
REVIEW

Adenoviral vector-based strategies against infectious disease and cancer

Chao Zhang and Dongming Zhou

Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai,
China

ARTICLE HISTORY
Received 30 December 2015
Revised 25 February 2016
Accepted 10 March 2016

ABSTRACT
Adenoviral vectors are widely employed against infectious diseases or cancers, as they can elicit specific
antibody responses and T cell responses when they are armed with foreign genes as vaccine carriers, and
induce apoptosis of the cancer cells when they are genetically modified for cancer therapy. In this review,
we summarize the biological characteristics of adenovirus (Ad) and the latest development of Ad vector-
based strategies for the prevention and control of emerging infectious diseases or cancers. Strategies to
circumvent the pre-existing neutralizing antibodies which dampen the immunogenicity of Ad-based
vaccines are also discussed.
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Introduction

Ad is non-enveloped, double stranded DNA virus with icosahedral
capsids. It was first discovered by Rowe and his colleagues when
they tried to culture the adenoid tissue in the laboratory in 1953. Ad
infection is usually mild to human beings, but sometimes could be
life threatening, especially to the immunocompromised individuals.
In the 1970s, the United States army developed live Ad vaccines to
prevent acute respiratory disease caused by AdHu4 and AdHu7.1 In
1991, Rosenfeld et al developed the first in vivo gene transfer using
an Ad vector, and demonstrated that human a 1-antitrypsin gene
delivered by the E1-E3-deleted Ad could be detected in the lung of a
cotton rat.2 In 1993, the first human gene therapy study based on
Ads was performed, a 23-year-old man with cystic fibrosis homozy-
gous received the first in vivo gene therapy with administration of an
E1-E3-deleted rAd vector expressing the normal human CFTR, and
the subsequent clinical studies were then initiated. In recent two dec-
ades, Ads have been widely applied as vaccine carriers since they are
capable of eliciting T and B cell responses. Furthermore, Ads can be
genetically modified to induce the apoptosis of the cancer cells,
which are known as the oncolytic Ads.3,4 Ads are not only generally
safe and can replicate in almost all the living cells, but also can be
expanded easily inHEK293 cells and purified byCsCl gradient ultra-
centrifuge, and administered through oral, intranasal or intramuscu-
lar routes without adjuvants. Here, we review the Ads’ potential in
vaccine development against infectious pathogens or in cancer treat-
ment, and address the latest advances in the field.

Biological characterization of Ad

Classification of the Ad

Ads are isolated from different mammalian species, such as human
being, bovine and simian, among which the human Ads and

chimpanzeeAds arewidely used in the laboratory research or clinical
study. Human Ads include more than 50 serotypes classified into
subtype A to G, and chimpanzee Ads have more than 6 serotypes.5-7

Human Ads are distributed widespreadly in the nature and most
people have been infected, thus high neutralizing antibody titers
were detected among the population.8 Human subtype C Ads are
the most common Ads which usually infect the children and cause
upper respiratory tract infections or urinary tract infections. Human
subtype BAds sometimes cause severe eye or urinary tract infections.
Some other serotypes, such as AdHu4 from subtype E, cause acute
respiratory diseases.9 However, most of the Ad infections are mild,
which promotes Ad vectors into a new era as vaccine carriers.

Genome and structure of the Ad

Ads areDNAviruswith icosahedral capsids of approximately 90 nm
in diameter. Several studies have illustrated the structure of the Ads
by cryo-electronmicroscopy.10-12 The genomicDNAofAds is about
26–45 kb, with two inverted terminal repeats of 100–140 bp flanking
at both ends. The genes that express during the life cycle of Ads are
generally divided into two types: the early genes and the late genes.
The early genes include E1A, E1B, E2, E3 and E4, and they are
mainly responsible for facilitating the replication of Ads by changing
the expression levels of related host genes. The early genes can be
further classified into two types: the immediate early genes (E1A)
and the delayed early genes (E1B, E2, E3 and E4). E1A promotes the
expression of the delayed early genes. The E1B protein generally
suppresses the apoptosis of the host cells by binding to p53, Bak and
Bax proteins.13 The late genes are mainly responsible for the lysis of
the host cells, assembly and release of the virions.

