC of 0.8598 in predicting in-hospital mortality in the independent testing set. 
However, the ML models showcased superior performance compared to the APACHE IV scores. Notably, the XGBoost 
model achieved the highest AUROC value(0.9702) and AUPRC value (0.8517). As for calibration, all ML models 
demonstrated good calibration (Figure 2), with the XGBoost model attaining the best Brier score of 0.0259. Overall it 
appears that XGBoost performed exceptionally well in both discrimination and calibration evaluations.

Optimal Model Analysis
The XGBoost model was selected for further application due to its superior performance in terms of AUROC and 
AUPRC. We examined the discrimination and calibration performance of the XGBoost model in predicting mortality risk 
within different time frames, specifically 1 to 7 days. The results are presented in Table 3 and Figure 3. The validation 
cohorts for short-term mortality risk prediction ranged from 4667 to 12,393 samples. When the XGBoost was used for 
mortality prediction within longer periods. The values of AUROC and AUPRC decreased. Even in the 7-day mortality 
risk prediction task, the XGBoost model achieved a respectable AUROC of 0.8406, albeit with a relatively lower 

Table 1 Basic Characteristics for the Survival and Death Groups

Variable Name All Patients Alive Death P value
n=123,929 n=114,085 n=9844

Age (years), mean (SD) 63.5+17.7 62.9+17.7 70.2+15.9 <0.01

Male 66,704(53.8%) 61,423(53.8%) 5281(54.0%) 0.72

APACHE IV scores, mean (SD) 55.2+24.9 52.4+22.1 87.6+31.4 <0.01

Ethnicity (%) <0.01

Asian 1783(1.4%) 1626(1.4%) 157(1.6%)

Hispanic 4853(3.9%) 4475(3.9%) 378(3.8%)

Caucasian 95,102(76.7%) 87,399(76.6%) 7703(78.3%)

American 15,264(12.3%) 14,152(12.4%) 1113(11.2%)

Other 5137(5.7%) 6434(5.7%) 493(5.0%)

Length of stay in ICU (days), median(IQR) 1.9 (1.1–3.4) 1.8 (1.0–3.2) 3.1 (1.5–6.2) <0.01

Length of stay in hospital (days), median (IQR) 5.3 (3.1–9.1) 5.3 (1.0–9.0) 5.2 (2.6–10.1) <0.01

Abbreviations: SD, standard deviation; IQR, interquartile range (25–75%).
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AUPRC of 0.3533. Regarding calibration, the Briers scores ranged from 0.0295 to 0.0592, which were within an 
acceptable range.

Discussion
Overall, we aimed to assess the feasibility of using ML algorithms to predict mortality risk among ICU patients, utilizing 
routinely collected physical and medication data in clinical care. The XGBoost algorithm was demonstrated outstanding 
performance in identifying high-risk patients. The model’s predictive capability validated on an independent test dataset 
and compared with the traditional severity scoring system, APACHE IV scores, to enhance reliability. Further, we 
validate the performance of the XGBoost model in short-term mortality risk prediction.

In our study, the ML-based prediction models outperformed APACHE IV scores in predicting in-hospital mortality 
for ICU patients, with the XGBoost algorithm yielding better performance compared to other methods. XGBoost is an 
ensemble method based on decision trees, known for its excellent performance in various prediction tasks. Compared to 
RF, the XGBoost algorithm assigns higher learning weights to the samples with lower accuracy in prior rounds of 
decision tree training, thereby improving overall algorithm accuracy.26 The results indicated that the XGBoost algorithm 
exhibited exceptional performance in both AUROC and AUPRC. It achieved an impressive AUROC score of 0.9702 in 
the 24-hour mortality risk prediction task, indicating its ability to effectively classify high-risk and low-risk patients. 
However, since AUROC may not fully reflect model performance on imbalanced data32,33, AUPRC was also employed 
as an evaluation metric. The XGBoost algorithm yielded an AUPRC of 0.8517, further bolstering the credibility and 

Table 2 Model Performance in the Independent Testing Dataset for 
Different Machine Learning Algorithms

Algorithms AUROC AUPRC Brier Score

APACHE IV scores 0.8598 0.4341 0.0624

Logistic Regression 0.9357 0.7775 0.0306

Random Forest 0.9559 0.8172 0.0285

Artificial Neural Network 0.9620 0.8256 0.0501

Extreme Gradient Boosting 0.9702 0.8517 0.0259

Abbreviations: AUROC, area under the receiver-operator curve; AUPRC, area under 
the Precision and Recall curve.

Figure 2 Calibration curves of the machine learning models in the test dataset. X-axis indicates the predicted mean mortality risk, Y-axis indicates the actual mean mortality 
risk, the slope indicates the relation between the predicted and observed outcomes.
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robustness of the model. A higher AUPRC indicates that the model achieved better precision-recall trade-off, addressing 
the limitations associated with imbalanced data.

