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Background: Some gliomas in sensorimotor areas induce motor deficits, while some do
not. Cortical destruction and reorganization contribute to this phenomenon, but detailed
reasons remain unclear. This study investigated the differences of the functional
connectivity and topological properties in the contralesional sensorimotor network
(cSMN) between patients with motor deficit and those with normal motor function.

Methods: We retrospectively reviewed 65 patients (32 men) between 2017 and 2020.
The patients were divided into four groups based on tumor laterality and preoperative
motor status (deficit or non-deficit). Thirty-three healthy controls (18 men) were enrolled
after matching for sex, age, and educational status. Graph theoretical measurement was
applied to reveal alterations of the topological properties of the cSMN by analyzing resting-
state functional MRI.

Results: The results for patients with different hemispheric gliomas were similar. The
clustering coefficient, local efficiency, transitivity, and vulnerability of the cSMN significantly
increased in the non-deficit group and decreased in the deficit group compared to the
healthy group (p < 0.05). Moreover, the nodes of the motor-related thalamus showed a
significantly increased nodal efficiency and nodal local efficiency in the non-deficit group
and decreased in the deficit group compared with the healthy group (p < 0.05).

Conclusions: We posited the existence of two stages of alterations of the preoperative
motor status. In the compensatory stage, the cSMN sacrificed stability to acquire high
efficiency and to compensate for impaired motor function. With the glioma growing and
the motor function being totally damaged, the cSMN returned to a stable state and
maintained healthy hemispheric motor function, but with low efficiency.

Keywords: resting-state functional magnetic resonance images, graph theory, brain reorganization, topological
property, glioma
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HIGHLIGHTS

This study investigated how the contralesional hemispheric
sensorimotor network (cSMN) was altered in glioma patients
with different motor status (deficit or normal). Two potential
stages (compensated and decompensated) of motor function
alteration were found. When the glioma initially appeared and
the motor function of patients was normal, the cSMN sacrificed
stability to acquire high efficiency in order to compensate for the
impaired motor function induced by glioma. With the glioma
growing and the degree of disruption of motor function being
high, the damaged motor function was unable to be compensated
by the cSMN; the cSMN, therefore, returned to a stable state and
maintained healthy hemispheric motor function, but with low
efficiency. Our findings verified that the contralesional
hemispheric cortex participated in the motor functional
compensation through altering the functional brain network.
INTRODUCTION

Motor function is essential for daily life, and motor dysfunction
induced by a glioma has amajor impact on a patient’s quality of life
(1). Owing to neural plasticity and functional compensation, some
deficits can be recovered (2–4). Normal cortices surrounding
lesions (5) and mirror-symmetrical cortices in the contralesional
hemisphere are recruited to compensate for the dysfunction (4–6).
However, since primary sensorimotor cortices are responsible for a
sole function, remodeling through surrounding areas and then
compensating for the damaged motor function are difficult (7).
Accordingly, it becomes crucial to investigate network remodeling
in themirror-symmetrical sensorimotor cortices to understand the
compensation for motor deficits.

Many multimodal imaging studies have demonstrated that
cortical compensation in the contralesional hemisphere was
related to functional recovery (8–11). Glioma is a progressive
disease. It is probable for a glioma that grew on the sensorimotor
network to inducepreoperativemotordeficit, butnot all gliomasdo.
Cortical destruction and reorganization are related to this
phenomenon, but the detailed mechanisms remain unclear.
Hence, we investigated how alterations of the contralesional
sensorimotor network (cSMN) in patients with different
preoperative motor status help in understanding the mechanisms
of motor functional compensation.

Resting-state functional MRI (rs-fMRI) is widely used to
delineate functional networks. Accumulating rs-fMRI studies
investigated the correlations between alterations of functional
connectivity (FC) and glioma-induced functional plasticity in
glioma patients (8, 12). In addition to FC, topological properties
are another dimension to delineate network connections (13),
which show the hierarchical connections of nodes in a network
and represent the characteristics of information conveying (14,
15). Thus, the topological properties of functional networks are
expected to provide a new perspective in explaining functional
compensation. The current study aimed to 1) reveal how the
cSMN is altered in patients with gliomas that have invaded
sensorimotor-related structures and 2) identify relevant changes
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between the topological properties and preoperative motor
deficits by comparing patients with different motor status.
Subsequently, we hoped to provide some evidence for recovery
treatments by identifying crucial nodes of the cSMN.
MATERIALS AND METHODS

This study was reviewed and approved by the institutional review
board of the Beijing Tiantan Hospital. Written informed consent
was obtained from all patients for their original treatments.