Ad virions mainly comprise two types of proteins: the capsid
proteins and the core proteins. The core proteins mainly
include proteins V, VII, X, and they mainly function as the
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DNA-associated proteins. The V protein mainly contacts with
the nucleoli of the host cells and are involved in the viral assem-
bly process.14,15 The VII protein plays a key role in the manipu-
lation of DNA, such as the DNA binding, the initiation of DNA
replication and the viral genome’s protection, et al.16-18 The X
protein is responsible for the viral chromosome condensation.19

The capsid proteins comprise Hexon, Penton, fiber, IIIa, VIII
and IX. There’re 240 trimers of hexons on the surface of the Ad
virions, and the hexons are the major structural protein on the
capsids.20 On the hexons, there’re several hypervariable regions
which are the major neutralization sites for the Ads, and the
hypervariable regions can be replaced with other foreign anti-
gens as potential vaccine carriers.21-23 There have 12 pentamers
of pentons on the top of the 12 icosahedral vertices, and they
serve as the receptors for Ad internalization into the host
cells,24 and each vertex has 12 trimers of fibers protruding from
the capsid surface which are mainly responsible for the interac-
tion with the cellular receptors to initiate the viral entry.10,25

The IIIa proteins are on the inner capsid surface, and are
mainly responsible for the correct viral assembly, stabilization
of the vertex region and the assembly of the packaged
genome.11,26 The VI proteins are inside the capsids, linking the
core to the icosahedral shell, and are critical lytic factors of Ads
during the endosome disruption.27 The VIII proteins provide
bonds between the peripentonal hexons and are involved in the
stability of the capsids.28 The IX proteins function to dampen
the innate immune response, and affect the viral tropism and
stability of the capsids.12,29,30

Many Ads can be engineered for laboratory or clinical use. The
recombinant Ads can be replication-incompetent or replication-
competent. E1 gene is essential for the replication of the Ads, total
or partial E1-deletion results that the vector can infect most of the
living cells but cannot be expanded as it being replication-incompe-
tent in normal cells. However, E1-deleted Ad can be propagated on
dedicated helper cells, specialized cells that provide the E1 func-
tions in trans, such as HEK 293 and PER.C6,31 in which E1-deleted
Ad is replication-competent.

Cellular receptors of the Ad

The entry of the Ads into host cells is initiated by the binding of
fiber knob to the cell receptors. The CAR functions as the receptor
for the fiber protein in subtype A and C-F Ads,32-34 but in some
cells, such as cancer cells and mature skeletal muscle cells, CAR is
expressed in low levels.35-37 In CAR-deficient lymphocytes, subtype
C Ads can cause latent infection,38 and the mutated CAR does not
affect the tropism when Ads are administered systematically.39

These results suggest that there might be other receptors for Ads
except CAR. In fact, many other receptors for the entry of Ad have
been found, for examples, CD46 or DSG2 for subtype B Ads,40,41

and sialic acid and integrins, et al.42-45

After the binding of the fiber knob to receptors, the virion inter-
nalization starts through endocytosis. Generally, the endocytosis is
initiated by the binding of penton bases to the integrins,43,46,47 but
some reports revealed that the uptake of Ad virions could use lipid
rafts or caveolae as entry route.48 A review article suggested that
when the Ad virions were coated with charged polymers, the entry
routinemight be changed accordingly.49

Ad vector-based vaccine candidates for infectious diseases

Ad vectors are one of the most effective carriers for delivery of
foreign antigens into the host cells. Compared with other viral
vectors such as lentivirus, retrovirus and adeno-associated
virus, etc, Ads are highly immunogenic and can induce both
robust innate and adaptive immune responses in mammalian
hosts. Ads have a large genome size, making the manipulation
of the genetic DNA much more convenient. Unlike lentivirus
or retrovirus, Ads do not integrate the viral genomic DNA into
the hosts’ genome, which reduces the risk of insertion muta-
genesis. Adeno-associated virus is less pathogenic than Ads,
but it is not yet suitable for mass production.50 All above fea-
tures make Ad a good vaccine carrier for the infectious diseases.
Table 1 and Table 2 show a list of vaccine candidates based on
Ad vectors51-88 against some certain infectious diseases.