The remarkable prediction capabilities of the XGBoost model can be attributed to the well-defined features used in 
this study. These features were extracted from a specific 24-hour time window prior to patient death or discharge, 
capturing crucial physiological data reflecting the differences in health status between the dead and surviving patients. 
Generally, within this time period, patients either recover from a severe illness or unfortunately died after this time 
moment. Therefore, the physiological data obtained during this timeframe accurately reflects the disparities in health 
status between the dead and the survival patients. This enables the classifiers to effectively capture variations in patients 
who will be died, leading to more precise predictions. Moreover, we incorporated multi-dimensional features, including 
fundamental indicators of health status that are easily understood by healthcare professionals. Our model not only 
included objectively measured variables during critical care but also considered pharmacological therapy as predictors. 
This integration reflects the direct influence of human intelligence34 and enhances the richness of features, consequently 
increasing the accuracy and reliability of the prediction model.35

All proposed ML models in our study achieved favorable results (AUROC=0.9357–0.9702) when compared to 
published in-hospital mortality risk prediction tools.36 This highlights the potential and promise of ML techniques in 

Figure 3 Precision-Recall curve of the XGBoost model in different tasks. Lines with different color indicate mortality risk prediction task within different time periods. Task 
with bigger area under Precision-Recall curves shows better discrimination performance.

Table 3 The XGBoost Model Performance in Different Short-Term Mortality 
Risk Prediction Tasks

Prediction Tasks AUROC AUPRC Brier Score

1-day mortality prediction (n=12,393) 0.9702 0.8517 0.0259

2-day mortality prediction (n=10,907) 0.9310 0.6437 0.0427

3-day mortality prediction (n=9403) 0.9148 0.5519 0.0477

4-day mortality prediction (n=7935) 0.8971 0.4835 0.0517

5-day mortality prediction (n=6697) 0.8627 0.3720 0.0592

6-day mortality prediction (n=5148) 0.8544 0.3731 0.0647

7-day mortality prediction (n=4667) 0.8406 0.3533 0.0668

Abbreviations: AUROC, area under the receiver-operator curve; AUPRC, area under the Precision 
and Recall curve.
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accurately predicting mortality risk. Furthermore, the data elements employed in our model can be seamlessly accessed 
through the hospital information system without requiring additional data entry by clinicians. This ensures that our 
predictions are up-to-date and less susceptible to missing data. It is worth noting that the cost of manual data collection 
poses a significant impediment to the clinical application of predictive models.4 However, all vital signs, laboratory tests, 
and infusion drug information used in our study were collected automatically or through regular manual measurements 
during routine patient care workflows. Given the widespread adoption of hospital information systems and the accessi-
bility of ML algorithms, our models can be broadly and efficiently used even in low-resource healthcare environments.

To our knowledge, this research represents one of the limited efforts to apply a mortality prediction model from 
a clinician’s perspective. A mortality risk model that holds clinical significance is capable of providing dynamic and 
reliable predictions throughout a patient’s hospital stay. We employed the XGBoost model for predicting mortality risks 
within a 7-day time frame. This served as an assessment of the model’s performance in short-term mortality prediction. 
As shown in Table 3, the proposed XBGoost model exhibited superior AUROC values compared to severity scoring 
systems currently in use and most ML models reported in previous studies. Although the AUROC and AUPRC scores 
were least optimal when predicting 7-day mortality, they progressively increased over the course of the hospital stay. This 
suggests that in our model, using the most up-to-date data for predictions consistently yields more accurate forecasts, 
thereby enhancing clinicians’ trust in the model. Baker et al also reported a similar trend in AUROC, where they 
developed hybrid neural network models to predict mortality risk for the 3, 7, and 14-day windows.37 Our XGBoost 
model achieved comparable AUROC(0.9148) and AUPRC(0.5519) values in 3-day mortality risk prediction when 
compared to the model presented by Baker. However, it is worth noting that few researchers have reported AUPRC 
scores and calibration for their models, making comprehensive comparisons challenging. Considering the XGBoost 
model’s excellent discrimination performance and reasonable calibration, we can conclude that our model possesses 
stable and reliable capabilities in short-term mortality prediction within a 3-day window. These findings instill confidence 
in the practical application of our model in clinical settings, as it has the potential to accurately identify high-risk patients 
at an earlier stage. Consequently, health professionals can make better decisions regarding treatment, resource allocation, 
and other aspects of patient care.15

Limitations
Admittedly, there are some limitations that should be addressed. At first, although we used the multi-center eICU 
database for training and validation of the model, external validation focused on Asians and Hispanics is necessary 
before applying the model to these populations, as the proportions of these ethnic groups in the eICU database are small. 
Additionally, the XGBoost algorithm was applied in a retrospective cohort to predict short-term mortality risk within 7 
days and showed promising AUROC performance. However, its ability to predict mortality risk over a longer period of 
time remains unclear. In our analysis, 37% of patients who met our selection criteria in the eICU database stayed in the 
hospital for more than 7 days, indicating that the performance of the proposed model in predicting mortality risk beyond 
7 days has not been verified. Moreover, the relatively poor AUPRC in the 7-day mortality risk prediction task should not 
be overlooked. Therefore, the clinical significance of the model still requires further examination through well-designed 
prospective studies. In future work, we plan to deploy the model on a small scale in clinical practice to assess its 
effectiveness in real-world scenarios.

Conclusion
In conclusion, highly accurate and well-calibrated mortality risk prediction based on the XGboost model with routinely 
recorded and interpretative features derived from a 24-hour window prior to patient discharge is feasible and has the 
potential to augment the clinician’s decision-making process. The excellent performance of the XGBoost model in short- 
term mortality risk prediction tasks strengthens its reliability for dynamic mortality risk assessments in patient care.
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