Participants
We retrospectively reviewed the medical records of 70 patients
who were diagnosed with gliomas in sensorimotor function-
related areas between August 2017 and March 2020 at Beijing
Tiantan Hospital. The inclusion criteria were as follows: 1) adult
patients and 2) a primary glioma without any history of
treatment. The exclusion criteria were as follows: 1) head
motion >1 mm in translation or 1° in rotation, 2) lesions
located bilaterally, and 3) tumor resulting in midline shifting.

All enrolled patients were first divided based on tumor location
and were subsequently classified into a deficit and a non-deficit
group based on their preoperative motor status. The muscle
strength of each patient was tested using the British Medical
Research Council scale and by neurosurgeons who have over 10
years of work experience in clinical neurosurgery. If the muscle
strength of any limbs was lower than grade 5, the patient would be
defined as having preoperative motor deficit. After matching for
age, sex, and educational status, 33 healthy participants were
enrolled as controls (men, n = 18). The handedness of all patients
and participants was examined using the Edinburgh Handedness
Inventory test. All of them were right-handed.

MRI Acquisition
In the current study, a Siemens 3.0-T MR scanner
(MAGNETOM Prisma, Erlangen, Germany) was used to
collect imaging data. The parameters for the T1 magnetization-
prepared rapid acquisition gradient echo with gadolinium
enhancement were as follows: repetition time (TR) = 2,300 ms,
echo time (TE) = 2.3 ms, field of view (FOV) = 240 × 240 mm2,
flip angle (FA) = 8°, slice number = 192, and voxel size = 1.0 × 1.0
× 1.0 mm3. The parameters for the T2-weighted fluid-attenuated
inversion recovery (T2-FLAIR) sequence were: TR = 5,000 ms,
TE = 387 ms, FOV = 220 × 220 mm2, FA = 150°, slice number =
128, thickness = 0.9 mm, and voxel size = 0.4 × 0.4 × 0.9 mm3.

The rs-fMRI images were acquired with an echo planar
imaging sequence. The parameters were as follows: TR = 2,000
ms, TE = 30 ms, FOV = 220 × 220 mm2, FA = 90°, slice number =
30, voxel size = 3.0 × 3.0 × 3.0 mm3, and acquisition duration = 8
min. Participants were asked to get monitored without thinking
about anything during rs-fMRI acquisition.

Regions of Tumor Invasion
Two neuroradiologists independently reviewed the MR images
using MRIcron software (http://www.mccauslandcenter.sc.edu/
mricro/mricron/) to manually determine the extent of glioma
April 2022 | Volume 12 | Article 882313
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invasion (shown in Figures 1, 2) (16). The tumor masks of
lower-grade glioma (grades II and III) and glioblastoma (grade
IV) were drawn based on the high-intensity regions of FLAIR
and the enhancement regions of the contrast-enhanced T1-
weighted images, respectively. If there was a more than 5%
difference in the region drawn by the two neuroradiologists, a
third neuroradiologist with 25 years of experience made the final
decision. All tumor masks were normalized to the MNI-152 T1
template using SPM 8 software (University College London,
London, UK; http://www.fil.ion.ucl.ac.uk/spm/). The tumor
volumes were calculated with a volumetric measurement.

Functional MRI Preprocessing
WeusedGRETNA(https://www.nitrc.org/projects/gretna) (17, 18)
to preprocess the rs-fMRI data. Information of the preprocessing
pipeline and the parameters in each step were as follows: 1)
transformation to a NIFTI file; 2) removal of the first images
Frontiers in Oncology | www.frontiersin.org 3
(time point number to remove = 5); 3) slice timing correction; 4)
realignment; 5) spatial normalization (normalized to echo planar
imaging template) (19); 6) smoothing (full width at half maximum
= 4mm); 7) temporal detrending (linear detrending); 8) regressing
out the covariance (whitematter signal: withWMMask_3mm; CSF
signal: with CSFMask_3mm; headmotion: Friston, 24 parameters);
9) temporal filtering (0.01–0.08 Hz); and 10) scrubbing (using
default parameters and the interpolation strategy: linear
interpolation; FD threshold, 0.5; previous time point number, 1;
subsequent time point number, 2).