In the early stage, some Ads were modified as replicating-
competent vectors with only E3 deletion which is not indispen-
sible for the replication.89 Nowadays, most of Ad vectors are
replication-deficient with the deletion of E1 or both E1 and E3.
E1-deficient vectors can only be rescued and expanded in the
E1 trans-compensating cell lines. E3 deletion increases the
packaging capacity of the Ad vectors, such E1-E3-deleted Ads
can be incorporated with up to 7–8 kb foreign genes.90 E4 can
also be deleted, but the E4-deleted vectors only propagate in
the E4-compensating cell lines.91 The fully gutted Ad vectors
were developed with containing the replication origins and
packaging signals while most of the viral coding sequences
were deleted. The fully gutted Ads can only be amplified with
the appearance of helper virus.90 Compared with the traditional
Ad vectors, the fully gutted Ads have less toxicity caused by T
cell responses, and the transgene products can be stably
expressed.92,93

Different Ad vectors can elicit different immune responses in
various laboratory animals or species.94 A study of SIV Gag-

Table 1. List of rAd vaccine candidates in clinical trials.

Pathogens Ad vectors Antigens Study models Clinical trials References

HIV/SIV AdHu5, AdHu26,AdHu35 Gag,Pol, Env,Nef,GRIN Mice, nonhuman primates,
humans

Yes 51-58

Influenza virus AdHu4, AdHu5, HA Mice, humans Yes 59-62

Ebola virus Chimpanzee Ad3, AdHu5, AdHu26,
AdHu35

GP Mice, guinea pigs, nonhuman
primates, humans

Yes 72-78

Mycobactrium tuberculosis AdHu5,AdHu35 CFP10, ESAT6, Ag85A, Ag85B,
TB10.4

Mice, nonhuman primates,
humans

Yes 79-82

Plasmodium falciparum AdHu5, AdHu35, Chimapanzee Ad63 AMA1,MSP1,CSP Mice, nonhuman primates,
humans

Yes 83-88
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specific CD8(C) T cell responses in mice vaccinated with
AdHu5, AdHu26 and AdHu35, respectively demonstrated that
AdHu5 was more immunogenic than AdHu26 and AdHu35,
but AdHu26 and AdHu35 generated long-lived memory T cells,
whereas AdHu5 elicited more terminally differentiated pheno-
types of T cells.95 In another study, AdHu35, AdHu26 and
AdHu48 were found to substantially produce higher levels of
IFN-g, IL-6 and 10-kDa gamma interferon-induced protein than
AdHu5 in rhesus monkeys.96 Based on their different immuno-
genicity profiles, certain serotype of Ads can be selected alterna-
tively for specific researches. Ad vectors can be administered by
injection and oral immunization, both of which elicit well
immune responses, while oral administration can elicit mucosa
immune response compared to injection, and greatly circumvent
the pre-existing anti-vector immunity.97,98

HIV vaccine based on Ad vector

Safe and efficient HIV vaccine is urgently needed since HIV
still remains a severe public health threat. Several strategies
have been developed for HIV vaccine design, of which Ad vec-
tors are widely tested.99 One of the most well-known clinical
trials is AdHu5 based HIV vaccine which was developed by
Merck, Inc.51 In the clinical trial, the replication-incompetent
AdHu5 vectors encoding gag, pol and nef genes were adminis-
tered to 1494 participants at a dose of 3£1010 vp, while placebo
administered to 1506 participants. This vaccine induced CD8C

T cell responses in homosexual men, but failed to prevent the
HIV infection or reduce the early viral load. Further research
revealed that the vaccine appeared to increase the risk of HIV
infections in the AdHu5 serotype positive individuals.56 To
explain the phenomenon, several studies have been performed
and suggested that one possible mechanism was that the
immune complexes of AdHu5 and anti-AdHu5 antibodies
could activate the dendritic cells and CD4C T cells100 which
might serve as the targets for HIV infection.101

After the failure of theMerck HIV vaccine trial, other improved
strategies have been tested, such as the regimen of DNA prime
with AdHu5 boost. As reported by Churchyard GJ and Koup RA,
et al,53,102 a DNA plasmid encoding multiple HIV genes frommul-
tiple clades for priming at 0,1 and 2 month respectively at a dose of
4 mg, and AdHu5 expressing multiple HIV genes for boosting at
6month induced polyfunctional CD4C and CD8C T cells as well as
the anti-envelop binding antibodies, which revealed the heterolo-
gous prime-boost regimen was a potent immunization strategy for
inducing both antibody and T cell responses. However, similar
strategy used in another clinical trial with the regimen of priming
4mgDNA encodingmultipleHIV genes at week 0, 4 and 8, respec-
tively, and boosting with 1010 pu rAdHu5 at week 24 reduced nei-
ther the rate of HIV-1 acquisition nor the viral-load set points in
the participants.103