Regions of Interest
Tumor occupation can induce a mismatch during the step of
normalization, and neurovascular uncoupling decreases the
accuracy of blood oxygen signals (20–22). Accordingly, the
results related to the lesional sensorimotor network would be
inaccurate with the effects of these factors. To avoid these effects,
FIGURE 1 | Tumor location and global properties of patients with left hemispheric gliomas. (A) Overlapping results of gliomas in the left hemisphere. The value of the
color bar represents the number of patients with tumors located in a same region. (B) Differences in global topological properties of the sensorimotor network in the
contralesional hemisphere among the three groups.
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the regions of interest in the cSMN that were unrelated to these
factors, to keep our results reliable, were extracted from a brain
atlas (http://www.brainnetome.org/) (23) using the BRANT
software. The seeds were generated as 5-mm spheres based on
the coordinates of the sensorimotor network. Finally, 14 nodes
were extracted to construct a cSMN template (Supplementary
Tables S1, S2).

Network Construction
Pearson’s correlation coefficients were applied to construct the
FC matrices by calculating the regional mean time series for all
extracted nodes of the sensorimotor networks.

Graph Theoretical Measures
Graph theoreticalmeasurement is a reliablemethod to quantitatively
reveal topological properties (24, 25). In this study, all weighted
matrices were transformed into absolute to calculate the topological
Frontiers in Oncology | www.frontiersin.org 4
properties, including local efficiency, clustering coefficient, global
efficiency, the shortest path length, small-worldness (gamma,
lambda, and sigma), fault tolerance, transitivity, vulnerability, nodal
efficiency, nodal local efficiency, nodal cluster coefficient, and
betweenness centrality (24, 26–28). Detailed information of each
property is shown in the Supplementary Material.

Statistical Analyses
We used SPSS 25.0 software (Microsoft®, IBM Corp., Armonk,
NY, USA) to perform statistical analyses. The clinical
characteristics were compared between the patient and control
groups using Student’s t-test, Mann–Whitney U test, chi-square
test, and one-way ANOVA according to the type of data. To
explore group differences in network topological properties, we
applied a series of sparsity thresholds (from 0.17 to 0.40, interval =
0.01) consistent with the literature (29). We selected the tumor
volume and malignancy grade as covariates during the
FIGURE 2 | Tumor location and global properties of patients with right hemispheric gliomas. (A) Overlapping results of gliomas in the right hemisphere. The value of
the color bar represents the number of patients with tumors located in a same region. (B) Differences in global topological properties of the sensorimotor network in
the contralesional hemisphere among the three groups.
April 2022 | Volume 12 | Article 882313
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comparison of the FCs and topological properties among the
groups. Bonferroni correction was used to correct the FC results.
The topological properties were compared among the groups
using one-way ANOVA. Bonferroni correction was subsequently
used for post-hoc analysis when the results of one-way ANOVA
were significantly different. A p-value <0.05 was considered as
significant. Furthermore, we analyzed the correlation between the
preoperative muscle strength of deficit hand and topological
properties using Spearman’s correlation.
RESULTS

Sixty-five right-handed patients (men, n = 32) met the inclusion
criteria. The preoperative Karnofsky performance scores of the
non-deficit group were higher than those of the deficit group (p <
0.001). Moreover, the tumor volumes were larger in the deficit
group than those in the non-deficit group (left hemisphere, p =
0.016; right hemisphere, p= 0.033). Nodifferenceswere observed in
age, sex, or educational status among the three groups (Table 1).
The differences in FC are shown in the Supplementary Material.

Differences in Global Topological Properties
Regarding left hemispheric gliomas (for detailed results, see
Table 2 and Figure 1), the local efficiency (p = 0.0138),
clustering coefficient (p < 0.0001), fault tolerance (p = 0.0009),
transitivity (p < 0.0001), and vulnerability (p = 0.0074) were
different among the three groups (non-deficit, deficit, and
healthy groups). Post-hoc analysis with Bonferroni correction
Frontiers in Oncology | www.frontiersin.org 5
showed that the non-deficit group had greater local efficiency
than the deficit (p = 0.0461) and healthy (p = 0.0181) groups.
Moreover, compared to the non-deficit group, the clustering
coefficient and transitivity decreased in the deficit (p < 0.0001
and p < 0.0001, respectively) and healthy (p = 0.0022 and p <
0.0001, respectively) groups. Additionally, compared to the non-
deficit group, the fault tolerance increased in the deficit (p =
0.0138) and healthy (p = 0.0008) groups. Furthermore, the
vulnerability was weaker in the deficit (p = 0.0077) and healthy
(p = 0.0439) groups than that in the non-deficit group.

Regarding right hemispheric gliomas (for detailed results, see
Table 3 and Figure 2), the local efficiency (p = 0.0063), clustering
coefficient (p = 0.0003), fault tolerance (p = 0.0008), transitivity
(p = 0.0045), and vulnerability (p = 0.0130) were different among
the three groups. Post-hoc analysis with Bonferroni correction
revealed that the local efficiency was weaker in the deficit (p =
0.0084) and healthy (p = 0.0191) groups than that in the non-
deficit group. Moreover, compared with the non-deficit group,
the clustering coefficient and transitivity decreased in the deficit
(p = 0.0002 and p = 0.0048, respectively) and healthy (p = 0.0386
and p = 0.0199, respectively) groups. Additionally, compared to
the non-deficit group, the fault tolerance increased in the deficit
(p = 0.0035) and healthy (p = 0.0005) groups. Furthermore, the
vulnerability was weaker in the deficit (p = 0.0141) and healthy (p
= 0.0469) groups than that in the non-deficit group.

Small-World Properties
There were some differences in the gamma (left-sided glioma, p =
0.0289; right-sided glioma, p = 0.0001) and sigma (left-sided
TABLE 1 | Demographic and clinical characteristics.

Demographic and clinical characteristics Left hemisphere Right hemisphere Healthy
(n = 33)

Left
hemisphere

Right
hemisphere

Non-deficit group
(n = 17)

Deficit group
(n = 17)

Non-deficit group
(n = 14)

Deficit group
(n = 17)

p-value p-value

Gender
Male 8 10 6 8 18 0.782 0.735
Female 9 7 8 9 15
Age (years)* 40.4 ± 2.2 39.8 ± 3.0 41.8 ± 3.4 43.4 ± 2.2 37.2 ± 1.5 0.487 0.088
Handedness
Right 17 17 14 17 33 – –

Left 0 0 0 0 0
KPS score (preoperative)
100 15 0 5 0 33
90 2 0 9 0 0 <0.001 <0.001
80 0 14 0 14 0
70 0 3 0 3 0
Motor deficit duration (months) – 1.9 ± 0.3 – 2.3 ± 0.4 – – –

Education period (years)* 13.5 ± 0.8 13.4 ± 0.7 12.5 ± 0.7 13.2 ± 0.82 13.4 ± 0.6 0.994 0.654
Tumor grade –

II 6 4 7 7 0.708 0.725
III 11 13 7 10
Tumor volume (ml)* 57.66 ± 8.66 92.39 ± 10.54 60.63 ± 7.71 87.98 ± 9.08 – 0.016 0.033
April 2022 |
 Volume 12 | A
Motor deficit duration was the time from outpatient diagnosis to inpatient functional MRI scan.
KPS, Karnofsky Performance Scale.
*Values are the mean ± SEM. Student’s t-test was used to compare the differences of the tumor volume and the Karnofsky Performance Scale scores between the deficit and non-deficit
groups. One-way ANOVA was used to compare the differences of age and education period between the deficit, non-deficit, and healthy groups. Fisher’s test was used to compare the
differences of gender and tumor grade between the deficit and non-deficit groups. The deficit group comprised patients with preoperative motor deficit; the non-deficit group was
composed of patients without preoperative motor deficit.
rticle 882313
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glioma, p = 0.0299; right-sided glioma, p = 0.0153) values among
the three groups (for detailed results, see Tables 2 and 3).
However, there was no difference in the lambda (left-sided
glioma, p > 0.9999; right-sided glioma, p > 0.9999) values
among the three groups.
Frontiers in Oncology | www.frontiersin.org 6
Regarding left hemispheric gliomas, the gamma value was
greater in the non-deficit group than that in the deficit group (p =
0.0344) after post-hoc analysis with Bonferroni correction.
Moreover, the sigma value was greater in the non-deficit group
than that in the deficit group (p = 0.0271).
TABLE 2 | Global properties compared between the patient and healthy groups for tumors located on the left hemisphere.

Non-deficit
group

Deficit group Healthy group One-way ANOVA
(p-value)

Post-hoc analysis (p-value)

Deficit vs.
non-deficit

Non-deficit vs.
healthy

Deficit vs.
healthy

Local efficiency 0.301 ± 0.007 0.263 ± 0.012 0.264 ± 0.008 0.0138 0.0461 0.0181 >0.9999
Clustering
coefficient

0.322 ± 0.014 0.215 ± 0.010 0.256 ± 0.013 <0.0001 <0.0001 0.0022 0.0935

Global efficiency 0.304 ± 0.017 0.285 ± 0.015 0.275 ± 0.009 0.2628 – – –

Shortest path
length

4.525 ± 0.240 4.748 ± 0.229 4.917 ± 0.153 0.3677 – – –

Gamma 1.025 ± 0.020 0.931 ± 0.027 1.000 ± 0.014 0.0289 0.0344 >0.9999 0.0963
Lambda 0.988 ± 0.002 0.988 ± 0.003 0.991 ± 0.002 >0.9999 – – –