As the AdHu5 based vaccine carriers are not suitable for HIV
prevention, other serotype Ad based vaccines, such as AdHu26,
AdHu35 or chimpanzee Ad vectors have been developed.55,104,105

In a study of AdHu26 expressing HIV-1 envelop as a new vaccine
candidate, both the AdHu26-serotype positive and negative partici-
pants received a single intramuscular immunization with 5£1010

vp rAdHu26.106 The result revealed that rAdHu26 elicited both sys-
temic and mucosal envelop-specific humoral and cellular immune
responses, but interestingly the individuals with pre-existing
AdHu26-specific neutralizing antibodies had comparable immune
responses to the AdHu26-serotype negative ones. HIV vaccines
based on the rAdHu35 expressing the HIV-1 envelop antigen have
been studied.107 In this phase 1b study, 192 healthy, HIV-unin-
fected participants were recruited and divided into one of following
groups: rAdHu35/rAdHu5, DNA/rAdHu5, and DNA/rAdHu35
in AdHu5-seronegative persons, and DNA/rAdHu35 in AdHu5-
seropositive persons, and a placebo group. The participants
received three doses of 4 mg DNA or just one dose of 1010 pu rAd
at the first 2 month, then were boosted with 1010 pu rAd at month
6. 4 weeks post boost, the immune responses were detected. The
results indicated that all regimens were generally well tolerated and
similarly immunogenic, and elicit cross-clade antibody responses
including envelop V1/V2-specific IgG responses.

Presently, more novel Ad vectors are being discovered and
developed for the HIV vaccine design, but none of them is
ready for the market, thus more improvement is needed for the
Ad vector-based HIV vaccine.

Influenza vaccine based on Ad vector

Ad vectors have been applied in the development of influenza
vaccine. In most of Ad-based influenza vaccines, the influenza
protein, such as HA, NP or M2 is expressed by the Ad vectors
to induce neutralizing antibodies and T cell responses in the
host. For example, HA protein of PR8 strain (H1N1) expressed
by Ads can elicit HA-specific antibodies and cellular responses
against the PR8 virus.108 Besides Ad vectored vaccine against
particular strain of influenza virus, the universal influenza vac-
cines based on Ads have been explored. In the multivalent influ-
enza vaccines based on the replication-incompetent AdHu5,
HAs from different subtypes and NP from one subtype were
expressed on the rAds. The mice were immunized intramuscu-
larly with 1010 PFU of rAds twice at 4-week interval. 4 weeks
post the boost, high levels of humoral and cellular immune
responses were well induced and the mice were protected from
lethal challenge with H5, H7 and H9 avian influenza virus sub-
types.109 In another multivalent influenza vaccine based on
AdHu4 and AdHu5,110 HA genes from the H1, H3, H5 subtypes
of influenza virus were expressed by the Ad vectors, and then
immunized mice by rAdHu4-prime/rAdHu5-boost regimen at a
doses of ranging from 107 to 1010 vp with a 4 week interval. The

Table 2. List of rAd vaccine candidates in pre-clinical trials.

Pathogens Ad vectors Antigens Study models Clinical trials References

Rabies virus AdHu5, Canine Ad type 2,AdC68 GP Mice, fox, dog, sheep, nonhuman primates No 63-66

Dengue virus AdHu5 E, prM Mice, nonhuman primates No 67-69

MERS AdHu5, AdHu41 S Mice No 70,71
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vaccination results revealed that the highest dose vaccine groups
were 100% protected from the heterologous lethal challenge of
different subtypes of influenza virus, indicating that Ad-based
multivalent influenza vaccines had great potential in the preven-
tion and control of the influenza virus.