Sigma 1.039 ± 0.020 0.942 ± 0.037 1.001 ± 0.014 0.0299 0.0271 0.6955 0.1913
Fault tolerance 1.255 ± 0.066 1.475 ± 0.046 1.508 ± 0.035 0.0009 0.0138 0.0008 >0.9999
Transitivity 0.166 ± 0.012 0.094 ± 0.006 0.108 ± 0.007 <0.0001 <0.0001 <0.0001 0.6810
Vulnerability 0.235 ± 0.013 0.178 ± 0.011 0.195 ± 0.010 0.0074 0.0077 0.0439 0.8297
April 2022 | Volume 12
Global properties were calculated with one-way ANOVA. If the results of one-way ANOVA were significant, post-hoc analysis with Bonferroni correction was subsequently applied.
FIGURE 3 | Differences in nodal topological properties of the sensorimotor network in the contralesional hemisphere among the three groups, with left hemisphere
glioma. Orange node (No. 1), caudal dorsolateral Brodmann area (BA) 6 (A6cdl); pink node (No. 2), upper limb of BA 4 (A4ul); red node (No. 3), tongue and larynx of
BA 4 (A4tl); light blue node (No. 4), lower limb region of BA 4 (A4ll); green node (No. 5), upper limb, head, and face regions of BA 1/2/3 (A1/2/3ulhf); purple node
(No. 6), tongue and larynx of BA 1/2/3 (A1_2_3tonIa); and dark blue node (No. 7), premotor-related thalamus (mPMtha).
| Article 882313
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Regarding right hemispheric gliomas, the gamma value was
greater in the non-deficit group than that in the deficit (p =
0.0212) and healthy (p = 0.0001) groups after post-hoc analysis
with Bonferroni correction. Moreover, the sigma value was
greater in the non-deficit group than that in the deficit (p =
0.0233) and healthy (p = 0.0498) groups.

Nodal Topological Properties
Regarding left hemispheric gliomas, among the three groups (for
detailed results, see Supplementary Tables S3–S7 and Figure 3),
the nodal local efficiency values of five nodes—caudal
dorsolateral Brodmann area (BA) 6 (A6cdl), lower limb BA 4
(A4ll), upper limb and face BA 1/2/3 (A1_2_3ulhf), tongue and
larynx of BA 1/2/3 (A1_2_3tonIa), and premotor thalamus
(mPMtha)—were significantly altered on post-hoc tests with
Bonferroni correction. Compared with the non-deficit group,
the nodal local efficiency of these nodes decreased in the deficit
(A6cdl, p = 0.0048; A4ll, p = 0.0014; A1_2_3ulhf, p = 0.0044;
A1_2_3tonIa, p = 0.0270; and mPMtha, p = 0.0011) and healthy
(A6cdl, p = 0.0005; A4ll, p = 0.0278; A1_2_3ulhf, p = 0.0075;
A1_2_3tonIa, p = 0.0119; and mPMtha, p = 0.0019) groups.
Similarly, the nodal clustering coefficients of these nodes (except
node A4ll) were greater in the non-deficit group than those in the
deficit (A6cdl, p = 0.0212; A1_2_3ulhf, p = 0.0113; A1_2_3tonIa,
p = 0.0394; and mPMtha, p = 0.0027) and healthy (A6cdl, p =
0.0034; A1_2_3ulhf, p = 0.0342; A1_2_3tonIa, p = 0.0300; and
mPMtha, p = 0.0138) groups. Moreover, the nodal efficiency
values of three nodes—upper limb BA 4 (A4ul), A1_2_3tonIa,
and mPMtha—were significantly altered. Compared with the
non-deficit group, the nodal efficiency of these nodes decreased
in the deficit (A4ul, p = 0.0007; A1_2_3tonIa, p = 0.0134; and
mPMtha, p = 0.0182) and healthy (A4ul, p = 0.0030;
A1_2_3tonIa, p = 0.0174; and mPMtha, p = 0.0058) groups.
Additionally, the degree centrality of two nodes (A4ul and
A1_2_3tonIa) was significantly altered. Compared with the
non-deficit group, the degree centrality decreased in the deficit
(A4ul, p = 0.0020; A1_2_3tonIa, p = 0.0146) and healthy (A4ul, p
= 0.0023; A1_2_3tonIa, p = 0.0436) groups. Furthermore, the
betweenness centrality of node A4ul was significantly altered.
Frontiers in Oncology | www.frontiersin.org 7
Compared with the non-deficit group, the betweenness centrality
decreased in the deficit (p = 0.0379) and healthy (p =
0.0402) groups.