Ad-based influenza vaccines have been tested in clinical tri-
als. A non-replicating AdHu5 vector expressing HA from avian
influenza and a TLR3 ligand were tested in humans.60 Most of
the participants received only one dose of Ads by capsule, with
titers ranging from 108 to 1010 IU, but some were boosted with
another dose of 109 IU Ad at 4 weeks post prime. The vaccina-
tion results revealed that the antigen specific cytotoxic and
IFN-g responses were induced in a dose dependent manner
and cytotoxic responses increased after boost, which demon-
strated that Ad-based vaccine administered orally could induce
antigen specific immune responses and was safe as a vaccine
candidate.60 AdHu4 based avian influenza vaccine was devel-
oped and tested in a clinical trial. AdHu4 expressing HA of
H5N1 was orally administered 3 times at a dose of 107 to 1010

vp within 56 days, and then boosted with 90 mg inactivated
H5N1 viruses. The results demonstrated that cellular immune
responses were well induced and oral administration of Ad
might enhance the efficacy of poorly immunogenic vaccines
such as H5N1, but the limitation of this study was that the HI
titers were hardly measured.61 By orally administered replica-
tion-competent AdHu4 vaccine, another improved strategy
was reported.111 In the study, the individuals were primed with
AdHu4-H5-Vtn three times at dose of 107 to 1010 vp in
56 days, and then boosted with the 90 mg unadjuvanted
licensed inactivated H5N1 subunit vaccine at 3.5 to 12 months.
The new regimen induced high HI titers compared with
unprimed individuals, which compensated for the disadvan-
tages in the previous vaccination routine.

With the development of RNAi technology, Ad based RNAi
strategies have been applied in prevention and control of influ-
enza infection. For example, a novel chimpanzee Ad termed as
AdC68 was used as the microRNAs expression vector and
tested in mice. AdC68-expressing amiRNAs targeting M1, M2
or NP genes of influenza virus could efficiently suppress the
viral replication and confer complete protection from the lethal
challenge of H9N2 and H5N1.112

Ebola vaccine based on Ad vector

Ebola virus was firstly discovered in 1976 with the outbreaks in
Democratic Republic of Congo and Sudan,113,114 but the out-
break in Africa in 2013 made it a public concern again.115 There
have been several strategies for the Ebola vaccine development,
of which the Ad vectors are selected as a priority.

The NIH vaccine research center firstly developed a vaccine
based on heterologous prime-boost regimen in 2000. In the
research, the primates were firstly immunized with a DNA vac-
cine three times at 0, 4, 8 weeks at a dose of 4 mg, and then
boosted with 1010 PFU AdHu5 which expressed GP protein of
Ebola virus 20 weeks post prime. The results showed high anti-
body titers and CD4CT cell responses were induced in vacci-
nated animals, and the vaccinated groups had a higher survival
rates than the control groups after challenged with Ebola virus.116

Since this experiment took more than six months to complete

the immunization flow chart, researchers developed an acceler-
ated immunization method for the vaccination.117 In the acceler-
ated experiments, the animals were given AdHu5 expressing GP
and NP of Ebola virus twice at doses of 2£1012 vp with a 9-
week interval. The vaccinated animals were challenged with
lethal Ebola virus and the protection was highly effective since
the Ebola-specific CD8C T cell and antibody responses were
well induced. In the subsequent study, the animals were only
primed with rAd–GP/NP and challenged 28 days later, but they
still had high survival rates with either low or high doses of chal-
lenged virus. As the AdHu5-based Ebola vaccine showed a good
prospect in the non-human primates, the first clinical trial based
on AdHu5 was performed,72 with a recombinant vaccine encod-
ing the envelope GP from the Zaire and Sudan Ebola virus tested
in a randomized, placebo-controlled, double-blinded, phase I
human study. Thirty-one healthy adults received a single dose of
the rAdHu5 at 2 £ 109 vp (n D 12), or 2 £ 1010 vp (n D 11)
or placebo (n D 8). The results indicated the antibody responses
to the two GPs in subjects were not well balanced. In the low
dose group, antibody responses to Zaire GP were 50%, and 58%
to Sudan GP. However, the antibody responses in the high dose
group were 55% and 100%, respectively. In this study, the pre-
existing neutralizing antibodies to AdHu5 was also noted, but it
didn’t appear to affect the T cell response to Ebola GP since
32% to 82% subjects responded with more CD4C than CD8C T
cells.