Regarding right hemispheric gliomas, among the three groups
(for detailed results, see Supplementary Tables S8–S12 and
Figure 4), the nodal local efficiency values of four nodes—
A6cdl, A4tl, A1_2_3tonIa, and mPMtha—were significantly
altered on post-hoc tests with Bonferroni correction. Compared
with the non-deficit group, the nodal local efficiency values of
these nodes decreased in the deficit (A6cdl, p = 0.0172; A4tl, p =
0.0210; A1_2_3tonIa, p < 0.0001; and mPMtha, p = 0.0056) and
healthy (A6cdl, p = 0.0492; A4tl, p = 0.0057; A1_2_3tonIa, p =
0.0027; and mPMtha, p = 0.0158) groups. The nodal clustering
coefficient of node A1_2_3tonIa was greater in the non-deficit
group than that in the deficit (p = 0.0027) and healthy (p =
0.0500) groups. Moreover, the nodal efficiency values of four
nodes—A6cdl, A4ul, trunk BA 1/2/3 (A1_2_3tru), and mPMtha
—were significantly altered. Compared with the non-deficit
group, the nodal efficiency of these nodes decreased in the
deficit (A6cdl, p = 0.0187; A4ul, p = 0.0175; A1_2_3tru, p =
0.0445; and mPMtha, p = 0.0065) and healthy (A6cdl, p = 0.0213;
A4ul, p = 0.0215; A1_2_3tru, p = 0.0003; and mPMtha, p <
0.0001) groups. Additionally, the degree centrality of node
A1_2_3tonIa was significantly altered. Compared with the
non-deficit group, the degree centrality decreased in the deficit
group (p = 0.0248). Furthermore, the betweenness centrality of
node A1_2_3ulhf was significantly altered. Compared with the
non-deficit group, the betweenness centrality decreased in the
deficit (p = 0.0468) and healthy (p = 0.0050) groups.

Correlation Between Muscle Strength and
Topological Properties
Regarding patients with left glioma, the clustering coefficient (r =
0.805,p<0.0001), local efficiency (r=0.356,p=0.0390), gamma(r=
0.695, p < 0.0001) and sigma (r = 0.677, p < 0.0001) values,
transitivity (r = 0.741, p < 0.0001), and vulnerability (r = 0.540, p
= 0.0010) were positively correlated with muscle strength of deficit
hand. Similarly, regarding patients with right glioma, the clustering
coefficient (r = 0.704, p < 0.0001), local efficiency (r = 0.477, p =
TABLE 3 | Global properties compared between the patient and healthy groups for tumors located on the right hemisphere.

Non-deficit
group

Deficit group Healthy group One-way ANOVA
(p-value)

Post-hoc analysis (p-value)

Deficit vs.
non-deficit

Non-deficit vs.
healthy

Deficit vs.
healthy

Local efficiency 0.347 ± 0.023 0.273 ± 0.013 0.288 ± 0.011 0.0063 0.0084 0.0191 >0.9999
Clustering
coefficient

0.326 ± 0.018 0.233 ± 0.014 0.277 ± 0.010 0.0003 0.0002 0.0386 0.0536

Global efficiency 0.353 ± 0.026 0.293 ± 0.014 0.301 ± 0.012 0.0595 – – –

Shortest path
length

4.000 ± 0.246 4.610 ± 0.222 4.607 ± 0.153 0.0896 – – –

Gamma 1.112 ± 0.017 1.031 ± 0.031 1.006 ± 0.011 0.0002 0.0212 0.0001 >0.9999
Lambda 1.047 ± 0.011 1.041 ± 0.035 1.000 ± 0.012 0.0582 – – –

Sigma 1.062 ± 0.013 0.986 ± 0.013 1.006 ± 0.011 <0.0001 0.0233 0.0498 >0.9999
Fault tolerance 1.232 ± 0.045 1.441 ± 0.070 1.517 ± 0.036 0.0008 0.0035 0.0005 0.7915
Transitivity 0.172 ± 0.017 0.112 ± 0.011 0.127 ± 0.008 0.0045 0.0048 0.0199 0.9784
Vulnerability 0.254 ± 0.017 0.196 ± 0.008 0.211 ± 0.010 0.0130 0.0141 0.0469 >0.9999
April 2022 | Volume 12
Global properties were calculated with one-way ANOVA. If the results of one-way ANOVA were significant, post-hoc analysis with Bonferroni correction was subsequently applied.
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0.0067), gamma (r = 0.702, p < 0.0001) and sigma (r = 0.711, p <
0.0001) values, transitivity (r = 0.603, p = 0.0003), and vulnerability
(r = 0.510, p = 0.0034) were positively correlated with the muscle
strength of deficit hand (Supplementary Figure S1).
DISCUSSION

This study investigated the alterations of the cSMN in patients with
gliomas and with different preoperative motor status. The results
revealed that the FC of the cSMN was not different between the
patient and healthy groups (for detailed information, see part 2 of
the SupplementaryMaterial). However, the topological properties
of the cSMNwere significantly different between patients with and
without motor deficits.