Recently, Ebola vaccines based on the other serotypes are being
developed, one of which is the chimpanzee Ad serotype 3 (cAd3).
In a clinical trial of cAd3 based Ebola vaccine, 20 volunteers were
recruited and divided into 2 groups. The volunteers in each group
received the rAds expressing the GP protein from both Zaire and
Sudan Ebola virus. One group received high titers of Ads with 1011

vp while another received 1010 vp, and two individuals in the high
dose group experienced transient fever. The final results demon-
strated that the rAds induced well specific antibody responses and
T-cell responses, with higher levels of responses in the high dose
group.118 In another trial based on cAd3, 60 volunteers who were
divided into 3 groups received a single dose of Ads ranging from
1£1010 vp to 5£1010 vp, and only 2 volunteers developed transient
fever. After vaccination, specific antibody responses and T-cell
responses were successfully elicited, but the levels were lower than
those detected in the non-human primates.119 In a recent phase I
clinical trial which was performed between Oct 8, 2014, and Feb
16, 2015, 91 participants in Mali and 20 in the USA were recruited
to receive cAd3 expressing GP of Ebola with a single dose ranging
from 1010 to 1011 pu. After the prime of Ads, some Malians were
boosted with vaccinia Ankara expressing GP of Zaire Ebola virus
and filovirus antigens (MVA-BN-Phyllo). The vaccination results
showed that 1 £ 1011 pu single-dose rAds could suffice for a effi-
cacy trials and the regimen of MVA-BN-Phyllo boosting could
confer long-lived protection which might be needed for the health-
care workers.77

Other vaccines against infectious diseases based on Ad
vector

Ad vectored vaccines have been developed for some other infec-
tious diseases besides influenza virus, HIV and Ebola virus. A tetra-
valent dengue virus vaccine based on the rAds was tested in non-
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human primates. In the study, the prM and E gene from different
subtypes of dengue virus were expressed by Ads. The vaccination
included two doses of 109 IU rAds administration with a 57-day
interval, and 85 days or 253 days post prime, the animals were chal-
lenged with dengue virus. The vaccination results revealed that the
animals produced high-titer antibodies that could neutralize all
four serotypes of dengue viruses in vitro. The challenge studies
showed that significant protection from viremia was observed
against all four dengue virus serotypes, but the protection efficacy
was better in dengue-1 and dengue-3 challenges than in dengue-2
and dengue-4 challenges.67

In addition to the Ad-based virus vaccine, Ads have been
developed for the bacteria vaccine or protozoan vaccine. Myco-
bacterium tuberculosis causes serious bacterial infections in
humans, and a vaccine based on AdHu5 expressing Ag85A has
been tested in a phase 1 clinical trial. The results showed the
polyfunctional CD4C and CD8C T cell responses were well
stimulated, and the pre-existing neutralizing antibodies to
AdHu5 had little influence on the potency of the vaccine.82

Malaria, which is caused by Plasmodium falciparum, poses a
serious threat to public health. An AdHu5 vector encoding the
apical membrane antigen 1 and circumsporozoite protein of P.
falciparum was evaluated in a clinical trial.85 In the study, the
DNA prime with Ad boost regimen was proved to be effective
in eliciting specific T cell responses. Furthermore, some other
serotypes of Ad, such as AdHu35 were developed for the
malaria vaccines which listed in Table 1.

Human Ad serotypes such as AdHu5 have been extensively
used for vaccine development mainly due to their excellent
immunogenicity and safety. As the effect of pre-existing immu-
nity on AdHu5-based vaccines, the clinical use of AdHu5 is
greatly limited, while the rare human serotypes of Ads or non-
human-originated Ads such as chimpanzee Ads have been
extensively tested in both preclinical research and clinical trials.

Ad vector-based cancer therapy

Oncolytic Ads have shown great promise in cancer treatment since
they exhibit distinct anti-cancer characteristics. During the life
cycle of Ads, the Ad-infected cancer cells can be lysed in the end,
and after the release of the Ad virions, they infect other cancer cells
to initiate the next life cycle. Generally, two strategies are widely
adopted for the modification of oncolytic Ads. The first one
includes Ads expressing the therapeutic genes or combining RNAi
technology to degrade the tumor promotion proteins. The second
one mainly focuses on the capsids modification of the Ads, making
Ads have specific tropism for the tumor cells or replicate to higher
titers in the tumor tissues than in normal ones. These two strategies
might be integrated to generate better anti-cancer effect.