In our study, the network properties (such as the clustering
coefficient and local efficiency) in the non-deficit group were
greater than those in the healthy group. The clustering coefficient
represents the ratio between the number of actual edges and the
maximum number of possible edges in a network (26). Thus,
compared with the healthy group, the increased clustering
coefficient in the non-deficit group meant that the network was
Frontiers in Oncology | www.frontiersin.org 8
remodeled through increasing the number of actual edges. The
remodeling networks implied that the mirrored motor cortices
on the contralesional hemisphere participated in functional
compensation in the non-deficit group, and this compensation
process resulted in normal motor function when the glioma
involved the primary motor area (2, 7, 30).

How do contralesional cortices compensate for motor
function? The tendency of alterations of the topological
properties among the three groups indicated that two stages of
motor functional compensation might exist.

In our study, the cSMN in the non-deficit group showed small-
world properties and was significantly increased compared with
that of the healthy group, but the cSMN in the deficit group did not
have small-world properties (s < 1). Small-world properties were
calculated based on the clustering coefficient and shortest path
length (31–33). The small-world properties were found to be
increased in the non-deficit group and decreased in the deficit
group compared with the healthy group. Specifically, the clustering
coefficient was changed and the shortest path length was
unchanged. The inverse tendency of alterations of the clustering
coefficients between the non-deficit and deficit groups was
determined by the different degrees of network disruption. The
FIGURE 4 | Differences in nodal topological properties of the sensorimotor network in the contralesional hemisphere among the three groups, with right hemisphere
glioma. Orange node (No. 1), caudal dorsolateral Brodmann area (BA) 6 (A6cdl); pink node (No. 2), upper limb of BA 4 (A4ul); red node (No. 3), tongue and larynx of
BA 4 (A4tl); light blue node (No. 4), lower limb region of BA 4 (A4ll); green node (No. 5), upper limb, head, and face regions of BA 1/2/3 (A1/2/3ulhf); purple node
(No. 6), tongue and larynx of BA 1/2/3 (A1_2_3tonIa); yellow node (No. 7), trunk region of BA 1/2/3 (A1_2_3tru); and dark blue node (No. 8), premotor-related
thalamus (mPMtha).
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network disruptions were more serious in the deficit group than
those in the non-deficit group, as patients in the deficit group had
larger tumor volumes (30, 34, 35). The different degrees of network
disruptions also explained that the local efficiency, clustering
coefficient, gamma and sigma values, and transitivity were
positively correlated with the muscle strength of contralesional
hemisphere limbs. Moreover, the contralesional primary motor
area is necessary for recovery if a lesion invaded large parts of the
motor area (36). Since the contralateral cortex is persistently
involved in compensating for impaired motor function, we
believed that the reason patients suffer from preoperative motor
deficits was that this compensated motor function was further
damaged by growing gliomas. In addition, the shortest path length
was insignificantly changed both in the deficit and non-deficit
groups. Accordingly, similar to stroke patients increasing the
small-worldness of the network after recovery training (29).
Based on the evidence we found in patients with glioma, we
hypothesized that the cSMN firstly acquired a high conveying
efficiency (improved small-worldness of the cSMN) to participate
in compensating for the damaged motor function in the lesional
hemisphere (non-deficit stage). Subsequently, the cSMNdeveloped
a low conveying efficiency (reduced small-worldness in the cSMN)
because the compensatory motor function was further damaged by
the growing glioma (deficit stage). Furthermore, this finding does
not contradict the conventional theory that motor function is
controlled by the contralateral hemisphere. Despite the
participation of the contralesional hemisphere in motor
functional compensation, patients would still suffer from motor
deficits as the disease progresses in the lesional hemisphere.

Vulnerability evaluates the stability of a network (14), which
represents the alterations of the conveying efficiency if each node in
a network is replaced (28, 37). In our study, the vulnerability of the
cSMN increased in the non-deficit group, but was insignificantly
altered in the deficit group. This finding indicates that the cSMN in
the deficit groupwasmore stable than that in the non-deficit group.