One of the most well-known Ad-based anti-cancer drugs is the
Advexin.120 It is an E1-E3-deleted AdHu5 vector expressing p53
under the drive of CMV promoter in the E1 region. The Advexin
has been applied in multiple cancer treatments, such as head and
neck cancer, breast cancer and colon cancer, et al.121-123 In the
hand and neck squamous cell carcinoma, the Advexin was tested
in a phase III clinical trial, patients were randomly treated with
either Ad-p53 intratumorally on days 1 and 3 of each week at a
daily dose of 2£ 1012 vp or methotrexate once weekly at a starting
dose of 40 mg/m2, and each treatment cycle include 21 days. The

results revealed that the vector was well tolerated and the anti-
tumor activities were significant.124 Another well-known drug
against glioma is Sitimagene Ceradenovec. The drug is an E1-E3-
deleted, AdHu5-based vaccine that expresses the herpes simplex
virus’ thymidine kinase at downstream of CMV promoter in E1
cassette. In the phase III trial, 250 patients were recruited with 124
in the AdHu5-treated group while 126 in the standard care group.
Different groups received standard care plus injection of 1 £ 1012

vp rAd or just standard care alone. Almost all the individuals expe-
rienced adverse events in the trial. The clinical results suggested
that use of Sitimagene Ceradenovec increased the survival time or
re-intervention in patients with newly diagnosed supratentorial
glioblastomamultiforme.125

Transduction of specific tumor antigen into dendritic cells is
one of the most effective strategies against cancer. In an in vitro
study, the DCs transduced with rAds expressing livin a induced
strong specific cytotoxic T lymphocytes against different cancer
cells.126 Ads can be armed with immune modulator such as
GMCSF or REIC to induced cytotoxic T lymphocytes against
cancers. In a clinical trial, the patients received the combination
treatment of Ad-GMCSF and alkylating agents had higher sur-
vival rates than the ones only treated with alkylating agents,
possibly due to the activation of anti-tumor T cells.127 In a E.
G7 tumor-xenograft mouse model, Ad-REIC induced tumor-
associated antigen specific cytotoxic T-lymphocytes, and the
secreted REIC protein in the tumor generated a proper micro-
environment for inducing of activated dendritic cells, resulting
in decreased tumor size in the tumor-bearing mice receiving
the Ad-REIC compared to the control groups.128

RNAi technology is widely used in the downregulation of
the specific gene’s expression by sequence-specific degradation
of the RISC complex.129 The application of RNAi technology
based on Ads may be extremely effective since the small RNA
molecules can be steadily expressed, thus the targeted protein
remains at low levels for long. One of the firstly used RNAi
technologies based on Ads was the vascular endothelial
growth factor (VEGF)-specific targeting small RNAs. To
induce and maintain the long-lasting silencing of VEGF, the
study constructed E1A-mutated, E1B-deleted Ads with
shVEGF expressing at the E3 region under the drive of U6
promoter. After the vaccination of the Ad-shVEGF in tumor-
bearing mice, potent anti-angiogenesis was induced and
resulted in tumor suppression and survival benefits.130

Recently, a study revealed that the amiRNAs based on the
AdC68 vector could downregulate the survivin which was
highly expressed in tumors, and the rAdC68 caused blockade
of mitosis and cell cycle arrest at the G2/M phase. In the
tumor-xenograft nude mice models, survivin-targeting amiR-
NAs expressed by rAdC68 effectively delayed growth of hepa-
tocellular and cervical carcinomas.131

Ads have great potential as anti-cancer vectors. However,
the clinical use of Ads is limited due to their limited infectivity
in some cancer cells. Modifying the tropism of the Ads is an
alternative way to generate better anti-cancer effect. In a recent
study, the epidermal growth factor-like domain of the human
heregulin-a (HRG) was inserted into the HI loop of AdHu5
fiber without adverse effect on the Ad growth or yields. The
fiber-modified Ad virions showed enhanced infection of cells
expressing the cognate receptors HER3/ErbB3 and HER4/
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ErbB4, so the HER3-expressing Chinese hamster ovary (CHO)
cells could be transduced by the HRG-modified virus, but not
by wild type virus.132 Other studies showed that the fiber-modi-
fied Ads had specific tropism to different cancer cells, which
may provide a new strategy for Ad based cancer therapy.133,134