Tumor grade is not a determined factor for the different
network alterations in the deficit and non-deficit groups. The
theory of compensatory functions in glioma patients is that,
when a glioma appears, the functional network begins
remodeling to compensate for the damaged functions (8). This
compensation firstly recruits tissues surrounding the glioma,
and then the homotopic areas in the contralesional hemisphere if
the damaged function cannot be compensated by surrounding
tissues (3). This theory supports the existence of the
compensatory stage of motor function in glioma patients.
Some studies revealed that high-grade gliomas (HGGs), as well
as low-grade gliomas (LGGs), were able to induce contralateral
network reorganization (38–41) and neuroplasticity (42–44).
Unlike stoke, gliomas are relatively slow growing; therefore, the
brain tissue around the tumor has enough time to develop
neuroplasticity, which may occur earlier in HGG than in LGG
due to its high invasiveness (2, 40). In order to identify the
differences of brain networks between the compensatory and
decompensated stages, patients with HGGs are a good model
since those with LGGs often have normal function at surgery.
Moreover, the clinicalmanifestations of patients showed that the
Frontiers in Oncology | www.frontiersin.org 9
influence of HGGs is also gradually aggravated (45). To avoid
bias, the tumor volume and tumor grade were regressed out as
covariates in this study.

Some patients with HGGs suffered from motor deficits, which
meant that the compensation ofmotor functionwas insufficient (46).
Therefore, combined with the alterations of conveying efficiency in
the different stages (compensatory and decompensatory stages), we
concluded that the cSMN sacrificed stability to exchange conveying
efficiency in order to compensate for the damagedmotor function in
the compensatory stage. Meanwhile, the healthy hemisphere
maintained its own motor function with low conveying efficiency.
In the decompensatory stage,when themotor function in the lesional
hemisphere was completely destroyed by the growing glioma, the
conveying efficiency of the contralesional hemisphere was unable to
recover and remained low, and the cSMN returned to a stable status.

Regarding the alterations in nodal properties, we found that
most of the alterations focused on the primary sensorimotor areas
and motor-related thalamus. We found an increasing tendency of
alterations of nodal properties in the non-deficit group and an
unchanging tendency in the deficit group compared with the
healthy group. This finding further verified that the contralesional
sensorimotor cortices are crucial for motor functional
compensation (47, 48). Moreover, our results showed that,
regardless of the glioma location, the nodal efficiency, nodal
clustering coefficient, and nodal local efficiency of the nodes
(premotor-related thalamus) increased in the non-deficit group
and decreased in the deficit group. These findings indicated that
the premotor-related thalamus played an important role in
compensating for the damaged motor function in the non-
deficit stage and significantly decreased the conveying efficiency
in the deficit stage. Previous studies showed that the contralesional
motor-related thalamus participated in motor plasticity by
changing pathways and building midline-crossing contralesional
corticospinal fibers (47, 48). Hence, our findings verified this
theory through functional networks and differed from previous
verification through structural networks. Furthermore, as previous
studies have shown, the motor-related thalamus is crucial for the
modulation of motor function (30, 49–51). Our findings might
provide a target for further protection in operations and for
stimulating treatment using repetitive transcranial magnetic
stimulation post-operation.

An important point that should be raised is that our study did
not investigate the interhemispheric alterations of FCs or
topological properties in order to avoid negative effects from
neurovascular uncoupling and tumor occupation as much as
possible. In this study, we chose the cSMN because the origin of
blood supply in each hemisphere is different. Consequently, the
interhemispheric FC, as well as the topological properties of the
entire sensorimotor network, could not be investigated. Previous
studies showed that neurovascular uncoupling affects the results
of rs-fMRI (52), but we considered that their conclusions were
biased due to the calculation of interhemispheric FCs (53). In
fact, no significant difference in the FCs of the cSMN between the
patient and healthy groups was found in previous glioma-
relevant studies (53–55). Our findings in FCs are consistent
with these previous studies.
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The most important limitation of this study is that, although
our findings are encouraging, they are still conjectures based on
the controversial theory that the symmetric cortex is able to
compensate for the damaged function in the lesional hemisphere
(55, 56). The use of transcranial magnetic stimulation may
validate our findings in the future.

In summary, alteration of the topological properties of the
cSMN is a dynamic process in patients with gliomas. Two stages
of motor functional alterations may exist. In the compensatory
stage, the cSMN sacrificed stability to acquire high conveying
efficiency and to compensate for the damaged motor function of
the lesional hemisphere. With tumor growth and deterioration,
patients enter the decompensatory stage, and motor dysfunction
on the affected side arises. The cSMN returns to a stable state and
maintains healthy hemispheric motor function, but with
low efficiency.
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