Capsid-incorporation of foreign antigen into ad virions as
vaccine candidate

The most common method for Ad vaccine development is the
expression of the foreign antigens in the E1 or E3 region of Ad
vector as previously described in Table 1 and Table 2. However,
pre-existing antibodies to the vectors may result in the failure
of the vaccine. The “antigen capsid-incorporation” strategy has
been developed to compensate for the drawbacks associated
with the conventional antigen-expression system by the Ad
vector to evade the pre-exisiting immunity. The Ad capsid pro-
teins such as hexon, penton base, fiber, and pIX have variable
sites for the antigen incorporation.135,136

Hexon is the most abundant structural protein on the capsid
and has several hypervariable regions which can be modified to
display the foreign antigens without affecting the Ad’s rescue
and infectivity. For example, the AdC68 vectors were modified
to express a linear B-cell epitope of the ectodomain of matrix 2
(M2e) of influenza virus within hypervariable regions 1 (HVR1)
or HVR4 of the Ad hexon. Additional vectors with wild-type or
M2e-modified hexon with influenza A virus NP as a transgene
product in the E1-deleted region were also tested in the study.
The vaccination regimen included priming with 1010 vp rAd and
some mice boosted 2 months later. The pre-clinical study dem-
onstrated that Ads expressing M2e within HVR1 of hexon
induced higher magnitude and avidity of M2e-specific antibody
responses than those carrying M2e within HVR4 or vectors
expressing the M2e as part of a transgene product, and the M2e-
specific antibody responses could be boosted by a second dose of
the HVR1 hexon-modified vector but not by repeated immuni-
zation with the HVR4 hexon-modified vector.23 Besides influ-
enza virus vaccine, other studies reported that the insertion of
the neutralizing epitopes of HFMD virus into hexon could elicit
neutralizing antibodies against HFMD virus lethal challenge in
the mice models.22,137 As the HVRs of hexon contain the neu-
tralizing epitopes of Ads,20 the hexon-modified Ads might
change the immunogenicity compared to the wild type Ads, and
the anti-sera from the hexon-modified-Ad vaccinated animals
cannot well neutralize the wild type Ads, which provides a good
platform for the prime-boost regimens for Ad based vaccines.22

Besides hexon, fiber can be engineered as an antigen-display
system. Fiber modification makes Ads have specific tropism for
cancer cells as above described, and can be incorporated with for-
eign antigens as vaccines against infectious diseases as well. A vec-
tor of AdHu5 expressing the 14-mer Pseudomonas aeruginosa
immune-dominant outer membrane protein F (OprF) epitope 8
(Epi8) in five distinct sites of fiber was immunized in the mice. The
results demonstrated that the FG-loop and HI-loop inserted sites
were better than the other insertion sites in fiber since higher levels
of protective immunity against P. aeruginosa were induced by FG-
loop or HI-loop modified vectors.138 The penton base and pIX
were tested for antigen-incorporation in some studies.139-142 How-
ever, compared with the other three proteins on the capsids, the

penton base was rarely incorporated with foreign antigens perhaps
due to the structural constraints.

Outlook and conclusions

Generally, Ad vectors are easy to be manipulated for genetic
modification and capable of inducing potent antigen-specific
immune responses. Most of the Ad species are rarely patho-
genic to humans. Compared to the conventional vaccines, Ad
vector-based vaccines can express a wide range of antigens
from virus, bacteria or protozoan, and elicit long-term immune
responses against infectious diseases. Despite the pre-existing
neutralizing antibodies to the human Ads, the rare serotypes of
Ads from different species have been developed to circumvent
the disadvantages. All above advantages make Ads very attrac-
tive and potential vaccine candidates. Furthermore, Ad vectors
show priority in anti-cancer research since they can be armed
with therapeutic genes or modified to expand to higher titer in
tumors than in the normal tissues. Many Ad vectors have been
studied in animals against either infectious diseases or cancers,
and revealed a good prospect of the further development.

Despite the incomplete success of Ad-based vaccines, Ad vec-
tors still show great potential and are being extensively tested in the
clinical trials recently. With more information obtained from Ad-
related clinical trials, our understanding of the Ad vectors will be
greatly enlarged, which will further promote the use of Ad vectors
in the prevention and control of infectious diseases and cancer.
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